基于改造茉莉酸甲酯生物合成途径的丹参次生代谢工程新策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物次生代谢产物是植物为了抵御外界刺激如微生物入侵与昆虫、食草动物伤害等胁迫而产生的化合物,如抗生素、生物碱、毒素等。许多次生代谢产物具有很好的药理活性,是中药和天然植物药的主要有效成分。在外界生物或非生物的压力胁迫下,一些植物激素,如脱落酸、水杨酸、乙烯以及茉莉酸甲酯(MeJA)等在植物中大量积累,通过相互作用,调控植物的信号传递、胁迫耐受以及次生代谢等过程,形成植物的应激系统。其中,茉莉酸甲酯在植物应激反应和次生代谢调控中起着至关重要的作用。目前,MeJA作为外源诱导子促进植物次生代谢物的过量积累,已得到广泛应用。本研究探索一种新的代谢工程策略,通过过量表达植物MeJA合成途径上的关键酶基因,提高内源MeJA的含量,进而刺激多种次生代谢产物的合成与积累。为了使这种新策略应用于多种植物,节省大量克隆内源基因的工作。本研究同时将内源和异源基因在植物中过量表达,考察是否达到同样的效果。
     在植物的茉莉酸甲酯生物合成途径中,丙二烯氧化物环化酶allene oxide cycalse(AOC)和茉莉酸羧甲基转运酶jamonic acid carboxyl methyltransferase(JMT)是重要的关键酶。本研究采用RACE方法,从丹参中克隆了AOC基因(SmAOC,GenBank登录号:HM156740),其cDNA全长为910bp,开放阅读框(ORF区)编码的蛋白质共有245个氨基酸。该基因与其他物种中的AOC基因具有较高的同源性,与水稻OsAOC的相似度为75%,与玉米ZmAOC的相似度为74%。器官组成型分析,SmAOC在丹参中根茎叶均有分布,叶中表达量最高。Southern杂交结果显示SmAOC在丹参中是一个低拷贝基因;RT-QPCR分析显示AOC基因表达可被多种不同的诱导因素,如:茉莉酸甲酯、紫外线照射、低温胁迫所诱导,而提高表达水平。原核表达SmAOC,SDS-PAGE电泳检测得到了预期表达的目的蛋白。耐盐胁迫试验表明,表达SmAOC蛋白的细菌比对照更耐受高盐环境。
     丹参中两大类活性成分主要是以丹参酮IIA为代表的脂溶性二萜醌类化合物和以丹参酚酸B为代表的水溶性化合物。在根癌农杆菌C58C1介导的丹参发根中分别过量表达MeJA合成途径中的关键酶:内源的丹参SmAOC,异源的莨菪HnAOC和拟南芥AtJMT,结果显示在各转基因事件中,上述两类化合物的含量基本上均比对照有不同程度提高。在所有转基因株系中,转SmAOC组的S-7株系丹参酮IIA提高最多,达到野生发根的16.6倍,干重含量从0.037mg/g提高到0.56mg/g;转AtJMT组的J-5株系隐丹参酮提高最多,达到野生发根的16.8倍,干重含量从0.027mg/g提高到0.46mg/g;转HnAOC组的H-11株系迷迭香酸提高最多,达到野生型对照的2.19倍,干重含量从1.32mg/g提高到2.89mg/g;转SmAOC组的S-1株系丹参酚酸B最多比野生型对照发根提高了78%,干重含量从10.73mg/g提高到19.07mg/g。转基因丹参发根中其他活性物质(丹参酮Ⅰ和二氢丹参酮)以及迷迭香酸合成途径的中间体的含量也有不同程度的提高。同时RT-QPCR技术检测了MeJA、迷迭香酸及萜类合成途径上基因的表达水平,结果显示,转基因发根中的这些合成途径上的相关基因均有相应地上调。
     本研究从多种转基因事件证明了, MeJA生物合成途径的基因操作可以同时对多个酶促反应或者多条代谢途径进行全局调控,从而提高植物体内多种次生代谢产物的含量,并且过量表达异源和内源基因能够产生同样的效果。通过遗传转化获得的次生代谢产物含量的提高是稳定且持久的,体现出比外源诱导更可靠更稳定可遗传的优越性,为生产受MeJA诱导的次生代谢产物提供了一个有效的基因工程新策略。
Plant secondary metabolites are not necessary in normal growth, development and reproduction processes, but often play an important role in plant defense against herbivory and other interspecies defenses. They are a wide variety of low-molecular weight compounds which often have pharmacal activities. Jasmonic acid methyl ester (MeJA) is important signaling molecules in plants, especially in defense reactions to environmental stresses, such as mechanical wounding or pathogen attack.
     On account of this theorem, we are going to exploit an novel stratagem of secondary metabolic engineering, over express the key enzyme genes in MeJA biosynthetic pathway, to result in the increase of endogenous MeJA content,then , to stimulate the biosynthesis and accumulation of multiple secondary metabolites.
     Allene oxide cycalse(AOC) and jasmonic acid carboxyl methyltransferase(JMT)are key enzymes in MeJA synthetic pathway. First, we cloned the AOC gene from Salvia miltiorrhiza by rapid amplification of cDNA ends (RACE) and designated it as SmAOC (GenBank accession: HM156740). The SmAOC cDNA has a total length of 910 bp with an open reading frame (ORF) of 738 bp, and is predicted to encode a protein of 245 amino acid residues, sharing high degree of homology with AOCs from other plants. A 123bp intron was present in the genomic DNA. Southern-blot analysis revealed that SmAOC was a low copy gene. Real-time fluorescent semiquantitative PCR (RT-QPCR) analysis revealed that SmAOC was preferentially expressed in leaves compared with other tissues (roots and stems). When S. miltiorrhiza seedlings were induced by abiotic stimuli such as MeJA and low temperature (4℃) , SmAOC expression was markedly increased within 24h, but not obviously by ultraviolet irradiation (UV). The full-length of ORF was inserted into prokaryotic expression vector pET32a, which was then transferred into E. coli BL21 (DE3). The recombinant pET32a-SmAOC in bacteria induced by IPTG and the expression of fusion protein was revealed by SDS-PAGE. Overproduction of recombinant SmAOC resulted in an increased tolerance to salinity in transgenic E. coli.
     S. miltiorrhiza contain two major classes of chemicals, a class of lipid-soluble diterpene quinone pigments, generally known as tanshinones, and a class of water-soluble phenolic acids including salvianolic acids B, rosmarinic acid (RA).SmAOC from Salvia miltiorrhiz, HnAOC from Hyoscyamus niger and AtJMT from Arabidopsis thaliana were overexpressed in S. miltiorrhiz hairy roots which were Inducted by Agrobacterium rhizogenes C58C1. In the three transgenic affairs, higher contents of secondary metabolites were obtained in different degrees with the maximum of TanshinoneⅡA 16.6-fold and Salvianolic acid B 78% over control. The contents of other active compounds(rosmarinic acid、tanshinoneⅠ、cryptotanshinone and dihydrotanshinone) in transgentic hairy roots increased in different degrees, and so did rosmarinci acid biosynthetic compounds. Simultaneously, the RT-QPCR result illustrated that the expression of intermediates in MeJA、rosmarinci acid and terpenoid biosynthetic pathway were up-regulated accordingly.
     This study revealed that overexpression of MeJA biosynthetic pathway genes resulted in higher yield of secondary metabolites. Moreover, the higher yield was herediable and more stable and persistent than exogenous induction. Therefore, it indicated that genetic manipulation of MeJA biosynthetic pathway genes could be an alternative approach in metabolic engineering for the production of valuable secondary metabolites.
引文
[1] Gols R, Posthumus M.Dicke M Jasmonic acid induces the production of gerbera volatiles that attract the biological control agent Phytoseiulus persimilis, Entomologia Experimentalis et Applicata 1999, 93, 77-86.
    [2] Heil M Induction of two indirect defences benefits Lima bean (Phaseolus lunatus, Fabaceae) in nature, Journal of Ecology 2004, 92, 527-536.
    [3] Sembdner G.Parthier B The biochemistry and the physiological and molecular actions of jasmonates, Annual Review of Plant Biology 1993, 44, 569-589.
    [4] Creelman R A.Mullet J E Biosynthesis and action of jasmonates in plants, Annual Review of Plant Biology 1997, 48, 355-381.
    [5] Belhadj A, Saigne C, Telef N, Cluzet S, Bouscaut J, Corio-Costet M F.Mu|rillon J M Methyl jasmonate induces defense responses in grapevine and triggers protection against Erysiphe necator, Journal of agricultural and food chemistry 2006, 54, 9119-9125.
    [6] Buzi A, Chilosi G.Magro P Induction of Resistance in Melon Seedlings Against Soil-borne Fungal Pathogens by Gaseous Treatments with Methyl Jasmonate and Ethylene, Journal of Phytopathology 2004, 152, 491-497.
    [7] Li L, Li C, Lee G I.Howe G A Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato, Proceedings of the National Academy of Sciences of the United States of America 2002, 99, 6416.
    [8] Farmer E E.Ryan C A Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves, Proceedings of the National Academy of Sciences of the United States of America 1990, 87, 7713.
    [9] Demole E, Lederer E.Mercier D Isolement et d¨|termination de la structure du jasmonate de m¨|thyle, constituant odorant caract¨|ristique de l'essence de jasmin, Helvetica Chimica Acta 1962, 45, 675-685.
    [10] Ueda J.Kato J Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.), Plant Physiology 1980, 66, 246.
    [11] Dathe W, R nsch H, Preiss A, Schade W, Sembdner G.Schreiber K Endogenous plant hormones of the broad bean, Vicia faba L.(-)-jasmonic acid, a plant growth inhibitor in pericarp, Planta 1981, 153, 530-535.
    [12] Vick B A.Zimmerman D C Biosynthesis of jasmonic acid by several plant species, Plant Physiology 1984, 75, 458.
    [13] Weidhase R, Lehmann J, Kramell H, Sembdner G.Parthier B Degradation of ribulose-1, 5-bisphosphate carboxylase and chlorophyll in senescing barley leaf segments triggered by jasmonic acid methylester, and counteraction by cytokinin, Physiologia Plantarum 1987, 69, 161-166.
    [14] Weidhase R A, Kramell H M, Lehmann J, Liebisch H W, Lerbs W.Parthier B Methyljasmonate-induced changes in the polypeptide pattern of senescing barley leaf segments, Plant Science 1987, 51, 177-186.
    [15] Staswick P E, Su W.Howell S H Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant, Proceedings of the National Academy ofSciences of the United States of America 1992, 89, 6837.
    [16] Gundlach H, Muller M J, Kutchan T M.Zenk M H Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures, Proceedings of the National Academy of Sciences of the United States of America 1992, 89, 2389.
    [17] Song W C, Funk C D.Brash A R Molecular cloning of an allene oxide synthase: a cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides, Proceedings of the National Academy of Sciences of the United States of America 1993, 90, 8519.
    [18] Feys B J F, Benedetti C E, Penfold C N.Turner J G Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen, The Plant Cell Online 1994, 6, 751.
    [19] Xie D X, Feys B F, James S, Nieto-Rostro M.Turner J G COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility, Science 1998, 280, 1091.
    [20] Dharmasiri N, Dharmasiri S.Estelle M The F-box protein TIR1 is an auxin receptor, Nature 2005, 435, 441-445.
    [21] Kepinski S.Leyser O The Arabidopsis F-box protein TIR1 is an auxin receptor, Nature 2005, 435, 446-451.
    [22] Turner J G, Ellis C.Devoto A The jasmonate signal pathway, The Plant Cell Online 2002, 14, S153.
    [23] Van Der Fits L.Memelink J The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element, The Plant Journal 2001, 25, 43-53.
    [24] Berger S Jasmonate-related mutants of Arabidopsis as tools for studying stress signaling, Planta 2002, 214, 497-504.
    [25] Staswick P E, Serban B, Rowe M, Tiryaki I, Maldonado M T, Maldonado M C.Suza W Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid, The Plant Cell Online 2005, 17, 616.
    [26] Staswick P E, Tiryaki I.Rowe M L Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation, The Plant Cell Online 2002, 14, 1405.
    [27] Wasternack C.Parthier B Jasmonate-signalled plant gene expression, Trends in Plant Science 1997, 2, 302-307.
    [28] Hayashi H, Huang P.Inoue K Up-regulation of soyasaponin biosynthesis by methyl jasmonate in cultured cells of Glycyrrhiza glabra, Plant and cell physiology 2003, 44, 404.
    [29] Lee M H, Jeong J H, Seo J W, Shin C G, Kim Y S, In J G, Yang D C, Yi J S.Choi Y E Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene, Plant and cell physiology 2004, 45, 976.
    [30] Vick B A.Zimmerman D C Biosynthesis of Jasmonic Acid by Several Plant Species, Plant Physiol. 1984, 75, 458-461.
    [31] Brash A R, Baertschi S W, Ingram C D.Harris T M Isolation and characterization of natural allene oxides: unstable intermediates in the metabolism of lipid hydroperoxides, Proc Natl Acad Sci U S A 1988, 85, 3382-3386.
    [32] Hamberg M.Fahlstadius P Allene oxide cyclase: a new enzyme in plant lipid metabolism, Arch Biochem Biophys 1990, 276, 518-526.
    [33] Seo H S, Song J T, Cheong J J, Lee Y H, Lee Y W, Hwang I, Lee J S.Choi Y D Jasmonic acidcarboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses, Proc Natl Acad Sci U S A 2001, 98, 4788-4793.
    [34] Sasaki Y, Asamizu E, Shibata D, Nakamura Y, Kaneko T, Awai K, Amagai M, Kuwata C, Tsugane T.Masuda T Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways, Dna Research 2001, 8, 153.
    [35] Agrawal G K, Jwa N S, Agrawal S K, Tamogami S, Iwahashi H.Rakwal R Cloning of novel rice allene oxide cyclase (OsAOC): mRNA expression and comparative analysis with allene oxide synthase (OsAOS) gene provides insight into the transcriptional regulation of octadecanoid pathway biosynthetic genes in rice, Plant Science 2003, 164, 979-992.
    [36] Heitz T, Bergey D R.Ryan C A A gene encoding a chloroplast-targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate, Plant Physiology 1997, 114, 1085.
    [37] Ishiguro S, Kawai-Oda A, Ueda J, Nishida I.Okada K The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis, The Plant Cell Online 2001, 13, 2191.
    [38] Laudert D.Weiler E W Allene oxide synthase: a major control point in Arabidopsis thaliana octadecanoid signalling, The Plant Journal 1998, 15, 675-684.
    [39] M¨1ssig C, Biesgen C, Lisso J, Uwer U, Weiler E.Altmann T A novel stress-inducible 12-oxophytodienoate reductase from Arabidopsis thaliana provides a potential link between brassinosteroid-action and jasmonic-acid synthesis, Journal of plant physiology 2000, 157, 143-152.
    [40] Ryan C A The search for the proteinase inhibitor-inducing factor, PIIF, Plant molecular biology 1992, 19, 123-133.
    [41] Wasternack C Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development, Ann Bot 2007, 100, 681-697.
    [42] Feussner I.Wasternack C The lipoxygenase pathway, Annual Review of Plant Biology 2002, 53, 275-297.
    [43] Grimes H D, Koetje D S.Franceschi V R Expression, activity, and cellular accumulation of methyl jasmonate-responsive lipoxygenase in soybean seedlings, Plant Physiology 1992, 100, 433.
    [44] Halitschke R.Baldwin I T Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth?\related transcriptional reorganization in Nicotiana attenuata, The Plant Journal 2003, 36, 794-807.
    [45] Li L, Zhao Y, McCaig B C, Wingerd B A, Wang J, Whalon M E, Pichersky E.Howe G A The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development, The Plant Cell Online 2004, 16, 126.
    [46] Kubigsteltig I, Laudert D.Weiler E Structure and regulation of the Arabidopsis thaliana allene oxide synthase gene, Planta 1999, 208, 463-471.
    [47] Laudert D, Schaller F.Weiler E W Transgenic Nicotiana tabacum and Arabidopsis thaliana plants overexpressing allene oxide synthase, Planta 2000, 211, 163-165.
    [48] Halitschke R, Ziegler J, Kein nen M.Baldwin I T Silencing of hydroperoxide lyase and allene oxide synthase reveals substrate and defense signaling crosstalk in Nicotiana attenuata, The PlantJournal 2004, 40, 35-46.
    [49] Harms K, Atzorn R, Brash A, Kuhn H, Wasternack C, Willmitzer L.Pena-Cortes H Expression of a flax allene oxide synthase cDNA leads to increased endogenous jasmonic acid (JA) levels in transgenic potato plants but not to a corresponding activation of JA-responding genes, The Plant Cell Online 1995, 7, 1645.
    [50] Ziegler J, Hamberg M, Miersch O.Parthier B Purification and Characterization of Allene Oxide Cyclase from Dry Corn Seeds, Plant Physiol 1997, 114, 565-573.
    [51] Ziegler J, Stenzel I, Hause B, Maucher H, Hamberg M, Grimm R, Ganal M.Wasternack C Molecular cloning of allene oxide cyclase. The enzyme establishing the stereochemistry of octadecanoids and jasmonates, J Biol Chem 2000, 275, 19132-19138.
    [52] Hofmann E, Zerbe P.Schaller F The crystal structure of Arabidopsis thaliana allene oxide cyclase: insights into the oxylipin cyclization reaction, The Plant Cell Online 2006, 18, 3201.
    [53] Biesgen C.Weiler E Structure and regulation of OPR1 and OPR2, two closely related genes encoding 12-oxophytodienoic acid-10, 11-reductases from Arabidopsis thaliana, Planta 1999, 208, 155-165.
    [54]Schaller F, Biesgen C, M¨1ssig C, Altmann T.Weiler E W 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis, Planta 2000, 210, 979-984.
    [55] Sanders P M, Lee P Y, Biesgen C, Boone J D, Beals T P, Weiler E W.Goldberg R B The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway, The Plant Cell Online 2000, 12, 1041.
    [56] Stenzel I, Hause B, Miersch O, Kurz T, Maucher H, Weichert H, Ziegler J, Feussner I.Wasternack C Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana, Plant Mol Biol 2003, 51, 895-911.
    [57] Stintzi A The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis, Proceedings of the National Academy of Sciences of the United States of America 2000, 97, 10625.
    [58] Gantet P, Imbault N, Thiersault M.Doireau P Necessity of a functional octadecanoic pathway for indole alkaloid synthesis by Catharanthus roseus cell suspensions cultured in an auxin-starved medium, Plant and cell physiology 1998, 39, 220.
    [59] Ketchum R E B, Gibson D M, Croteau R B.Shuler M L The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate, Biotechnology and bioengineering 1999, 62, 97-105.
    [60] Ketchum R E B, Tandon M, Gibson D M, Begley T.Shuler M Isolation of labeled 9-dihydrobaccatin III and related taxoids from cell cultures of Taxus canadensis elicited with methyl jasmonate, Journal of Natural Products 1999, 62, 1395-1398.
    [61] Kang S M, Jung H Y, Kang Y M, Yun D J, Bahk J D, Yang J.Choi M S Effects of methyl jasmonate and salicylic acid on the production of tropane alkaloids and the expression of PMT and H6H in adventitious root cultures of Scopolia parviflora, Plant Science 2004, 166, 745-751.
    [62] Vom Endt D, Soares e Silva M, Kijne J W, Pasquali G.Memelink J Identification of a bipartite jasmonate-responsive promoter element in the Catharanthus roseus ORCA3 transcription factor gene that interacts specifically with AT-Hook DNA-binding proteins, Plant Physiology 2007, 144, 1680.
    [63] Jiang K, Pi Y, Hou R, Jiang L, Sun X.Tang K Promotion of nicotine biosynthesis in transgenic tobacco by overexpressing allene oxide cyclase from Hyoscyamus niger, Planta 2009, 229, 1057-1063.
    [64] Xiao Y, Gao S, Di P, Chen J, Chen W.Zhang L Methyl jasmonate dramatically enhances the accumulation of phenolic acids in Salvia miltiorrhiza hairy root cultures, Physiol Plant 2009.
    [65]徐任生.丹参一生物学及其应用.北京:科学出版社,1990,158.
    [66]唐慎微.重修政和经史证类备用本草.影印本一北京:人民卫生出版社,1957,183.
    [67]李时珍.本草纲目.上册.点校本.北京:人民卫生出版社,1985,759.
    [68]柳丽,张洪泉.丹参活性成分的现代中药药理研究进展.中国野生植物资源,2003,22(6):1-4
    [69] Zhou L, Zuo Z.Chow M S S Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use, The Journal of Clinical Pharmacology 2005, 45, 1345.
    [70] Choi J S, Kang H S, Jung H A, Jung J H.Kang S S A new cyclic phenyllactamide from Salvia miltiorrhiza, Fitoterapia 2001, 72, 30-34.
    [71] Lin H C.Chang W L Diterpenoids from Salvia miltiorrhiza, Phytochemistry 2000, 53, 951-953.
    [72] Rohmer M, Knani M, Simonin P, Sutter B.Sahm H Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate, Biochemical Journal 1993, 295, 517.
    [73] Rohmer M The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants, Natural product reports 1999, 16, 565.
    [74] Schwender J, Zeidler J, Gr ner R, Muller C, Focke M, Braun S, Lichtenthaler F W.Lichtenthaler H K Incorporation of 1-deoxy--xylulose into isoprene and phytol by higher plants and algae, FEBS letters 1997, 414, 129-134.
    [75] Bach T J Hydroxymethylglutaryl-CoA reductase, a key enzyme in phytosterol synthesis?, Lipids 1986, 21, 82-88.
    [76] Choi D, Ward B L.Bostock R M Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachidonic acid, The Plant Cell Online 1992, 4, 1333.
    [77] Caelles C, Ferrer A, Balcells L, Hegardt F G.Boronat A Isolation and structural characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl coenzyme A reductase, Plant molecular biology 1989, 13, 627-638.
    [78]秦双双,陈新.丹参次生代谢产物丹参酮的调控研究.武汉工业学院学报,2009,28(4):34-37 [79]Takahashi S, Kuzuyama T, Watanabe H.Seto H A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis, Proceedings of the National Academy of Sciences of the United States of America 1998, 95, 9879.
    [80] Sirinupong N, Suwanmanee P, Doolittle R F.Suvachitanont W Molecular cloning of a new cDNA and expression of 3-hydroxy-3-methylglutaryl-CoA synthase gene from Hevea brasiliensis, Planta 2005, 221, 502-512.
    [81]王学勇,崔光红.丹参4-(5-二磷酸胞苷)-2-C-甲基D-赤藓醇激酶的cDNA全长克隆及其诱导表达分析.药学学报,2008,43(12):1251-1257
    [82] Osakabe N, Yasuda A, Natsume M, Sanbongi C, Kato Y, Osawa T.Yoshikawa T Rosmarinic acid, a major polyphenolic component of Perilla frutescens, reduces lipopolysaccharide (LPS)-induced liver injury in-galactosamine (-GalN)-sensitized mice, Free Radical Biology and Medicine 2002, 33, 798-806.
    [83] Liu J, Shen H M.Ong C N Salvia miltiorrhiza inhibits cell growth and induces apoptosis in human hepatoma HepG2 cells, Cancer letters 2000, 153, 85-93.
    [84] Takeda H, Tsuji M, Inazu M, Egashira T.Matsumiya T Rosmarinic acid and caffeic acid produceantidepressive-like effect in the forced swimming test in mice, European journal of pharmacology 2002, 449, 261-267.
    [85] Abd-Elazem I S, Chen H S, Bates R B.Huang R C C Isolation of two highly potent and non-toxic inhibitors of human immunodeficiency virus type 1 (HIV-1) integrase from Salvia miltiorrhiza, Antiviral research 2002, 55, 91-106.
    [86] Tanaka T, Morimoto S, Nonaka G, Nishioka I, Yokozawa T, Chung HY, Oura H. Magnesium and ammonium-potassium lithospermates B, the active principles having a uremia-preventive effect from Salvia miltiorrhiza, Chemical & pharmaceutical bulletin 1989, 37, 340-344.
    [87] Petersen M, H usler E, Karwatzki B.Meinhard J Proposed biosynthetic pathway for rosmarinic acid in cell cultures of Coleus blumei Benth, Planta 1993, 189, 10-14.
    [88]赵淑娟,章国英,刘涤,胡之璧.丹参水溶性酚酸类化合物药理及生物合成途径研究进展.中草药,2004,35 (3):341-344
    [89] Hu Y-S, Zhang L, Di P.Chen W-S Cloning and Induction of Phenylalanine Ammonia-lyase Gene from Salvia miltiorrhiza and Its Effect on Hydrophilic Phenolic Acids Levels, Chinese Journal of Natural Medicines 2009, 7, 449-457.
    [90] Huang B, Duan Y, Yi B, Sun L, Lu B, Yu X, Sun H, Zhang H.Chen W Characterization and expression profiling of cinnamate 4-hydroxylase gene from Salvia miltiorrhiza in rosmarinic acid biosynthesis pathway, Russian Journal of Plant Physiology 2008, 55, 390-399.
    [91] Zhao S-J, Hu Z-B, Liu D.Leung F C C Two Divergent Members of 4-Coumarate: Coenzyme A Ligase from Salvia miltiorrhiza Bunge: cDNA Cloning and Functional Study, Journal of Integrative Plant Biology 2006, 48, 1355-1364.
    [92] Gross-Mesilaty S, Hargrove J L.Ciechanover A Degradation of tyrosine aminotransferase (TAT) via the ubiquitin-proteasome pathway, FEBS letters 1997, 405, 175-180.
    [93] Nakamura Y, Sato S, Kaneko T, Kotani H, Asamizu E, Miyajima N.Tabata S Structural analysis of Arabidopsis thaliana chromosome 5. III. Sequence features of the regions of 1,191,918 bp covered by seventeen physically assigned P1 clones, Dna Research 1997, 4, 401.
    [94] Hollnder-Czytko H, Grabowski J, Sandorf I, Weckermann K.Weiler E W Tocopherol content and activities of tyrosine aminotransferase and cystine lyase in Arabidopsis under stress conditions, Journal of plant physiology 2005, 162, 767-770.
    [95] Petersen M.Alfermann A Two new enzymes of rosmarinic acid biosynthesis from cell cultures of Coleus blumei: hydroxyphenylpyruvate reductase and rosmarinic acid synthase, Z Naturforsch 43c 1988, 501, 504.
    [96] Kim K H, Janiak V.Petersen M Purification, cloning and functional expression of hydroxyphenylpyruvate reductase involved in rosmarinic acid biosynthesis in cell cultures of Coleus blumei, Plant molecular biology 2004, 54, 311-323.
    [97]罗铁军,李正名.HPPD抑制剂的研究进展.新农药,2002,22(23):19-24
    [98] Kim K H.Petersen M cDNA-cloning and functional expression of hydroxyphenylpyruvate dioxygenase from cell suspension cultures of Coleus blumei, Plant Science 2002, 163, 1001-1009.
    [99] Saitou N.Nei M The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol Biol Evol 1987, 4, 406-425.
    [100] Emanuelsson O, Nielsen H.Heijne G V ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites, Protein Science 1999, 8, 978-984.
    [101] Jiang K, Liao Z, Pi Y, Huang Z, Hou R, Cao Y, Wang Q, Sun Z.Tang K Molecular cloning andexpression profile of a jasmonate biosynthetic pathway gene allene oxide cyclase from Hyoscyamus niger, Mol Biol (Mosk) 2008, 42, 434-444.
    [102] Maucher H, Stenzel I, Miersch O, Stein N, Prasad M, Zierold U, Schweizer P, Dorer C, Hause B.Wasternack C The allene oxide cyclase of barley (Hordeum vulgare L.)--cloning and organ-specific expression, Phytochemistry 2004, 65, 801-811.
    [103] Heid C A, Stevens J, Livak K J.Williams P M Real time quantitative PCR, Genome research 1996, 6, 986.
    [104] Livak K J.Schmittgen T D Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-[Delta][Delta]CT Method, Methods 2001, 25, 402-408.
    [105] Pi Y, Jiang K, Cao Y, Wang Q, Huang Z, Li L, Hu L, Li W, Sun X.Tang K Allene oxide cyclase from Camptotheca acuminata improves tolerance against low temperature and salt stress in tobacco and bacteria, Mol Biotechnol 2009, 41, 115-122.
    [106] Yamada A, Saitoh T, Mimura T.Ozeki Y Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli, yeast, and tobacco cells, Plant Cell Physiol 2002, 43, 903-910.
    [107] Liu B, Wang W, Gao J, Chen F, Wang S, Xu Y, Tang L.Jia Y Molecular cloning and characterization of a jasmonate biosynthetic pathway gene for allene oxide cyclase from Jatropha curcas, Acta Physiologiae Plantarum 2010, 32, 531-539.
    [108] Hamill J D, Parr A J, Rhodes M J C, Robins R J.Walton N J New routes to plant secondary products, Nature Biotechnology 1987, 5, 800-804.
    [109]王学勇,崔光红,黄璐琦,邱德有.茉莉酸甲酯对丹参毛状根中丹参酮类成分积累和释放的影响.中国中药杂志,2007, 32 (4) :300-302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700