Al-Cu与Al-Si-Cu合金凝固微观组织的仿真模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在铸件凝固过程中,晶粒组织的控制是非常重要的,晶粒组织对铸件质量和力学性能有显著的影响。以前,主要依靠半经验公式和实验来控制成型过程的微观组织演变,但会延长产品的生产周期、增加生产成本,也不能直观了解微观组织形貌演变的过程。随着高性能计算设备以及新模拟手段的出现,模拟仿真逐渐成为了预测材料微观组织形貌演变的有效手段。
     微观组织模拟已经从半定量、固定点形核的确定性模型发展到了定量、随机形核的随机性模型。本文进行的微观组织模拟采用的是元胞自动机有限元模型,在此模型中,将枝晶尖端生长的动力学和晶向作为过冷度的函数。元胞自动机有限元模型非常适合用来跟踪柱状晶前端的生长情况。
     本文解决了微观组织模拟过程中,在界面传热、液相流动以及形核方面仍存在的一些问题,进一步提高了微观组织模拟的精度,使得模拟结果在柱状晶和等轴晶分布、比例、晶粒尺寸方面,更接近实验结果。主要的研究结果有以下几个方面:
     (1)基于ProCAST的反求方法,采用实验测得的铸件和模具的温度数据,建立了反热传导求解界面换热系数的模型,求解了Al-2%Cu二元合金、Al-9.75%Si-2%Cu三元合金以及A356铝合金的界面换热系数曲线。并将其代入到合金的微观组织模拟中,改善了以往微观组织模拟采用恒定的界面换热系数值模拟的结果,提高了合金微观组织模拟的精度。
     通过实验测得的温度曲线与模拟的温度曲线进行对比,验证所求解的界面换热曲线的准确性,分析了界面换热曲线的变化趋势,讨论了Al-2%Cu二元合金与Al-9.75%Si-2%Cu三元合金界面换热曲线产生差异的原因;另外,还通过反分析模型求解了不同浇注温度下的水冷系统的界面换热系数。
     (2)将Eyring模型和Miedema模型相结合,建立了二元以及三元合金液相扩散系数的理论计算模型,改善了以往微观组织模拟中采用固定液相扩散系数的模拟结果,提高了微观模拟的精度。
     在Eyring模型中,引入合金黏度随时间变化的曲线,进一步提高了计算的准确性,并将Eyring模型计算的液相扩散系数作为合金的自扩散系数,代入到Miedema模型中进行修正,最终计算出合金真实的液相扩散系数;另外,结合Toop模型,将液相扩散系数的理论计算模型进行扩展,计算了三元合金的液相扩散系数。将理论计算的液相扩散系数与实验测得的数值进行对比,验证了液相扩散系数理论计算模型的正确性。
     (3)根据实验条件和铸件材料,基于元胞自动机的形核模型和生长模型,对Al-2%Cu二元合金和Al-9.75%Si-2%Cu三元合金的形核密度以及过冷度进行了研究,选择了合适的微观模拟参数;并采用常温模具中的铸件进行微观组织模拟,模拟的结果与实验结果吻合性很好,验证了基于反求的界面换热系数、计算的液相扩散系数以及确定的微观参数的微观组织模拟模型的正确性。
The control of grain structure is of primary importance in many solidification processes of castings, because the grain structure has influence on the quality of casting and mechanical properties. In the past, the microstructural evolution was researched mainly based on numbers of semi-empirical formulations and experiments, which brought great expense of costs and time. Otherwise, it can not provide a direct view of microstructure development. With the advent of high performance computing devices and new simulated techniques, numerical simulation has been considered as an effective tool for evaluation of microstructure evolutions during the solidification process.
     Numerical simulation experiences the stage of semi-quantitative simulation, fixed-points nucleation and deterministic model to quantitative simulation, random nucleation, and stochastic model. The method of microstructure simulation is the cellular automation-finite element (CAFE) model in this article. In the CAFE model, the growth kinetics of the dendrite tips and crystallographic orientation of grains are determined as a function of undercooling. The CAFE model is well suited to track the development of a columnar dendritic front in an undercooled liquid.
     This article has optimized and solved some problems of interface heat transfer, liquid-phase diffusion and nucleation which still exist in the microstructure simulation to further improve the accuracy of the CAFE model. The simulated results are in accord with the experimental ones well, and can accurately reflect equiaxed and columnar grains distribution, proportion and size. The main researches are shown as following
     (1) The interfacial heat transfer coefficients (IHTC) of Al-2%Cu, Al-2%Cu-9.75%Si and A356alloy are performed based on the inverse method of ProCAST and experimental temperature. The identified IHTC is taken into the CAFE method, which improve the accuracy of microstructure simulation with the constant IHTC. For verifying the IHTC, the temperature distribution was calculated by feeding the determined IHTC into the ProCAST with the same boundary conditions and then compared with the measured temperatures at the corresponding locations. In addition, the IHTC variation with time is analysed, and the differences of IHTC between Al-2%Cu alloy and Al-9.75%Si-2%Cu alloy are discussed. Otherwise, the IHTCs of the experiment with water-cooling system are resolved at different pouring temperatures by the inverse method.
     (2) The liquid-phase diffusion coefficients of Al-2%Cu alloy and Al-9.75%Si-2%Cu alloy are calculated by the Eyring model and Miedema model in different temperatures. The CAFE method is performed by the calculated liquid-phase diffusion coefficient, which improve the accuracy of the micro structure simulation based on the constant liquid-phase diffusion coefficients. The viscosity curve variation with temperature is introduced into the Eyring model. The self-diffusion coefficient is calculated by the Eyring model, and the liquid-phase diffusion coefficient is modified by the Miedema model. The liquid-phase diffusion coefficient of Al-9.75%Si-2%Cu alloy is calculated by the Eyring model, Miedema model and Toop model. In order to verify the feasibility of the model, the liquid-phase diffusion coefficients measured with experiments are compared with the calculated data by the Eyring model, Miedema model and Toop model.
     (3) According to the experimental conditions and casting material, the nucleation density and undercooling are discussed and selected based on the nucleation and growth model of CAFE in the microstructure simulation. The simulated results using the identified IHTC, calculated liquid-phase diffusion coefficients and suitable microstructure parameters are in accord with the experimental results of normal temperature mold well.
引文
[1]韩逸,李栋,张新明等.热力学计算优化Al-Zn-Mg-Cu合金成分.中国有色金属学报,2011,21(1):179-184
    [2]张艳华,周志敏.铸造速度对Al-Cu合金半固态组织影响的多尺度模拟.科学技术与工程,2011,11(7):1557-1560
    [3]吴强,杨湘杰,谢永生.元胞自动机法模拟A1-4.5mass%Cu枝晶生长.南昌大学学报,2008,30(4):363-368
    [4]宋迎德,赫海,谷松伟等.枝晶尖端生长速度对微观组织数值模拟的影响研究-Ivantsov函数近似方式的确定.铸造技术,2011,32(1):34-38
    [5]唐景,董选普,张磊等.铝合金半固态压铸过程数值模拟及试验验证.铸造,2012,61(1):51-56
    [6]王师勇,陈志国,李世晨等.Si和Ag对Al-Cu-Mg合金微观组织结构演化的影响.中国有色金属学报,2009,19(11):1902-1907
    [7]Oldfield W A. Quantitative approach to casting solidification:freezing of cast iron, ASM Trans,1996,59:945-960
    [8]Spittle J A, Brown S G. Computer simulation of the eddects of alloy variables on the grain structures of castions. Acta Metall,1989,37(7):1803-1810
    [9]Chopard B, Droz M. Cellular automaton modeling of physical systems. Cambridge:Cambridge University Press,1998:21-61
    [10]Packard N. Theory and applications of cellular automata. Singapore:world Scienti-fic,1986:901-946
    [11]Neumann J V. Theory of self-reproducing automata. Champain:University of Illinois Press,1996,224-290
    [12]Brown S G R, Williams T, and Spittle J A. A cellular automaton model of the steady-state'free'growth of a non-isothermal dendrite. Acta Metallurgica Materialia,1994,42(8):2893-2898
    [13]Spittle J A, Brown S G R. A 3D cellular automaton of coupled growth in two component systems. Acta Metallurgica Materialia,1994,42(60):1811-1815
    [14]Brown S G R, Bruce N B. A 3-dimensional cellular qutomaton model of free dendritic growth. Scripta Metallurgica Materialia,1995,32(2):241-246
    [15]Gandin C A, Rappaz M. A coupled finite element-cellular automaton model for the prediction of dendritic grain structure in solidification process. Acta Metallurgica Materialia,1994,42(7):2233-2246
    [16]Cho I S, Hong C P. Modeling of microstructural evolution in squeeze casting of an Al-4.5mass%Cu alloy. ISIJ International,1997,37(11):1098-1106
    [17]Kermanpur A, Varahram N, Davami P, et al. Thermal and grain-strcture simulation in a land-based turbine blade directionally solidified with the liquid metal cooling process. Metallurgical and Materials Transactions B,2000,31(6): 1293-1304
    [18]Jacot A, Rappaz M. A pseudo-front tracking technique for the modeling of solidification microstructures in muli-component alloys. Acta Materialia,2002, 50:1909-1926
    [19]Nastac L, Stefanescu D M. Stochastic modeling of microstructure formation in solidification processes. Modelling Simulation Matererials Science and Engineering,1997,5:391-420
    [20]Lee P D, Atwood R C, Dashwood R J, et al. Modeling of porosity formation in direct chill cast aluminum-magnesium alloys. Materials Science and Engineering: A,2002,328(1-2):213-222
    [21]Wang W, Kermanpur A, Lee P D, et al. Simulation of dendritic growth in the platform region of single crystal superalloy turbine blades. Journal of Materials Sciece,2003,38(210):4385-4391
    [22]Beltran-Sanchez L, Stefanescu D M. A quantitative dendrite growth model and analysis of stability concepts. Metallurgical and Materials Transactions A,2004, 35(8):2471-2485
    [23]Stefanescu D M. Solidification and modeling of cast iron-A short history of the defining moments. Materials Science and Engineering:A,2005,413-414: 322-333.
    [24]Guillemot G, Gandin C A, Combeau H, et al. A new cellular automaton-Finite element coupling scheme for alloy solidification. Modeling and Simulation in Materials Science and Engineering,2004,12(3):546-556
    [25]Guillemot G, Gandin C A, Combeau H. Modeling of macro segregation and solidification grain structures with a coupled cellular automation-Finite element model. ISIJ International,2006,46(6):880-895
    [26]Martorano M A, Biscuola V B. Predicting the columnar-to-equiaxed transition for a distribution of nucleation undercoolings. Acta Materialia,2009,57(2): 607-615.
    [27]李斌,许庆彦,李旭东等.搅拌铸造SiCp/Al-7.0%Si复合材料的三维微观组 织模拟.金属学报,2006,42(8):875-881
    [28]李强,李殿中,钱百年.A1-7%Si凝固组织演变的元胞自动机方法模拟.材料工程,2004,7:35-39
    [29]张林,王元明,张彩碚.Ni基耐热合金凝固过程的元胞自动机方法模拟.金属学报,2002,37(8):882-888
    [30]张林,张彩碚,王元明等.低碳钢奥氏体转变为铁索体的元胞自动机模型.材料研究学报,2002,16(2):200-204
    [31]Zhang L, Zhang C B, LXH, et al. Modeling recrystallization of austenite for C-Mn steelsduring hot deformation by cellular automaton. Journal of Materials Science and Technology,2002,18(2):163-166
    [32]Zhang L, Zhang C B. Two-dimensional cellular automaton model for simulating structural evolution of binary alloys during solidification. Transactions of Nonferrous Metals Society of China.2006,16(6):1410-1416
    [33]齐伟华,张捷宇,王波等.铝合金元胞自动机-有限单元法微观组织模拟.包头铁学院学报,2008,27(1):82-86
    [34]丁恒敏,刘瑞祥,陈立亮等.用Cellular Automaton模型方法模拟二元合金多晶粒枝晶生长.特种铸造及有色合金,2005,25:337-339
    [35]王同敏,金俊泽.铸件凝固过程微观模拟研究进展.铸造,1999,5:41-49
    [36]Zhu M F, Hong C P. A modified cellular automaton model for the simulation of dendritic growth in solidification of alloys. ISIJ International,2001,41(5):436-445
    [37]Zhu M F, Cao W, Chen S L, et al. Modeling of microstructure and microsegregation in solidification of muti-component alloys. Journal of Phase Equilibria and Diffusion,2007,28(1):130-138
    [38]朱鸣芳,陈晋,孙国雄.枝晶生长的数值模拟.金属学报,2005,41(6):583-597
    [39]刘东戎,吴士平,郭景杰等.考虑包晶反应的Ti-(45-48)A1合金锭凝固组织模拟.2006,42(4):437-442
    [40]刘东戎,桑宝光,康秀红等.考虑固相移动的大尺寸钢锭宏观偏析数值模拟.物理学报,2009,58(6):s104-110
    [41]刘东戎,吴士平.铝硅合金凝固组织的数值模拟.哈尔滨理工大学学报,2002,7(5):97-100
    [42]熊玉华,李培杰,杨爱民等.铸造工艺参数和细化剂对K4169高温合金铸态组织的影响Ⅰ.晶粒组织及晶粒细化机理.金属学报,2002,38(5):529-533
    [43]熊玉华,李培杰,杨爱民等.铸造工艺参数和细化剂对K4169高温合金铸态 组织的影响Ⅱ.枝晶组织及晶粒细化机理.金属学报,2002,38(5):534-538
    [44]王东岭,苏勇,陈翌庆等.热型连铸Cu-10A1合金温度场及晶粒结构的数值模拟.特种铸造及有色金属,2009,29(3):276-279
    [45]罗超,武胜,谢志毅等.铀铌合金铸造晶粒度的计算机模拟与实验研究.中国有色金属学报,2004,14(S1):354-357
    [46]Kinzel W. Phase transitions of cellular automaton. Z Phys B-Condensed Matter, 1985,58:229-244
    [47]Young M J, Davies C H J. Cellular automaton modeling of precipitate coarsening. Scripta Mater,1999,41(7):697-701
    [48]Raghavan S, Sahay S S. Modeling the grain growth kinetics by cellular automaton. Materials Science and Engineering:A,2007,445-446:203-209
    [49]Geiger J, Roosz A, Barkoczy. Simulation of grain coarsening in two dimensions by cellular-automation. Acta Materialia,2001,49(40):623-629
    [50]Kumar M, Sasikumar R, Nair P K. Competition between nucleation and early growth of ferrite from austenite-studies using cellular automaton similations. Acta Materialia,1998,46(17):6291-6303
    [51]Kundu S, Mukhopadhyay A, Chatterjee S, et al. Prediction of phase transformation and micro structure in steel using cellular automaton technique. Scripta Materialia,2004,50(6):891-895
    [52]Lan Y J, Li D Z, Huang C J, et al. Acellular automaton model for austenite to ferrite transformation in carbon steel under non-equilibrium interface conditions. Modeling and simulation in Materials Science and Engineering,2004,12(4): 719-729
    [53]Lan Y J, Li D Z, Li Y Y. Modeling austenite-ferrite transformation in low carbon steel using the cellular automation method. Journal of Materials Research,2004, 19(10):2877-2886
    [54]Lan Y J, Li D Z, Li Y Y. Modeling austenite decomposition into ferrite at different cooling rate in low-carbon steel with cellular automaton method. Acta Materialia,2004,52(6):1721-1729
    [55]麻晓飞,关小军,刘云腾.不同尺寸二相粒子材料晶粒长达的元胞自动机仿真.中国有色金属学报,2008,(7):1305-1310
    [56]麻晓飞,关小军,刘云腾.基于改进转变规则的晶粒长大CA模型.中国有色金属学报,2008,(1):138-144
    [57]Zheng C W, Li D Z, Lu S P, et al. On the ferrite refinement during the dynamic strain-induced transformation:A cellular automaton modeling. Scripta Materialia,2008,58(10):838-841
    [58]Beck J V, Blackwell B, Clair C. Inverse heat conduction:ill-posed problems. Wiley, London,1985,20-308
    [59]Beck J V. Transient sensitivity coefficient for thermal contact conductance. International Journal of Heat and Mass Transfer,1967,10:1615-1619
    [60]Beck J V, Litkouhi B, Stclair C R. Efficient numerical solution of the nonlinear inverse heat conduction problem. Mechanical Engineering,1980,102:96-104
    [61]Beck J V. Combined parameter and function estimation in heat transfer with application to contact conductance. Journal of Heat Transfer.1988,110:1046-1058
    [62]Beck J V, Blackwell B, Sheikh A H. Comparison of some inverse heat conduction methods using experimental data. International Journal of Heat and Mass Transfer,1996,39:3649-3657
    [63]Beck J V, Woodbury K A. Inverse problems and parameter estimation: integration of measurements and analysis. Measurement Science & Technology, 1998,9:839-847
    [64]Kobryn P A, Semiatin S L. Determination of interface heat-transfer coefficients for permanent-mold casting of Ti-6Al-4V. Metallurgical and Materials Transactions B,2001,32:685-695
    [65]Gadala M S, Xu F C. An FE-based sequential inverse algorithm for heat flux calculation during impingement water cooling. International Journal of Numerical Methods for Heat & Fluid Flow,2006,16:356-385
    [66]Gafur M A, Nasrul H M, Narayan P K. Effect of chill thickness and superheat on casting-chill interfacial heat transfer during solidification of commercially pure aluminium. Journal of Materials Processing Technology,2003,133:257-265
    [67]Arunkumar S, Rao K V S, Kumar T S P. Spatial variation of heat flux at the metal mold interface due to mold filling effects in gravity die-casting. International Journal of Heat and Mass Transfer,2008,51:2676-2685
    [68]Hamasaiid A, Dargusch M S, Davidson C J, et al. Effect of mold coating materials and thickness on heat transfer in permanent mold casting of aluminum alloys. Metallurgical and Materials Transactions A,2007,38:1303-1316
    [69]Coates B, Argyropoulos S A. The effects of surface roughness and metal temperature on the heat-transfer coefficient at the metal mold interface. Metallurgical and Materials Transactions A,2007,38:243-255
    [70]Broucaret S, Michrafy A, Dour G. Heat transfer and thermo-mechanical stresses in a gravity casting die influence of process parameters. Journal of Materials Processing Technology,2001,110:211-217
    [71]Rajaraman R, Velraj R. Comparison of interfacial heat transfer coefficient estimated by two different techniques during solidification of cylindrical aluminum alloy casting. Heat Mass Transfer,2008,44:1025-1034
    [72]Guo Z P, Xiong S M, Ch S H. Heat transfer between casting and die-during high pressure die casting process of AM50 alloy-modeling and experimental results. Journal of Materials Science & Technology,2008,24:131-135
    [73]王登刚,刘迎曦,李守巨.弹性力学非线性反演问题概述.力学进展,2003,2:166-174
    [74]Tikhonov A N, Arsenin V Y. Solution of ill-posed problem. New York:wiley, 1977,216-228
    [75]刘永刚,陈军,潘治等.Al-4.5%Cu合金凝固过程显微组织的数值模拟.中国有色金属学报,2002,6(12):1130-1134
    [76]陈光友,倪红卫,张华等.A1-Si合金凝固组织的数值模拟及预测.铸造技术,2009,30(1):48-52
    [77]Vandyoussefi M, Greer A L. Application of cellilar automation-finite element model to the grain refinement of directionally solidified Al-4.15wt% Mg alloys. Acta Mater,2002,50(7):1693-1705
    [78]魏可侦,张奇.热电偶热传导测温中的动态响应时间和误差估计.测试技术学报,2007,21(6):523-526
    [79]QuanPeng K E. Identification of interfacial heat transfer between molten metal and green sand by inverse heat conduction method. The University of Alabama, Tuscaloosa, Alabama,2000
    [80]Tillman E S, Berry J T. Influence of the thermal contact resistance on the solidification rate of long freezing range alloys. AFS Cast Metals Research Journal,1972:1-6
    [81]Sully L D J. The thermal interface between castings and chill molds. AFS Transactions,1976:735-744
    [82]Sahai V, Overfelt R A. Gap Formation and interfacial heat transfer in alloy 718 investment casting. Minerals Metals and Materials Society,1995:417-424
    [83]Sahai V. Predicting interfacial contact conductance and gap formation of inverstment cast alloy718. Journal of Thermophysics and Heat Transfer, 1998(12):562-566
    [84]郭志鹏,熊守美,曹尚炫等.合金材料以及工艺参数对压铸过程中铸件/铸型 界面换热系数的影响.金属学报,2008,44:433-439
    [85]郭志鹏,熊守美,曹尚炫等.热传导反算模型的建立及其在求解界面热流过程中的应用.金属学报,2007,43:607-611
    [86]郭志鹏,熊守美.压铸过程中铸件-铸型界面换热系数与铸件凝固速率的关系.金属学报,2009,45:102-106
    [87]Nishida Y, Droste W, Engler S. Air-gap formation process at the castingmold interface and the heat transfer mechanism through the gap. Metallurgical and Materials Transactions,1986,17B:833-844
    [88]李晓谦,曹俊.金属凝固前沿热传递系数变化规律的探讨.上海有色金属,2001,22(3):97-100
    [89]Santos C A, Quaresma J M V, Garcia A. Determination of transient interfacial heat transfer coefficients in chill mold castings. Journal of Alloys and Compounds,2001,319:174-186
    [90]郭志鹏.压铸过程铸件-铸型界面热交换行为的研究.北京:清华大学.2009,6.
    [91]徐宏,侯华,赵宇宏等.铝铸件凝固模拟边界界面换热系数的测定.中国有色金属学报,2003,13(4):881-885
    [92]熊守美,郭志鹏.压铸过程铸件-铸型界面换热行为的研究进展.铸造技术,2008,9:1163-1166
    [93]隋大山,崔振山.ZL102凝固过程温度场的数值模拟与实验验证.铸造,2008,57(7):674-677
    [94]Muojekwu C A, Samarasekera I V, Brimacombe J K. Heat transfer and microstructure during the stages of metal solidification. Metallurgical and Materials Transactions,1995,26B:361-382
    [95]EI-Mahallawy N A, Assar A M. Metal-mold heat trsfer coefficient using end-chill experiments. Journal of Materials Science Letters,1988,7:205-208
    [96]Michael F, Louchez P R, Samuel F H. Heat transfer coefficient during solidification of Al-Si alloys:effects of mold temperature, coating type and thickness. AFS Transactions,1995,103:275-283
    [97]Ho K, Pehlke R D. Transient methods for determination of metal-mold interfacial heat transfer. Transactions of the American Foundrymen's Society, Proceedings of the Eighty-seventh Annual Meeting, Rosemont:AFS,1983: 689-698
    [98]Ho K, Pehlke R D. Metal-mold interfacial heat transfer. Metallurgical and Materials Transactions,1985,16B:585-594
    [99]Nishida Y, Matsubara H. Effect of pressure on heat transfer at the metal mould-casting interface. British Foundryman,1976,69:274-278
    [100]Coates B, Argyropoulos S A. The effects of surface roughness and metal temperature on the heat-transfer coefficient at the metal mold interface. Metallurgical and Materials Transactions B,2007,38B:243-255
    [101]Prates M, Biloni H. Variables affecting the nature of the chill zone. Metallurgical and Materials Transactions,1972,3B:1501-1510
    [102]Hamasaiid A, Dargusch M S, Davisson C J, ea al. Effect of mold coating materials and thickness on heat transfer in permanent mold casting of aluminum alloys. Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2007,38:1303-1316
    [103]Mirbagheri S M H, Shrinparvar M, Chirazi A. Modeling of metalo-static pressure on the metal-mould interface thermal resistance in the casting process. Materials and Design,2007,28:2106-2112
    [104]hin H M, Kocatepe K, Kayikci R, et al. Determination of unidirectional heat transfer coefficient during unsteady-state solidification at metal casting-chill interface, Energy Conversion and Management,2006,47:19-34
    [105]Porter A W. On the Vapour-Pressures of Mixtures. Trans Faraday Soc.1921,16: 336-345
    [106]Lupis C H P. Ellliott J F. Prediction of enthalpy and entropy interaction coefficients by the "central atoms" theory. Acta Metall.1967,15(17):265-276.
    [107]陈星秋,丁学勇,刘新等.二元合金熔体组元活度计算式的改进.金属学报,2000,36(5):492-496
    [108]汤振雷,王为.计算合金系统热力学性质的Miedema模型的发展.材料导报,2008,22(3):115-118
    [109]孙顺平,易丹青,臧冰.基于Miedema模型和Toop模型的Al-Si-Er合金热力学参数计算.稀有金属材料与工程,2010,39(11):1974-1978
    [110]吴春峰,李慧改,郑少波等.二元合金热力学模型-Miedema模型.上海金属,2011,33(4):1-5
    [111]Miedema A, De-Chatel P F, De-Boer F R Cohesion in alloys-fundamentals of a semi-empirical method. Physica,1980,100(B):1-28
    [112]Glasstone S, aidler K J L, Eyring H.The Theory of Rate Process, McGraw, NY, 1941
    [113]Kuriyagawa M, Kawamura T, Hayashi S, et al. Effects of addition of hindered phenol compounds to a segmented polyurethane with shape memory on mechanical yielding. J Materials Science.2011,46(5):1264-1271
    [114]Siddiq M A, Lucas K. Correlations for prediction of diffusion in liquids. Can J Chen Eng.1986,64:839-843
    [115]钱仁渊,范益群,史美仁等.用改进的Eyring方程推算无限稀扩散系数.南京化工大学学报,1995,17(4):34-39
    [116]房升.基于Eyring反应速率理论的溶液黏度模型.化学进展,2010,22(3):309-314
    [117]Akgerman A, Gainer J I. Diffusion of gases in liquids. Ind Eng Chem Fundam. 1972,11(3):373-379
    [118]Toop G W. Predicting ternary, activities using binary data. Trans Metall Soc AIME,1965,233:850-855
    [119]Das S K, Horbach J, Koza M M, et al. Influence of chemical short-range order on atomic diffusion in Al-Ni metals. Appl Phys Lett,2005,86:011918
    [120]Horbach J, Das S K, Griesche A, et al. Self-diffusion and interdiffusion in Ai80Ni20 melts:simulation and experiment. Phys Rev B,2007,75.174304
    [121]Zhang L J, Du Y, Steinbach L, et al. Diffusivities of an Al-Fe-Ni melt and their effects on the microstructure during solidification.Acta Materialia,2010,58(10): 3664-3675
    [122]Griesche A, Macht M P, Frohberg G. First results from measurements in liquid multicomponent Al-based alloys. J Non-Crystalline Solids,2007,353:3305-3309.
    [123]Garandet J P, Mathiak V. Viscosity and thermal conductivity of binary mixtures. Int J Thermophys,2004,25(13):237-249
    [124]M. Rappaz and Ch.A. Gandin, Probabilistic Modeling of Microstructure Formation in Solidification Process, Acta. Metall. Mater.1993:41(2):345-360
    [125]Lipton J, Glicksman M E, Kurz W. Dendritic Growth into Under Cooled Alloy Melts. Matererials Science and Engineering.1984:65:57-63
    [126]Krishnan M, Sharma D G R. Effect of alloy properties on the heat flow across the casting/mold interface. Scripta Metallurgica,1993,28:447-451.
    [127]Hallam C P, Griffiths W D, Butler N D. Interfacial heat transfer between a solidifying aluminum alloy and a coated die steel. Materials Science Forum, 2000,329:467-472
    [128]Hallam C P, Griffiths W D. A model of the interfacial heat-transfer coefficient for the aluminum gravity die-casting process. Metallurgical and Materials Transactions B,2004,35B:721-733

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700