法舒地尔、TRPM8及microRNA-124a在骨髓间充质干细胞分化为神经细胞中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     骨髓间充质干细胞(mesenchymal stem cells, MSCs)是来源于中胚层的具有多向分化能力的干细胞,具有向软骨细胞、骨细胞、肌细胞、肌腱细胞、脂肪细胞、干细胞和造血细胞等多向分化及自我更新的功能,并且于一定条件下在体内及体外可横向分化为神经细胞和胶质细胞。近来,已经有很多动物实验研究报道,可以用移植骨髓间充质干细胞的方法来治疗各种神经系统的变性疾病、脑卒中及中枢损伤等,并取得了一定的效果。
     Rho/Rho激酶(ROCK)信号通路包括有三种成分:Rho蛋白、Rho激酶及Rho激酶的效应分子(ROCK),是体内一条重要的信号通路,主要参与了调控细胞骨架形成、细胞增殖、细胞迁移、基因转录和凋亡等生物行为及功能,主要通过小G蛋白GDP-GTP之间的转换,来调节细胞内肌动蛋白骨架的聚合状态,从而扮演着“分子开关”的角色,并参与调节细胞骨架蛋白的合成、降解、移动和收缩等,因此对细胞的分裂、黏附、收缩、迁移和分泌等活动具有非常重要的调节作用。我们观察了ROCK抑制剂法舒地尔在体外诱导大鼠MSCs向神经细胞分化中的作用。
     TRP (transient receptor potential)通道是一类六次跨膜的非选择性阳离子通道。它们在进化中高度保守,在哺乳动物体内广泛表达,参与了许多重要的生理学功能,如对温度、痛觉、听觉的感知。TRPM8通道是TRP的一个亚家族,在人的中枢神经系统中表达丰富,其主要生理功能是感知低温。令人惊奇的是,本研究在诱导MSCs分化为神经细胞时,首次发现TRPM8出现表达。
     microRNA-124a是脑组织中表达最为丰富的一类microRNA,约占脑组织microRNA总量的25%-48%。Lim等人的研究表明,将microRNA-124a感染到HeLa细胞中导致一系列非神经细胞转录物的表达受到抑制,HeLa细胞的基因组表达模式向神经方向转化。在小鼠脑组织,microRNA-124只限于在已经分化的和成熟的神经细胞中表达,而在神经前体细胞中表达很少。本研究通过构建携带含有绿色荧光蛋白(green fluorescence protein, GFP)报告基因的大鼠microRNA-124a慢病毒载体,将其感染至MSCs,并传代,观察其对骨髓间充质干细胞向神经细胞分化的影响。
     第一部分法舒地尔诱导大鼠骨髓间充质干细胞向神经细胞分化
     目的
     探讨Rho/Rho激酶(ROCK)抑制剂法舒地尔在体外诱导大鼠骨髓间充质干细胞(MSCs)向神经细胞分化中的可行性。
     方法
     全骨髓培养法分离培养大鼠MSCs;采用法舒地尔诱导MSCs;倒置显微镜观察诱导后各组的细胞形态学变化;AO-EB染色法鉴定诱导后各组细胞存活率;免疫荧光法鉴定诱导后NSE、NF200、GFAP的表达,判断其分化情况。
     结果
     AO-EB染色法鉴定诱导后细胞存活率
     诱导后存活细胞胞质呈绿色,核为亮绿色,核形态规则,为圆形或椭圆形,死亡细胞胞质呈红色,核呈亮红色,核皱缩或碎裂。随着诱导时间延长,死亡细胞数量增加。通过AO-EB染色法鉴定法舒地尔诱导30 min、90min、120min及180min,细胞的存活率分别为96.7±2.2%、95.3±1.9%、93.8±1.8%、92.5±2.1%及90.1±1.3%。
     诱导后免疫荧光鉴定
     法舒地尔诱导组,随着诱导时间延长, NSE、NF200表达显著增加,GFAP表达较少。诱导后60、90、120及180 min,通过免疫荧光鉴定,NSE阳性率(分别为66.5±1.9%、88.1±3.2%、93.6±1.9%、93.5±5.4%),NF200阳性率(分别为70.1±2.9%、89.5±1.3%、98.1±1.6%、98.3±1.9%)并呈逐渐增加的趋势,而各组GFAP表达率均小于5%。
     第二部分TRPM8在体外骨髓间充质干细胞分化为神经细胞中的表达变化
     瞬时受体电位(transient receptor potential, TRP)是一类广泛存在于细胞膜上的跨膜离子通道,可以辨别味觉、温度觉等特殊感觉。TRP通道亚型TRPM8主要存在于特定神经细胞的细胞膜上,当温度低于27℃或者薄荷醇存在的条件下,TRPM8通道开放,使Ca2+等带正电的粒子进入细胞,具有重要的生理意义。
     目的
     本研究探讨TRPM8在大鼠骨髓间充质干细胞(MSCs)分化为神经细胞中的表达变化和基本作用。
     方法
     在建立体外法舒地尔诱导大鼠MSCs分化为神经细胞的基础上,采用免疫细胞化学法、Western Blot法检测TRPM8的表达变化。
     结果:
     诱导前大鼠MSCs不表达TRPM8;诱导30min; MSCs开始表达TRPM8(45.3%±1.58%);诱导60main,表达较前增加(57.50%±2.45%);诱导后90min,TRPM8表达最高(89.56%±12.24%);诱导120 min,TRPM8表达逐渐下降(59.25%±9.15%), Western Blot也有类似的趋势。
     第三部分microRNA-124a慢病毒载体的构建及感染大鼠骨髓间充质干细胞的研究
     目的
     探讨:microRNA-124a在法舒地尔诱导大鼠骨髓间充质干细胞(MSCs)向神经细胞分化中的作用。
     方法
     本研究构建携带含有绿色荧光蛋白(green fluorescence protein, GFP)报告基因的大鼠microRNA-124a慢病毒载体,将其感染至大鼠骨髓间充质干细胞(mesenchymal stem cells,MSCs),并传代,采用法舒地尔诱导大鼠MSCs分化为神经细胞。并于倒置荧光显微镜下观察MSCs感染后的荧光表达情况;采用免疫细胞化学染色和western印迹检测神经元烯醇化酶(NSE)、神经微丝蛋白(NF200)及胶质纤维酸性蛋白(GFAP)的表达变化,MTT方法检测细胞存活率。
     结果
     免疫细胞化学染色法
     感染组诱导1h后,NSE、NF200的表达率分别为83.2±2.0%,79.6±0.4%,显著高于其它两组(P<0.05)。各组GFAP的表达率都小于5%,无显著性差异。
     Western Blot结果
     三组分别诱导分化1h后均表达NSE、NF200,未感染组和阴性对照组无明显的统计学差异,而感染组表达的NSE、NF200较其它两组明显增高,有显著差异。
     结论
     1本研究发现Rho/Rho激酶(ROCK)抑制剂法舒地尔可以在体外快速,高效的诱导大鼠MSCs向神经细胞分化。
     2本研究首次报道TRPM8这种神经细胞特殊蛋白MSCs分化为神经细胞中出现表达,而且可能在其分化过程中起到一定的作用。
     3 microRNA-124a可促进大鼠骨髓间充质干细胞在向神经细胞分化
Background
     Mesenchymal stem cells (mesenchymal stem cells, MSCs) are mesoderm derived multipotent stem cells with ability of differentiation to the bone cells, cartilage cells, tendon cells, muscle cells, stem cells, fat cells and hematopoietic cells and self-renewal capacity. In vivo and in vitro, MSCs can differentiate into neurons and glial cells under certain conditions. Recently, a number of animal studies reported therapy of a variety of neurodegenerative diseases, stroke and central nervous system injury by transplantation of bone marrow mesenchymal stem cells, and achieved certain results.
     Rho/Rho kinase (ROCK) signaling pathway is an important signaling pathway in vivo, including three components:Rho protein, Rho kinase, Rho effector kinase (ROCK), mainly involved in regulation of cytoskeleton formation, cell migration, gene transcription, cell proliferation, apoptosis and other biological behaviors and functions, which regulate intracellular actin cytoskeleton polymerization state through the small G protein GDP-GTP transition and plays a "molecular switch" role, involved in the regulation of cytoskeletal proteins synthesis, degradation, movement and shrinkage of cell division, contraction, adhesion, migration, secretion and other activities. We observed the role of the ROCK inhibitor fasudil in vitro induced MSCs differentiation into neuron-like cells.
     TRP (transient receptor potential) channels are a class of six transmembrane non-selective cation channels. They are highly conserved in evolution, widely expressed in mammals, involved in many important physiological functions, such as temperature, pain, auditory perception, and fertilization.TRPM8 is a TRP channel subfamily, express abundant in the human central nervous system, and its main function is to sense temperature. Surprisingly, this study found that when inducing MSCs to differentiate into neural cells, first detected the expression of TRPM8.
     microRNA-124a is most abundant expression in brain tissue of a class of microRNA, approximately 25%-48% of the total microRNA in brain tissue. Lim, whose studies have shown that the microRNA-124a infected HeLa cells and led to a series of expression of non-neuronal transcripts was inhibited, gene expression patterns of HeLa cells transform into the neuron. In the mouse brain, microRNA-124 is limited to expressed in already differentiated and mature neurons and very little in neural progenitor cells. This study was to construct the rat microRNA-124a lentiviral vector containing green fluorescent protein (green fluorescence protein, GFP) reporter gene, infection to the MSCs and passage, observed differentiation of bone marrow mesenchymal stem cells into nerve cells.
     Part 1 fasudil in vitro induce bone marrow mesenchymal stem cells into nerve cells
     Objective
     Research the feasiblity of Rho/Rho kinase (ROCK) inhibitor, fasudil in vitro induce rat bone marrow mesenchymal stem cells(MSCs) into neuron-like cell.
     Methods
     Rat MSCs were isolated from Wistar rats and cultured to 15-18 passages.We used fasudil (200μmol/L) as inducers to differentiate MSCs respectively, and then observed morphologic changes of differentiated cells,stained with AO/EB mixed fluorescent dye to estimate the apoptosis of MSCs, identified them by detecting NF200, NSE and GFAP by immunofluorescence.
     Results
     AO-EB staining identified cell survival after induction
     Cytoplasm of surviving cells after the induction of green, nuclear is bright green, nuclear shape rules for the round or oval-shaped, dead cells showed red cytoplasmic, nuclear was bright red, nuclear shrinkage or fragmentation. With the induction of prolonged increase in the number of dead cells. By AO-EB staining identified fasudil induced by 30 min,60min,90min,120min and 180min after the cell survival rates were 96.7±2.2%,95.3±1.9%,93.8±1.8%,92.5±2.1% and 90.1±1.3%.
     Immunofluorescence after induction
     Fasudil induced group, with the induction of prolonged, NSE, NF200 was significantly increased, GFAP expression less. After the induction of 60,90,120 and 180 min, identified by immunofluorescence, NSE-positive rates (respectively 66.5±1.9%,88.1±3.2%,93.6±1.9%,93.5±5.4%) and NF200-positive rates (70.1±2.9%, 89.5±1.3%,98.1±1.6%,98.3±1.9%) increased, while GFAP expression in each group were less than 5%.
     Part 2 in vitro Expression of TRPM8 of bone marrow mesenchymal stem cells differentiation into nerve cells
     Objectives
     The transient receptor potential (TRP) channels are a large family of proteins have been involved in a wide range of processes ranging from sensing of thermal and chemical signals to reloading intracellular stores after responding to an extracellular stimulus. TRPM8 is conventionally reported as a cold- and menthol- sensing cation channel implicated in thermosensation. Here we surprisingly showed that expression of TRPM8 might incease greatly in neural cells derived from rat bone marrow mesenchymal stem cells (MSCs) in vitro.
     Methods
     In this study, we firstly characterized in vitro properties of neural cells derived from MSCs by immunocytochemistry, Western blot.
     Results
     Before the induction of rat MSCs did not express TRPM8; induced 30min; MSCs began to express TRPM8 (45.3%±1.58%); induced 60min, possible increase in the expression (57.50%±2.45%); induced 90min, TRPM8 expression of the highest (89.56%±12.24%); induction of 120 min, TRPM8 expression decreased (59.25%±9.15%), Western Blot has a similar trend.
     Part 3 Construct the microRNA-124a lentiviral vectors and infection of rat bone marrow mesenchymal stem cells
     Objective
     To investigate the role of microRNA-124a in bone marrow mesenchymal stem cells differentiating into neurons.
     Methods
     Construction of preparations containing green fluorescent protein (green fluorescence protein, GFP) reporter gene in the rat lentiviral microRNA-124a, its infections and rat bone marrow mesenchymal stem cells (mesenchymal stem cells, MSCs), and passaged. Fasudil induced MSCs to differentiate into neuron. After infection fluorescence expression of MSCs was observed under fluorescence microscope; Expression of neuron-specific enolase (NSE), neurofilament protein (NF200) and glial fibrillary acidic protein (GFAP) was detected by western blot and immunocytochemistry. MTT was used to detect cell survival.
     Results
     Immunocytochemical staining
     1h after induction of infection, NSE, NF200 expression rates were 83.2±2.0%, 79.6±0.4%, significantly higher than the other two groups (P<0.05). GFAP expression in each group were lower than 5%, no significant difference.
     Western Blot Results
     Three groups were, respectively, after 1h inducing the expression of NSE, NF200, no infection and no positive control group statistically significant differences in the expression of the infected group NSE, NF200 was significantly higher than the other two groups, a significant difference. Conclusions
     1 Rho-kinase inhibitor fasudil can rapidly and efficiently induce rat bone marrow derived MSCs differentiating into neuron-like cells.
     2 These findings indicate that TRPM8 may play some important roles in MSCs differentiation into neural cells.
     3 microRNA-124a can promote bone marrow mesenchymal stem cells to differentiate into neural cells.
引文
[1]Kern S, Eichler H, Stoeve J, et al.Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue[J]. Stem Cells,2006,24:1294-301.
    [2]Bianco P, Robey PG, Simmons PJ, et al.Mesenchymal stem cells:revisiting history, concepts, and assays[J]. Cell Stem Cell,2008,2:313-319.
    [3]Brazelton TR,Rossi FM, Keshet GI, et al.From marrow to brain:expression of neuronal phenotyes in adult mice [J].Science,2000,290(5497):1775-9.
    [4]Woodbury D,Schwarz EJ,Prockop DJ,et al. Adult rat and human bone marrow stromal cells differentiate into neurons[J].J Neurosci Res,2000,61(4):364.
    [5]Qu CS,Asim Mahmood, Dunyue Luc, et al.Treatment of traumatic brain injury in mice with marrow stromal cells[J]. Brain Reserch,2008,1208,234-239.
    [6]Natalia Pavlichenko, Irina Sokolova, et al.Mesenchymal stem cells transplantation could be beneficial for treatment of experimental ischemic stroke in rats[J]. Brain Research,2008, 1233,203-213.
    [7]Etienne-Manneville S, Hall A.Rho GTPases in cell biology[J].Nature,2002,420(6916):629
    [8]Riento K,Ridley AJ. Rocks:multifunctional kinases in cell be haviour[J].Nat Rev Mol Cell Biol,2003,4(6):446
    [9]Pacary E, Legros H, Valable S, et al.Synergistic effects of CoC12 and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells [J]. Cell Sci,2006,119(13): 2667-2678.
    [10]Azizi SA, Stokes D, Augelli BJ,et al. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts[J]. Proc Natl Acad Sci USA,1998,95:3908-3913.
    [11]贾延劼,杨于嘉,周燕等.黄芩甙诱导骨髓基质细胞向神经细胞分化的研究[J].中华医学杂志,2002,82:1335-1339.
    [12]贾延劼,杨于嘉,宋元宗.成年大鼠骨髓基质细胞体外诱导分化为NSE阳性细胞[J].中国当代儿科杂志,2001,3:25-27.
    [13]Dezawa M, Hoshino M, Ide C. Treatment of neurodegenerative diseases using adult bone marrow stromal cell-derived neurons[J]. Expert Opin Biol Ther,2005,5 (3):427-435.
    [14]Bajek A, Olkowska J, Drewa T. Mesenchymal stem cells as a therapeutic tool in tissue and organ regeneration[J]. Postepy Hig Med Dosw (Online),2011,65:124-32.
    [15]Narumiya S, Yasuda S. Rho GTPases in animal cell mitosis[J]. Curr Opin Cell Biol,2006, 18:199-205.
    [16]Chen L, Melendez J, Campbell K, et al. Racl deficiency in the forebrain results in neural progenitor reduction and microcephaly[J]. Dev Biol,2009,325(1):162-170.
    [17]Hall A. Rho GTPase and actin cytoskeleton[J]. Science,1998,279(5350):509-514.
    [18]Harper JM, Krishnan C, Darman JS, et al. Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats[J]. Proc Natl Acad Sci U S A, 2004,101(18):7123-7128
    [19]Madaule P, Axel R. Anovel rac-related gene family[J]. Cell,1985,41(1):31-40.
    [20]Leung T, Manser E, Tan L, et al. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes[J]. J Biol Chem,1995, 270(49):29051-4.
    [21]Josephson SA, Bryant SO, Mak HK, et al. Evaluation of carotid stenosis using CT angiography in the initial evaluation of stroke and TIA[J]. Neurology,2004,63(3):457-460.
    [22]Matsui T, Amano M, Yamamoto T, et al. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho[J]. EMBO J,1996,15(9): 2208-2216. Ishiza
    [23]ki T, Maekawa M, Fujisawa K, et al. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase[J]. EmboJ,1996,15:1885-1893.
    [24]Mueller BK, Mack H, Teusch N. Rho kinase, a promising drug target for neurological disorders[J]. Nat Rev Drug Discov,2005,4(5):387-98.
    [25]Nakagawa o, Fujisawa K, Ishizaki T, et al. ROCK-Ⅰ and ROCK-Ⅱ, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice[J]. FEBS Lett, 1996,392:189-93.
    [26]Schneider PR, Buhrmann C, Mobasheri A, et al.Three-dimensional high-density co-culture with primary tenocytes induces tenogenic differentiation in mesenchymal stem cells[J]. J OrthopRes,2011Mar15.
    [27]Papathanasopoulos A, Kouroupis D, Henshaw K, et al.Effects of antithrombotic drugs fondaparinux and tinzaparin on in vitro proliferation and osteogenic and chondrogenic differentiation of bone-derived mesenchymal stem cells[J]. J Orthop Res,2011 Mar 22.
    [28]Yang Z, Schmitt JF, Lee EH. Immunohistochemical Analysis of Human Mesenchymal StemCells Differentiating into Chondrogenic, Osteogenic, and Adipogenic Lineages[J]. Methods Mol Biol,2011,698:353-366.
    [29]Pensabene V, Taccola S,Ricotti L, et al.Flexible polymeric ultrathin film for mesenchymal stem cells differentiation [J]. Acta Biomater,2011 Mar 18.
    [30]Jang JY, Lee SW, Park SH, et al.Combined Effects of Surface Morphology and Mechanical Straining Magnitudes on the Differentiation of Mesenchymal Stem Cells without Using Biochemical Reagents[J].J Biomed Biotechnol,2011,2011:860652.
    [31]Ding DC, Shyu WC, Lin SZ. Mesenchymal stem cells[J]. Cell Transplant,2011,20(1):5-14.
    [32]Lai M, Cai K, Zhao L, et al.Surface Functionalization of TiO(2) Nanotubes with Bone Morphogenetic Protein 2 and Its Synergistic Effect on the Differentiation of Mesenchymal Stem Cells[J]. Biomacromolecules,2011 Mar 7
    [33]Lim JY, Park SI, Kim SM, et al.Neural Differentiation of Brain-derived Neurotrophic Factor-expressing Human Umbilical Cord Blood-derived Mesenchymal Stem Cells in Culture via TrkB-mediated ERK and β-catenin Phosphorylation and following Transplantation into the Developing Brain[J]. Cell Transplant,2011 Mar 4.
    [34]Mishra PJ, Banerjee D. Activation and differentiation of mesenchymal stem cells[J]. Methods Mol Biol,2011,717:245-53.
    [35]Zhao JW, Gao ZL, Mei H, et al. Differentiation of Human Mesenchymal Stem Cells:The Potential Mechanism for Estrogen-Induced Preferential Osteoblast Versus Adipocyte Differentiation[J]. Am J Med Sci,2011 Feb 1.
    [36]Ladak A, Olson J, Tredget EE, et al. Differentiation of mesenchymal stem cells to support peripheral nerve regeneration in a rat model[J]. Exp Neurol.2011,228(2):242-52.
    [37]Yaghoobi MM,Mowla SJ,Tiraihi T. Nucleoste min,a coordinator of self-renewal, is expressed in rat marrow stromal cells and turns off after induction of neural differentiation[J].Neurosci Lett,2005,390(2):81
    [38]Wislet-Gendebien S,Hans G,Leprince P,et al. Plasticity of cultured mesenchymal stem cells:switch from nestin-positive to excitable neuron-like phenotype[J].Stem Cells,2005,23(3):39
    [39]Brown J H, Del Re DP,Sussman MA. The Rac and Rho hall of fame:a decade of hypertrophic signaling hits[J].Circ Res,2006,98(6):730
    [40]Kamata Y, Hattori Y Neural differentiation of human neuroblastoma GOTO cells via a Rho-Rho kinase-phosphorylation signal transduction and continuous observation of a single GOTO cell during differentiation[J].J Vet Med Sci,2007,69(1):37
    [41]Masumoto A,Mohri M,Shimokawa H,et al. Suppression of coronary artery spasm by the Rho-kinase in hibitor fasudil in patients with vasospastic angina[J]. Circulation,2002,105(13):1545
    [42]Olson MF. Applications for ROCK kinase inhibition [J]. Curr Opin Cell Biol,2008,20(2):242
    [43]Wang N, Guan P, Zhang JP, et al.Fasudil hydrate, a rho-kinase inhibitor, suppresses isoproterenol-induced heart failure in rats via JNK and ERK1/2 pathways[J]. J Cell Biochem, 2011 Mar 23.
    [44]Takagi T, Okamoto Y, Tomita S, et al. Intraradial administration of fasudil inhibits augmented Rho kinase activity to effectively dilate the spastic radial artery during coronary artery bypass grafting surgery[J]. J Thorac Cardiovasc Surg,2011 Mar 11.
    [45]Washida N, Wakino S, Tonozuka Y, et al. Rho-kinase inhibition ameliorates peritoneal fibrosis and angiogenesis in a rat model of peritoneal sclerosis[J]. Nephrol Dial Transplant,2011 Mar 4.
    [46]Ocaranza MP, Rivera P, Novoa U, et al.Rho kinase inhibition activates the homologous angiotensin-converting enzyme-angiotensin-(1-9) axis in experimental hypertension[J]. J Hypertens,2011,29(4):706-715.
    [47]Lau C, O'Shea R, Broberg B, et al. The Rho kinase inhibitor Fasudil upregulates astrocytic glutamate transport subsequent to actin re-modelling in murine cultured astrocytes[J]. Br J Pharmacol,2011 Feb 10.
    [48]Satoh S, Kawasaki K, Hitomi A, et al. Fasudil protects cultured NlE-115 cells against lysophosphatidic acid-induced neurite retraction through inhibition of Rho-kinase[J]. Brain Res Bull,2011 Feb 1,84(2):174-7.
    [I]Montell C. The TRP superfamily of cation channels[J]. Sci STKE,2005,(272):re3.
    [2]Voets T, Owsianik G, Nilius B. et al. TRPM 8[J]. Handb Exp Pharmacol,2007, (179):329-44.
    [3]Caterina M J. Transient receptor potential ion channels as participants in thermo-sensation and thermoregulation[J]. Am J Physiol Regul Integr Comp Physiol, 2007,292(1):64-76.
    [4]Stucky CL, Dubin AE, Jeske NA. Roles of transient receptor potential channels in pain [J]. Brain Res Rev,2009,60(1):2-23.
    [5]Cortright DN, Szallasi A. TRP channels and pain[J]. Curr Pharm Des,2009,15(15): 1736-1749.
    [6]Broad LM, Mogg AJ, Beattie RE, et al. TRP channels as em ergingtargets for pain therapeutics[J]. Expert Opin Ther Targets,2009,13(1):69-81.
    [7]Tsavaler L, Shapero MH, Morkowski S, et al. Trp-p8, a novel prostate specific gene, is up regulated in prostate cancer and otherm alignancies and shares high homology with transient receptor potential calcium channel proteins[J]. Can cer Res,2001, 61(9):3760-3769.
    [8]McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation[J]. Nature,2002,416(6876): 52-58.
    [9]Liu Y, Qin N. TRPM8 in Health and Disease:Cold Sensing and Beyond.Adv Exp Med Biol.2011;704:185-208.
    [10]Kozak M. Complilation and analysis sequences up stream from the translational start site in eukaryotic mRNAs[J]. Nucleic A cid Res,1984,12(2):857-872.
    [11]El Karim IA, Linden GJ, Curtis TM, About I, McGahon MK, Irwin CR, Killough SA, Lundy FT. Human Dental Pulp Fibroblasts Express the "Cold-sensing" Transient Receptor Potential Channels TRPA1 and TRPM8.J Endod.2011 Apr;37(4):473-8.
    [12]Zholos A, Johnson C, Burdyga T, Melanaphy D. TRPM Channels in the Vasculature.Adv Exp Med Biol.2011;704:707-29.
    [13]Shibata Y, Ugawa S, Imura M, Kubota Y, Ueda T, Kojima Y, Ishida Y, Sasaki S, Hayashi Y, Kohri K, Shimada S. TRPM8-expressing dorsal root ganglion neurons project dichotomizing axons to both skin and bladder in rats.Neuroreport.2010 Dec 10.
    [14]Parra A, Madrid R, Echevarria D, del Olmo S, Morenilla-Palao C, Acosta MC, Gallar J, Dhaka A, Viana F, Belmonte C. Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea.Nat Med. 2010 Dec;16(12):1396-9.
    [15]Staaf S, Franck MC, Marmigere F, Mattsson JP, Ernfors P. Dynamic expression of the TRPM subgroup of ion channels in developing mouse sensory neurons.Gene Expr Patterns.2010 Jan;10(1):65-74.
    [16]Montell C. New light on TRP and TRPL[J]. Mol Pharmacol,1997,52(5):755-763.
    [17]Hui K, Guo Y, Feng Z P. Biophysical properties of menthol2activa2ted cold receptor TRPM8 channels[J]. Biochem Biophys Res Commun,2005,333:374-82.
    [18]Owsianik G, Talavera K, Voets T, et al. Permeation and selectivity of TRP channels[J]. Annu Rev Physiol,2006,68:685-717.
    [19]Madrid R, Meseguer V. Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors[J]. J Physiol,2007,581(15):155-174.
    [20]Zhang L, Barritt GJ.Evidence that TRPM8 is an androgen dependent Ca2+ channel required for the survival of prostate cancer cells[J].Cancer Res,2004,64:8365-8373.
    [21]Clapham DE, Runnels LW, Strubing C.The TRP ion channel family[J]. NatRev Neurosci,2001,2(6):387-396.
    [22]Chung MK, Jung SJ, Oh SB.Role of TRP Channels in Pain Sensation.Adv Exp Med Biol.2011;704:615-36.
    [23]Bavencoffe A, Kondratskyi A, Gkika D,Mauroy B, Shuba Y, Prevarskaya N, Skryma R. Complex Regulation of the TRPM8 Cold Receptor Channel:ROLE OF ARACHIDONIC ACID RELEASE FOLLOWING M3 MUSCARINIC RECEPTOR STIMULATION.J Biol Chem.2011 Mar 18;286(11):9849-55.
    [24]Dezawa M, Hoshino M, Ide C. Treatment of neurodegenerative diseases using adult bone marrow stromal cell-derived neurons[J]. Expert Opin Biol Ther 2005,5(3): 427-435.
    [25]Yang ZH, Wang XH, Wang H P, et al. Effects of TRPM8 on the proliferation and motility of prostate cancer PC-3 cells[J]. Asian J Androl,2009,11(2):157-65.
    [1]Lagos-Quintana M,Rauhut R,Yalcin A, et al. Identification of tissue-specific microRNAs from mouse. Curr Bio1.2002;12(9):735-739.
    [2]Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of targetmRNAs.Nature.2005;433(7027):769-773.
    [3]Deo M,Yu JY,Chung KH,et al. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides.Dev Dyn.2006;235(9):2538-2548.
    [4]Pierson J,Hostager B,Fan R,et al. Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma.J Neurooncol.2008;90(1):1-7.
    [5]Nakamachi Y,Kawano S,Takenokuchi M,et al. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis.Arthritis Rheum.2009;60(5):1294-1304.
    [6]Faghihi MA,Modarresi F,Khalil AM, et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase. Nat Med. 2008;14(7):723-730.
    [7]文全庆,贾延劫,王明闯,等.大鼠脑缺血急性期脑组织miRNA的表达变化.重庆医科大学学报.2008,33(S1):23-26.
    [8]Drever JL.Lentiviral vector-mediated gene transfer and RNA silencing technology in neuronal dysfunctions.Methds Mol Biol.2010;614:3-35.
    [9]Chong MS,Chan J.Lentiviral vector transduction of fetal mesenchymal stem cells.Methods MolBio1.2010;614:135-147.
    [10]Conaco C,Otto S,Han JJ,et al. Reciprocal actions of REST and a microRNA promote neuronal identity.Proc Natl Acad Sci USA.2006;103(7):2422-2427.
    [11]Makeyev EV, Zhang J, Carrasco MA, et al. The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell. 2007;27(3):435-448.
    [12]Boutz PL,Stoilov P,Li Q,et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev. 20071;21(13):1636-1652.
    [13]Krichevsky AM,Sonntaq KC,Isacson O, et al.Specific microRNAs modulate embryonic stem cell-derived neurogenesis.Stem Cells.2006;24(4):857-864.
    [14]Wang C,Yao N,Lu CL,et al. Mouse microRNA-124 regulates the expression of Hesl in P19 cells.Front Biosci(Elite Ed).2010;2:127-132.
    [15]Yu JY,Chung KH,Deo M,et al. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res.2008;314(14):2618-2633.
    [16]Woodbury D,Schwarz EJ,Prockop DJ,et al. Adult rat and human bone marrow stromal cells differentiate into neurons[J].J Neurosci Res,2000,61(4):364.
    [17]NELSON P T, BALDWIN D A, KLOOSTERMAN W P, et al.RAKE and LNA-ISH revealmicroRNA expression and localization in archival human brain[J].RNA,2006,12: 187-191
    [18]PRESUTTIC, ROSATI J, VINCENTI S, et al.Non coding RNA and brain [J].BMC Neurosci,2006,7:S5
    [19]HOBERTO.Common logic of transcription factor and microRNA action[J].Trand Biochem Sci,2004,29:462-468
    [20]DOENCH JG, SHARP PA. Specificity of microRNA targetselection in translational repressio[J].GeneDev,2004,18:504-511
    [21]VO N, KLEINM E, VARIAMOVA O, et al.A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis[J].ProcNatlAcad SciUSA, 2005,102;16426-16431
    [22]KLEINM E, IMPEY S, GOODMAN RH.Role reversa:l the regulation ofneuronal gene expression bymicroRNA[J].Curr OpinNeurobiol,2005,15:507-513
    [23]XIE X, LU J, KULBOKAS E J, et al.Systematic discovery of regulatorymotifs in human promoters and 3'UTRsby comparison of severalmammals[J].Nature,2005,434:338-345
    [24]LIM L P, LAUN C, GARRETT-ENGELE P, et al.Microarray analysis shows that somemicroRNAs downregulate large numbers of target mRNAs[J].Nature,2005,433: 769-773
    [25]TURNER D.The role ofmicroRNAmiR124a in neuronal differentiation[G].SocNeurosci, 2004,P36:Pll
    [1]Montell C. The TRP superfamily of cation channels[J]. Sci STKE,2005, (272):re3
    [2]Voets T, Owsianik G, Nilius B. et al. TRPM 8[J]. Handb Exp Pharmacol,2007, (179):329-44
    [3]Caterina M J. Transient receptor potential ion channels as participants in thermo-sensation and thermoregulation[J]. Am J Physiol Regul Integr Comp Physiol, 2007,292(1):64-76
    [4]Stucky CL, Dubin AE, Jeske NA. Roles of transient receptor potential channels in pain [J]. Brain Res Rev,2009,60(1):2-23
    [5]Cortright DN, Szallasi A. TRP channels and pain[J]. Curr Pharm Des,2009,15(15): 1736-1749
    [6]Broad LM, Mogg AJ, Beattie RE, et al. TRP channels as em ergingtargets for pain therapeutics[J]. Expert Opin Ther Targets,2009,13(1):69-81
    [7]Tsavaler L, Shapero MH, Morkowski S, et al. Trp-p8, a novel prostate specific gene, is up regulated in prostate cancer and otherm alignancies and shares high homology with transient receptor potential calcium channel proteins[J]. Can cer Res,2001, 61(9):3760-3769
    [8]McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation[J]. Nature,2002,416(6876) 52-58
    [9]Liu Y, Qin N. TRPM8 in Health and Disease:Cold Sensing and Beyond[J].Adv Exp Med Biol,2011,704:185-208
    [10]'Kozak M. Complilation and analysis sequences up stream from the translational start site in eukaryotic mRNAs[J]. Nucleic A cid Res,1984,12(2):857-872
    [11]El Karim IA, Linden GJ, Curtis TM, et al. Human Dental Pulp Fibroblasts Express the "Cold-sensing" Transient Receptor Potential Channels TRPA1 and TRPM8[J].J Endod,2011,37(4):473-8
    [12]Zholos A, Johnson C, Burdyga T, et al. TRPM Channels in the Vasculature[J].Adv Exp Med Biol,2011,704:707-29
    [13]Shibata Y, Ugawa S, Imura M, et al. TRPM8-expressing dorsal root ganglion neurons project dichotomizing axons to both skin and bladder in rats[J].Neuroreport,2010 Dec 10
    [14]Parra A, Madrid R, Echevarria D, et al. Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea[J].Nat Med, 2010,16(12):1396-9
    [15]Staaf S, Franck MC, Marmigere F, et al. Dynamic expression of the TRPM subgroup of ion channels in developing mouse sensory neurons[J].Gene Expr Patterns,2010,10(1):65-74
    [16]Montell C. New light on TRP and TRPL[J]. Mol Pharmacol,1997,52(5):755-763
    [17]Hui K, Guo Y, Feng Z P. Biophysical properties of menthol2activa2ted cold receptor TRPM8 channels[J]. Biochem Biophys Res Commun,2005,333:374-82
    [18]Owsianik G, Talavera K, Voets T, et al. Permeation and selectivity of TRP channels[J]. Annu Rev Physiol,2006,68:685-717
    [19]Madrid R, Meseguer V. Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors[J]. J Physiol,2007,581(15):155-174
    [20]Zhang L, Barritt GJ. Evidence that TRPM8 is an androgen dependent Ca2+ channel required for the survival of prostate cancer cells[J]. Cancer Res,2004,64:8365-8373
    [21]Clapham DE, Runnels LW, Strubing C. The TRP ion channel family[J]. NatRev Neurosci,2001,2(6):387-396
    [22]Chung MK, Jung SJ, Oh SB.Role of TRP Channels in Pain Sensation[J].Adv Exp Med Biol,2011,704:615-36
    [23]Bavencoffe A, Kondratskyi A, Gkika D, Mauroy B et al. Complex Regulation of the TRPM8 Cold Receptor Channel:ROLE OF ARACHIDONIC ACID RELEASE FOLLOWING M3 MUSCARINIC RECEPTOR STIMULATION[J].J Biol Chem, 2011,286(11):9849-55
    [24]Chuang H H, Neuhausser W M, JuliusD. The super2cooling agenticilin reveals amechanism of coincidence detection by a temperature-sensitive TRP channel[J]. Neuron,2004,43:859-69
    [25]孙倩,罗非.感觉凉爽的TRPM8受体[J].生理科学进展,2006,37(3):101-103.
    [26]郭晓强,马克世.冷受体TRPM8在冷感知中的作用和调节[J].生命的化学,2008,28(4):388-390
    [27]Vriens J,Watanabe H, Janssens A, et al. Nilius B cell swelling,heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4 [J] Proc Natl Acad Sci USA,2004,101 (1):396-401
    [28]Baylie RL, Cheng H, Langton PD, et al. Inhibition of the cardiac L-type calcium channel current by the TRPM8 agonist, (-)-menthol[J].J Physiol Pharmacol, 2010,61(5):543-50
    [29]Cho Y, Jang Y, Yang YD, et al. TRPM8 mediates cold and menthol allergies associated with mast cell activation[J].Cell Calcium,2010,48(4):202-8
    [30]Andersson DA, Chase HW, Bevan S. TRPM8 activation by menthol, icilin, and cold is differentially modulated by intracellular Ph[J]. J Neurosci,2004,24(23):5364-5369
    [31]Abe J, Hosokawa H, Sawada Y, et al. Ca2+-dependent PKC activation mediates menthol-induced desensitization of transient receptor potential M8[J]. Neurosci Lett, 2005,397(1-2):140-144
    [32]Premkumar LS, Raisinghan M, Pingle SC, et al. Down regulation of transient receptor potential melastatin 8 by protein kinase C-mediated dephosphorylation[J]. J Neurosci,2005,25(49):11322-11329
    [33]Chung MK, Guler AD, Caterina MJ. Biphasic currents evoked bychemical or thermal activation of the heat-gated ion channel,TRPV3[J]. J BiolChem,2005,280(16) 15928-15941
    [34]Daniels RL, McKemy DD. Mice left out in the cold:commentary on the phenotype of TRPM8-nu lls[J]. Mol Pain,2007,3:23
    [35]Dray A. Neuropathic pain:emerging treatments[J]. Br J Anaesth,2008,101(1): 48-58
    [36]Baron R. Neuropathic pain:a clinical perspective[J]. Handb Exp Pharmacol,2009, (194):3-30
    [37]Akopian AN, RuparelNB, Jeske NA, et al. Role of ionotropic cannabinoid receptors in peripheral antinociception and antihyperalgesia[J]. Trends Pharmacol Sci,2009,30 (2):79-84
    [38]隋峰,霍海如,姜廷良,等.痛觉感受相关的TRP离子通道蛋白研究进展[J].中国疼痛医学杂志,2009,15(1):50-53
    [39]Proudfoot C J, Garry EM, Cottrell DF, et al. Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain[J]. Curr Biol,2006,16(16):1591-1605
    [40]Yang ZH, Wang XH, Wang H P, et al. Effects of TRPM8 on the proliferation and motility of prostate cancer PC-3 cells[J]. Asian J Androl,2009,11(2):157-65
    [41]Johnson CD, Melanaphy D, Purse A, et al. Transient receptor potential melastatin 8 channel involvement in the regulation of vascular tone[J]. Am J Physiol Heart Circ Physiol,2009,296(6):H 1868-1877
    [42]Van Haute C, De Ridder D, Nilius B. TRP channels in human prostate[J]. Scientific World Journal,2010,10:1597-611
    [43]Yee NS, Zhou W, Lee M. Transient receptor potential channel TRPM8 is over-expressed and required for cellular proliferation in pancreatic adenocarcinoma[J].Cancer Lett,2010,297(1):49-55
    [44]Chodon D, Guilbert A, Dhennin-Duthille I, et al. Estrogen regulation of TRPM8 expression in breast cancer cells[J].BMC Cancer,2010,10:212
    [45]Lehen'kyi V, Prevarskaya N. Oncogenic TRP Channels[J]. Adv Exp Med Biol, 2011,704:929-45
    [46]Bai VU, Murthy S, Chinnakannu K, et al. Androgen regulated TRPM8 expression:a potential mRNA marker for metastatic prostate cancer detection in body fluids[J].Int J Oncol,2010,36(2):443-50
    [47]Wu SN, Wu PY, Tsai ML. Characterization of TRPM8-Like Channels Activated by the Cooling Agent Icilin in the Macrophage Cell Line RAW 264.7[J]. J Membr Biol,2011 Mar 29.
    [48]Descoeur J, Pereira V, Pizzoccaro A, et al. Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors[J]. EMBO Mol Med, 2011 Mar 24.
    [49]Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system[J]. Pharmacol Ther,2011 Mar 21.
    [50]Banner KH, Igney F, Poll C. TRP channels:Emerging targets for respiratory disease[J]. Pharmacol Ther,2011 Mar 21.
    [51]El Karim IA, Linden GJ, Curtis TM, et al. Human Dental Pulp Fibroblasts Express the "Cold-sensing" Transient Receptor Potential Channels TRPA1 and TRPM8[J]. J Endod,2011,37(4):473-8.
    [52]Martinez-Lopez P, Trevino CL, de la Vega-Beltran JL, et al. TRPM8 in mouse sperm detects temperature changes and may influence the acrosome reaction[J]. J Cell Physiol,2011,226(6):1620-31.
    [53]McCoy DD, Knowlton WM, McKemy DD. Scraping through the ice:Uncovering the role of TRPM8 in cold transduction[J]. Am J Physiol Regul Integr Comp Physiol, 2011 Mar 16.
    [54]Tajino K, Hosokawa H, Maegawa S, et al. Cooling-Sensitive TRPM8 Is Thermostat of Skin Temperature against Cooling[J]. PLoS One,2011,6(3):el7504.
    [55]Franck MC, Stenqvist A, Li L, et al. Essential role of Ret for defining non-peptidergic nociceptor phenotypes and functions in the adult mouse[J]. Eur J Neurosci,2011 Mar 14.
    [56]Gasperini RJ, Hou X, Parkington H, et al. TRPM8 and Navl.8 sodium channels are required for transthyretin-induced calcium influx in growth cones of small-diameter TrkA-positive sensory neurons[J]. Mol Neurodegener,2011,6(1):19.
    [57]Kim HY, Chung G, Jo HJ, et al. Characterization of Dental Nociceptive Neurons[J]. J Dent Res,2011 Mar 1.
    [58]Kim J, Cowan A, Lisek R, et al. Icilin-evoked behavioral stimulation is attenuated by alpha(2)-adrenoceptor activation[J]. Brain Res,2011,1384:110-7.
    [59]Lehen'kyi V, Prevarskaya N. Oncogenic TRP Channels[J]. Adv Exp Med Biol,2011, 704:929-45.
    [60]Zholos A, Johnson C, Burdyga T, et al. TRPM Channels in the Vasculature[J]. Adv Exp Med Biol,2011,704:707-29.
    [61]Chung MK, Jung SJ, Oh SB. Role of TRP Channels in Pain Sensation[J]. Adv Exp Med Biol,2011,704:615-36.
    [62]Baez-Nieto D, Castillo JP, Dragicevic C, et al. Thermo-TRP Channels:Biophysics of Polymodal Receptors[J]. Adv Exp Med Biol,2011,704:469-90.
    [63]Liu Y, Qin N. TRPM8 in Health and Disease:Cold Sensing and Beyond[J]. Adv Exp Med Biol,2011,704:185-208.
    [64]Harteneck C, Klose C, Krautwurst D. Synthetic Modulators of TRP Channel Activity[J]. Adv Exp Med Biol,2011,704:87-106.
    [65]McKemy DD. A spicy family tree:TRPV1 and its thermoceptive and nociceptive lineage[J]. EMBO J,2011,30(3):453-5.
    [66]Kim SH, Kim SY, Park EJ, et al. Icilin induces G1 arrest through activating JNK and p38 kinase in a TRPM8-independent manner[J]. Biochem Biophys Res Commun, 2011,406(1):30-5.
    [67]Fernandez JA, Skryma R, Bidaux G, et al. Voltage-and cold-dependent gating of single TRPM8 ion channels[J]. J Gen Physiol,2011,137(2):173-95.
    [68]Klein AH, Sawyer CM, Zanotto KL, et al. A tingling sanshool derivative excites primary sensory neurons and elicits nocifensive behavior in rats[J]. J Neurophysiol, 2011 Jan 27.
    [69]Park S, Jang M. Phosphoproteome profiling for cold temperature perception[J]. J Cell Biochem,2011,112(2):633-42.
    [70]Ebihara S, Kohzuki M, Sumi Y, et al. Sensory stimulation to improve swallowing reflex and prevent aspiration pneumonia in elderly dysphagic people[J]. J Pharmacol Sci,2011,115(2):99-104.
    [71]Bavencoffe A, Kondratskyi A, Gkika D, et al. Complex Regulation of the TRPM8 Cold Receptor Channel:ROLE OF ARACHIDONIC ACID RELEASE FOLLOWING M3 MUSCARINIC RECEPTOR STIMULATION[J]. J Biol Chem,2011, 286(11):9849-55.
    [72]Kupisz K, Trebacz K. Effect of cold and menthol on membrane potential in plants[J]. Physiol Plant,2011,141(4):352-60.
    [73]'Tominaga M. The Role of TRP Channels in Thermosensation. In:Liedtke WB, Heller S, editors. TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades. Boca Raton (FL):CRC Press;2007, Chapter 20.
    [74]McKemy DD. TRPM8:The Cold and Menthol Receptor. In:Liedtke WB, Heller S, editors. TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades. Boca Raton (FL):CRC Press; 2007, Chapter 13.
    [75]De Petrocellis L, Ligresti A, Moriello AS, et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes[J]. Br J Pharmacol,2010 Dec 22.
    [76]El Karim IA, Linden GJ, Curtis TM, et al. Human odontoblasts express functional thermo-sensitive TRP channels:Implications for dentin sensitivity[J]. Pain,2010 Dec 16.
    [77]Andersson KE, Gratzke C, Hedlund P. The role of the transient receptor potential (TRP) superfamily of cation-selective channels in the management of the overactive bladder[J]. BJU Int,2010,106(8):1114-27.
    [78]Shibata Y, Ugawa S, Imura M, et al. TRPM8-expressing dorsal root ganglion neurons project dichotomizing axons to both skin and bladder in rats[J]. Neuroreport,2010 Dec 10.
    [79]Mishra SK, Tisel SM, Orestes P, et al. TRPV1-lineage neurons are required for thermal sensation[J]. EMBO J,2011,30(3):582-93.
    [80]Buber MT, Cerne R, Cortes RY, et al. Overexpression of human transient receptor potential M5 upregulates endogenous human transient receptor potential Al in a stable HEK cell line[J]. Assay Drug Dev Technol,2010,8(6):695-702.
    [81]Parks DJ, Parsons WH, Colburn RW, et al. Design and Optimization of Benzimidazole-Containing Transient Receptor Potential Melastatin 8 (TRPM8) Antagonists[J]. J Med Chem,2010 Dec 3.
    [82]Anand U, Otto WR, Anand P. Sensitization of capsaicin and icilin responses in oxaliplatin treated adult rat DRG neurons[J]. Mol Pain,2010,6:82.
    [83]Park S, Jang M. Phosphoproteome profiling for cold temperature perception[J]. J Cell Biochem,2010 Nov 22.
    [84]Neacsu C, Babes A. The M-channel blocker linopirdine is an agonist of the capsaicin receptor TRPV1[J]. J Pharmacol Sci,2010,114(3):332-40.
    [85]Baylie RL, Cheng H, Langton PD, et al. Inhibition of the cardiac L-type calcium channel current by the TRPM8 agonist, (-)-menthol[J]. J Physiol Pharmacol,2010, 61(5):543-50.
    [86]Parra A, Madrid R, Echevarria D, et al. Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea[J]. Nat Med,2010, 16(12):1396-9.
    [87]Martinez-Lopez P, Trevino CL, de la Vega-Beltran JL, et al. TRPM8 in mouse sperm detects temperature changes and may influence the acrosome reaction[J]. J Cell Physiol,2010 Nov 10.
    [88]Valero M, Morenilla-Palao C, Belmonte C, et al. Pharmacological and functional properties of TRPM8 channels in prostate tumor cells[J]. Pflugers Arch,2011, 461(1):99-114.
    [89]DeFalco J, Steiger D, Dourado M, et al.5-benzyloxytryptamine as an antagonist of TRPM8[J]. Bioorg Med Chem Lett,2010,20(23):7076-9.
    [90]Veliz LA, Toro CA, Vivar JP, et al. Near-membrane dynamics and capture of TRPM8 channels within transient confinement domains[J]. PLoS One,2010,5(10):el3290.
    [91]Cho Y, Jang Y, Yang YD, et al. TRPM8 mediates cold and menthol allergies associated with mast cell activation[J]. Cell Calcium,2010,48(4):202-8.
    [92]Malkia A, Morenilla-Palao C, Viana F. The emerging pharmacology of TRPM8 channels:hidden therapeutic potential underneath a cold surface[J]. Curr Pharm Biotechnol,2011,12(1):54-67.
    [93]Knowlton WM, McKemy DD. TRPM8:from cold to cancer, peppermint to pain[J]. Curr Pharm Biotechnol,2011,12(1):68-77.
    [94]Babes A, Ciobanu AC, Neacsu C, et al. TRPM8, a sensor for mild cooling in mammalian sensory nerve endings[J]. Curr Pharm Biotechnol,2011,12(1):78-88.
    [95]Tani M, Onimaru H, Ikeda K, et al. Menthol inhibits the respiratory rhythm in brainstem preparations of the newborn rats[J]. Neuroreport,2010,21(17):1095-9.
    [96]Deffontaines Rufin S, Jousse M, Verollet D, et al. Cold perception of the bladder during ice water test. Study on 120 patients[J]. Ann Phys Rehabil Med,2010, 53(9):559-67.
    [97]Romanuik TL, Wang G, Morozova O, Delaney A, Marra MA, Sadar MD. LNCaP Atlas: gene expression associated with in vivo progression to castration-recurrent prostate cancer. BMC Med Genomics.2010 Sep 24;3:43.
    [98]Zakharian E, Cao C, Rohacs T. Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers. J Neurosci.2010 Sep 15;30(37):12526-34.
    [99]Sherkheli MA, Vogt-Eisele AK, Bura D, Beltran Marques LR, Gisselmann G, Hatt H. Characterization of selective TRPM8 ligands and their structure activity response (S.A.R) relationship. J Pharm Pharm Sci.2010;13(2):242-53.
    [100]Sui F, Yang N, Zhang C, Du X, Li L, Weng X, Guo S, Huo H, Jiang T. [Effects of ingredients from Chinese herbs with nature of cold or hot on expression of TRPV 1 and TRPM8]. Zhongguo Zhong Yao Za Zhi.2010 Jun;35(12):1594-8.
    [101]Van Haute C, De Ridder D, Nilius B. TRP channels in human prostate. ScientificWorldJournal.2010 Aug 17;10:1597-611. Review.
    [102]Hirata Y, Oku Y. TRP channels are involved in mediating hypercapnic Ca(2+) responses in rat glia-rich medullary cultures independent of extracellular pH.Cell Calcium.2010 Aug-Sep;48(2-3):124-32.
    [103]Sarria I, Gu J. Menthol response and adaptation in nociceptive-like and nonnociceptive-like neurons:role of protein kinases. Mol Pain.2010 Aug 20;6:47.
    [104]Dong Y, Shi HL, Shi JR, Wu DZ. Transient receptor potential A1 is involved in cold-induced contraction in the isolated rat colon smooth muscle. Sheng Li Xue Bao. 2010 Aug25;62(4):349-56.
    [105]Stewart AP, Smith GD, Sandford RN, Edwardson JM. Atomic force microscopy reveals the alternating subunit arrangement of the TRPP2-TRPV4 heterotetramer. Biophys J.2010 Aug 4;99(3):790-7.
    [106]Denda M, Tsutsumi M, Denda S. Topical application of TRPM8 agonists accelerates skin permeability barrier recovery and reduces epidermal proliferation induced by barrier insult:role of cold-sensitive TRP receptors in epidermal permeability barrier homoeostasis. Exp Dermatol.2010 Sep;19(9):791-5.
    [107]Yee NS, Zhou W, Lee M. Transient receptor potential channel TRPM8 is over-expressed and required for cellular proliferation in pancreatic adenocarcinoma. Cancer Lett.2010 Nov 1;297(1):49-55.
    [108]Braz JM, Basbaum AI. Differential ATF3 expression in dorsal root ganglion neurons reveals the profile of primary afferents engaged by diverse noxious chemical stimuli. Pain.2010 Aug;150(2):290-301.
    [109]Kuhn FJ, Witschas K, Kuhn C, Luckhoff A. Contribution of the S5-pore-S6 domain to the gating characteristics of the cation channels TRPM2 and TRPM8. J Biol Chem. 2010 Aug 27;285(35):26806-14. Epub 2010 Jun 29.
    [110]Nakashimo Y, Takumida M, Fukuiri T, Anniko M, Hirakawa K. Expression of transient receptor potential channel vanilloid (TRPV) 1–4, melastin (TRPM) 5 and 8, and ankyrin (TRPA1) in the normal and methimazole-treated mouse olfactory epithelium. Acta Otolaryngol.2010 Nov; 130(11):1278-86.
    [111]Takashima Y, Ma L, McKemy DD. The development of peripheral cold neural circuits based on TRPM8 expression. Neuroscience.2010 Aug 25;169(2):828-42.
    [112]Knowlton WM, Bifolck-Fisher A, Bautista DM, McKemy DD. TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain.2010 Aug;150(2):340-50.
    [113]Storey DJ, Colvin LA, Mackean MJ, Mitchell R, Fleetwood-Walker SM, Fallon MT. Reversal of dose-limiting carboplatin-induced peripheral neuropathy with TRPM8 activator, menthol, enables further effective chemotherapy delivery. J PainSymptom Manage.2010 Jun;39(6):e2-4.
    [114]Earley S. Vanilloid and melastatin transient receptor potential channels in vascular smooth muscle. Microcirculation.2010 May;17(4):237-49. Review.
    [115]Gkika D, Flourakis M, Lemonnier L, Prevarskaya N. PSA reduces prostate cancer cell motility by stimulating TRPM8 activity and plasma membrane expression.Oncogene. 2010 Aug 12;29(32):4611-6. Epub 2010 Jun 7.
    [116]Schmid A, Pyrski M, Biel M, Leinders-Zufall T, Zufall F. Grueneberg ganglion neurons are finely tuned cold sensors. J Neurosci.2010 Jun 2;30(22):7563-8.
    [117]Chodon D, Guilbert A, Dhennin-Duthille I, Gautier M, Telliez MS, Sevestre H, Ouadid-Ahidouch H. Estrogen regulation of TRPM8 expression in breast cancer cells. BMC Cancer.2010 May 19;10:212.
    [118]Banke TG, Chaplan SR, Wickenden AD. Dynamic changes in the TRPAl selectivity filter lead to progressive but reversible pore dilation. Am J Physiol Cell Physiol.2010 Jun;298(6):C 1457-68.
    [119]Persson AK, Xu XJ, Wiesenfeld-Hallin Z, Devor M, Fried K. Expression of DRG candidate pain molecules after nerve injury--a comparative study among five inbred mouse strains with contrasting pain phenotypes. J Peripher Nerv Syst.2010
    [120]Mar;15(1):26-39.
    [121]Sato T, Nishishita K, Okada Y, Toda K. The receptor potential of frog taste cells in response to cold and warm stimuli. Chem Senses.2010 Jul;35(6):491-9.
    [122]Klein AH, Sawyer CM, Carstens MI, Tsagareli MG, Tsiklauri N, Carstens E.Topical application of L-menthol induces heat analgesia, mechanical allodynia, and a biphasic effect on cold sensitivity in rats. Behav Brain Res.2010 Oct 15;212(2):179-86.
    [123]Sui F, Lin N, Guo JY, Zhang CB, Du XL, Zhao BS, Liu HB, Yang N, Li LF, Guo SY, Huo HR, Jiang TL. Cinnamaldehyde up-regulates the mRNA expression level of TRPV1 receptor potential ion channel protein and its function in primary rat DRG
    [124]neurons in vitro. J Asian Nat Prod Res.2010 Jan;12(1):76-87. Grigor'eva IN, Nikitenko TM, Tikhonov AV, Romanova TI, Maksimov VN,Shakhtshne Tder EV, Maliutina SK, Voevoda MI. [Genetic aspects of digestive diseases. Part 1]. Ter Arkh. 2010;82(2):62-6. Review.
    [125]Ortar G, De Petrocellis L, Morera L, Moriello AS, Orlando P, Morera E, Nalli M, Di Marzo V.(-)-Menthylamine derivatives as potent and selective antagonists of transient receptor potential melastatin type-8 (TRPM8) channels. Bioorg Med Chem Lett.2010 May 1;20(9):2729-32.
    [126]Zholos A. Pharmacology of transient receptor potential melastatin channels in the vasculature. Br J Pharmacol.2010 Apr; 159(8):1559-71. Epub 2010 Mar 5. Review.
    [127]Stewart AP, Egressy K, Lim A, Edwardson JM. AFM imaging reveals the tetrameric structure of the TRPM8 channel. Biochem Biophys Res Commun.2010 Apr2;394(2):383-6.
    [128]Ta LE, Bieber AJ, Carlton SM, Loprinzi CL, Low PA, Windebank AJ. Transient Receptor Potential Vanilloid 1 is essential for cisplatin-induced heat hyperalgesia in mice. Mol Pain.2010 Mar 5;6:15.
    [129]Bavencoffe A, Gkika D, Kondratskyi A, Beck B, Borowiec AS, Bidaux G, Busserolles J, Eschalier A, Shuba Y, Skryma R, Prevarskaya N. The transient receptor potential channel TRPM8 is inhibited via the alpha 2A adrenoreceptor signaling pathway. J Biol Chem.2010 Mar 26;285(13):9410-9. Epub 2010 Jan 28.
    [130]Boldyrev OI, Sotkis HV, Kuliieva IeM, Vladymyrova IA, Filippov IB, Skryma R, Prevars'ka N, Shuba IaM. [Expression of the cold receptor TRPM8 in the smooth muscles of the seminal ejaculatory ducts in rats]. Fiziol Zh.2009;55(5):17-27.
    [131]Gentry C, Stoakley N, Andersson DA, Bevan S. The roles of iPLA2, TRPM8 andTRPA1 in chemically induced cold hypersensitivity. Mol Pain.2010 Jan 21;6:4.
    [132]Beck EJ, Hutchinson TL, Qin N, Flores CM, Liu Y. Development and validation of a secondary screening assay for TRPM8 antagonists using QPatch HT. Assay Drug Dev Technol.2010 Feb;8(1):63-72.
    [133]Hondoh A, Ishida Y, Ugawa S, Ueda T, Shibata Y, Yamada T, Shikano M, Murakami S, Shimada S. Distinct expression of cold receptors (TRPM8 and TRPA1) in the rat nodose-petrosal ganglion complex. Brain Res.2010 Mar 10;1319:60-9.
    [134]Bai VU, Murthy S, Chinnakannu K, Muhletaler F, Tejwani S, Barrack ER, Kim SH,Menon M, Veer Reddy GP. Androgen regulated TRPM8 expression:a potential mRNA marker for metastatic prostate cancer detection in body fluids. Int J Oncol. 2010Feb;36(2):443-50.
    [135]Everaerts W, Vriens J, Owsianik G, Appendino G, Voets T, De Ridder D, Nilius B. Functional characterization of transient receptor potential channels in mouse urothelial cells. Am J Physiol Renal Physiol.2010 Mar;298(3):F692-701.
    [136]Crawford DC, Moulder KL, Gereau RW 4th, Story GM, Mennerick S. Comparative effects of heterologous TRPV1 and TRPM8 expression in rat hippocampal neurons. PLoS One.2009 Dec 4;4(12):e8166.
    [137]Dunham JP, Leith JL, Lumb BM, Donaldson LF. Transient receptor potential channel Al and noxious cold responses in rat cutaneous nociceptors. Neuroscience.2010 Feb 17;165(4):1412-9.
    [138]Zhao H, Sprunger LK, Simasko SM. Expression of transient receptor potential channels and two-pore potassium channels in subtypes of vagal afferent neurons in rat. Am J Physiol Gastrointest Liver Physiol.2010 Feb;298(2):G212-21.
    [139]Li Q, Wang X, Yang Z, Wang B, Li S. Menthol induces cell death via the TRPM8 channel in the human bladder cancer cell line T24. Oncology.2009;77(6):335-41.
    [140]Mahieu F, Janssens A, Gees M, Talavera K, Nilius B, Voets T. Modulation of the cold-activated cation channel TRPM8 by surface charge screening. J Physiol.2010 Jan 15;588(Pt2):315-24. Epub 2009 Nov 30.
    [141]Naono-Nakayama R, Sunakawa N, Ikeda T, Nishimori T. Differential effects of substance P or hemokinin-1 on transient receptor potential channels, TRPV1, TRPAland TRPM8, in the rat. Neuropeptides.2010 Feb;44(1):57-61.
    [142]Hu H, Tian J, Zhu Y, Wang C, Xiao R, Herz JM, Wood JD, Zhu MX. Activation of TRPA1 channels by fenamate nonsteroidal anti-inflammatory drugs. Pflugers Arch.2010 Mar;459(4):579-92.
    [143]Malkia A, Pertusa M, Fernandez-Ballester G, Ferrer-Montiel A, Viana F.Differential role of the menthol-binding residue Y745 in the antagonism of thermally gated TRPM8 channels. Mol Pain.2009 Nov 3;5:62.
    [144]Reubish D, Emerling D, Defalco J, Steiger D, Victoria C, Vincent F.Functional assessment of temperature-gated ion-channel activity using a real-timePCR machine. Biotechniques.2009 Sep;47(3):iii-ix.
    [145]Staaf S, Franck MC, Marmigere F, Mattsson JP, Ernfors P. Dynamic expression of the TRPM subgroup of ion channels in developing mouse sensory neurons. Gene Expr Patterns.2010 Jan;10(1):65-74.
    [146]Asai Y, Holt JR, Geleoc GS. A quantitative analysis of the spatiotemporal pattern of transient receptor potential gene expression in the developing mousecochlea. J Assoc Res Otolaryngol.2010 Mar;11(1):27-37. Epub 2009 Oct 16. PubMed
    [147]P MID:19834762; PubMed Central PMCID:PMC2820207.
    [148]Son AR, Yang YM, Hong JH, Lee SI, Shibukawa Y, Shin DM. Odontoblast TRP channels and thermo/mechanical transmission. J Dent Res.2009 Nov;88(11):1014-9.
    [149]Kondrats'kyl AP, Kondrats'ka KO, Skryma R, Prevars'ka N, Shuba IaM. [Gender differences in cold sensitivity:role of hormonal regulation of TRPM8 channel]. Fiziol Zh.2009;55(4):91-9. Ukrainian.
    [150]Campero M, Baumann TK, Bostock H, Ochoa JL. Human cutaneous C fibres activated by cooling, heating and menthol. J Physiol.2009 Dec 1;587(Pt23):5633-52.
    [151]Lieu PT, Machleidt T, Thyagarajan B, Fontes A, Frey E, Fuerstenau-Sharp M, Thompson DV, Swamilingiah GM, Derebail SS, Piper D, Chesnut JD. Generation ofsite-specific retargeting platform cell lines for drug discovery using phiC31 and R4 integrases. J Biomol Screen.2009 Dec;14(10):1207-15.
    [152]Caspani O, Zurborg S, Labuz D, Heppenstall PA. The contribution of TRPM8 andTRPAl channels to cold allodynia and neuropathic pain. PLoS One.2009 Oct8;4(10):
    [153]Wondergem R, Bartley JW. Menthol increases human glioblastoma intracellula Ca2+, BK channel activity and cell migration. J Biomed Sci.2009 Sep 24; 16:90.
    [154]Vincent F, Acevedo A, Nguyen MT, Dourado M, DeFalco J, Gustafson A, Spiro P,Emerling DE, Kelly MG Duncton MA. Identification and characterization of novel TRPV4 modulators. Biochem Biophys Res Commun.2009 Nov 20;389(3):490-4. Epub 2009
    [155]Serra J, Sola R, Quiles C, Casanova-Molla J, Pascual V, Bostock H,Valls-Sole J. C-nociceptors sensitized to cold in a patient with small-fiber neuropathy and cold allodynia. Pain.2009 Dec 15;147(1-3):46-53. Epub 2009 Aug22. PubMed PMID: 19700243.
    [156]XIE ZQ. [Role of thermo TRP channels in cutaneous neurogenic inflammation and itch]. Zhejiang Da Xue Xue Bao Yi Xue Ban.2009 Jul;38(4):409-14. Review.Chinese. PubMed PMID:19693981.
    [157]Gerhold KA, Bautista DM. Molecular and cellular mechanisms of trigeminal chemosensation. Ann N Y Acad Sci.2009 Jul;1170:184-9. Review. PubMed PMID:19686135; PubMed Central PMCID:PMC2879328.
    [158]Eid SR, Cortright DN. Transient receptor potential channels on sensory nerves. Handb Exp Pharmacol.2009;(194):261-81. Review. PubMed PMID:19655110.
    [159]Baron R. Neuropathic pain:a clinical perspective. Handb Exp Pharmacol. 2009;(194):3-30. Review.
    [160]Ma S. Letter to the editor:"Is menthol- or icilin-induced vasodilation mediated by the activation of TRPM8?". Am J Physiol Heart Circ Physiol.2009 Aug;297(2):H887; author reply H888. PubMed PMID:19635848.
    [161]:Sun B, Li Q, Dong L, Rong W. Ion channel and receptor mechanisms of bladder
    [162]afferent nerve sensitivity. Auton Neurosci.2010 Feb 16;153(1-2):26-32. Epub 2009
    [163]Jul 25. Review. PubMed PMID:19632906. Hayashi T, Kondo T, Ishimatsu M, Yamada S, Nakamura K, Matsuoka K, Akasu T. Expression of the TRPM8-immunoreactivity in dorsal root ganglion neurons innervating the rat urinary bladder. Neurosci Res.2009 Nov;65(3):245-51.
    [164]Sokabe T, Tominaga M. [Molecular mechanisms underlying thermosensation in mammals]. Brain Nerve.2009 Jul;61(7):867-73. Review.
    [165]Chen Z, Ishizuka O, Imamura T, Aizawa N, Kurizaki Y, Igawa Y, Nishizawa O,Andersson KE. Stimulation of skin menthol receptors stimulates detrusor activity in conscious rats. Neurourol Urodyn.2010 Mar;29(3):506-11.
    [166]De Blas GA, Darszon A, Ocampo AY, Serrano CJ, Castellano LE, Hernandez-Gonzalez EO, Chirinos M, Larrea F, Beltran C, Trevino CL. TRPM8, a versatile channel in human sperm. PLoS One.2009 Jun 30;4(6):e6095.
    [167]Bevan S, Andersson DA. TRP channel antagonists for pain—pportunities beyond TRPVl. Curr Opin Investig Drugs.2009 Jul;10(7):655-63. Review.
    [168]Hiura A. Is thermal nociception only sensed by the capsaicin receptor,TRPVl? Anat Sci Int.2009 Sep;84(3):122-8. Epub 2009 Jun 27. Review.
    [169]Parnas M, Peters M, Minke B. Linoleic acid inhibits TRP channels with intrinsic voltage sensitivity:Implications on the mechanism of linoleic acid action. Channels (Austin).2009 May-Jun;3(3):164-6. Epub 2009 May 26.
    [170]Aneiros E, Dabrowski M. Novel temperature activation cell-based assay onthermo-TRP ion channels. J Biomol Screen.2009 Jul;14(6):662-7.
    [171]Ciobanu C, Reid G, Babes A. Acute and chronic effects of neurotrophic factors BDNF and GDNF on responses mediated by thermo-sensitive TRP channels in cultured rat dorsal root ganglion neurons. Brain Res.2009 Aug 11;1284:54-67.
    [172]123:Louhivuori LM, Bart G, Larsson KP, Louhivuori V, Nasman J, Nordstrom T,Koivisto AP, Akerman KE. Differentiation dependent expression of TRPAl and TRPM8 channels in IMR-32 human neuroblastoma cells. J Cell Physiol.2009
    [173]Oct;221(1):67-74.
    [174]Kobayashi H, Yoshiyama M, Zakoji H, Takeda M, Araki I. Sex differences in the expression profile of acid-sensing ion channels in the mouse urinary bladder:a possible involvement in irritative bladder symptoms. BJU Int.2009Dec;104(11):1746-51.
    [175]Myers BR, Sigal YM, Julius D. Evolution of thermal response properties in a cold-activated TRP channel. PLoS One.2009 May 29;4(5):e5741.
    [176]Mandadi S, Nakanishi ST, Takashima Y, Dhaka A, Patapoutian A, McKemy DD,Whelan PJ. Locomotor networks are targets of modulation by sensory transient receptor potential vanilloid 1 and transient receptor potential melastatin 8 channels. Neuroscience.2009 Sep 15;162(4):1377-97.
    [177]Axelsson HE, Minde JK, Sonesson A, Toolanen G, Hogestatt ED, Zygmunt PM.Transient receptor potential vanilloid 1, vanilloid 2 and melastatin 8 immunoreactive nerve fibers in human skin from individuals with and without Norrbottnian congenital insensitivity to pain. Neuroscience.2009 Sep15;162(4):1322-32.
    [178]128:Staaf S, Oerther S, Lucas G, Mattsson JP, Ernfors P. Differential regulation of TRP channels in a rat model of neuropathic pain. Pain.2009Jul;144(1-2):187-99.129: Cortright DN, Szallasi A. TRP channels and pain. Curr Pharm Des.2009;15(15):1736-49. Review. PubMed PMID:19442187.
    [179]Yamamoto Y, Hatakeyama T, Taniguchi K. Immunohistochemical colocalization of TREK-1, TREK-2 and TRAAK with TRP channels in the trigeminal ganglion cells.Neurosci Lett.2009 Apr 24;454(2):129-33. Epub 2009 Mar 5.
    [180]Masamoto Y, Kawabata F, Fushiki T. Intragastric administration of TRPVI,TRPV3, TRPM8, and TRPAl agonists modulates autonomic thermoregulation in different manners in mice. Biosci Biotechnol Biochem.2009 May;73(5):1021-7.
    [181]Rossi HL, Vierck CJ Jr, Caudle RM, Yezierski RP, Neubert JK. Dose-dependent effects of icilin on thermal preference in the hindpaw and face of rats. J Pain.2009 Jun;10(6):646-53. Epub 2009 May 5.
    [182]Yeon K.Y, Chung G, Shin MS, Jung SJ, Kim JS, Oh SB. Adult rat odontoblasts lack noxious thermal sensitivity. J Dent Res.2009 Apr;88(4):328-32.
    [183]Zakharian E, Thyagarajan B, French RJ, Pavlov E, Rohacs T. Inorganic polyphosphate modulates TRPM8 channels. PLoS One.2009;4(4):e5404.
    [184]Gauchan P, Andoh T, Kato A, Kuraishi Y. Involvement of increased expression of transient receptor potential melastatin 8 in oxaliplatin-induced cold allodynia in mice. Neurosci Lett.2009 Jul 17;458(2):93-5.
    [185]Wrigley PJ, Jeong HJ, Vaughan CW. Primary afferents with TRPM8 and TRPAlprofiles target distinct subpopulations of rat superficial dorsal horn neurones. Br J Pharmacol.2009 Jun;157(3):371-80.
    [186]Johnson CD, Melanaphy D, Purse A, Stokesberry SA, Dickson P, Zholos AV.Transient receptor potential melastatin 8 channel involvement in the regulationof vascular tone. Am J Physiol Heart Circ Physiol.2009 Jun;296(6):H1868-77.
    [187]Flourakis M, Prevarskaya N. Insights into Ca2+ homeostasis of advanced prostate cancer cells. Biochim Biophys Acta.2009 Jun;1793(6):1105-9.
    [188]139:Mandadi S, Roufogalis BD. ThermoTRP channels in nociceptors:taking a lead from capsaicin receptor TRPVl. CurrNeuropharmacol.2008 Mar;6(1):21-38.
    [1]Berezikov E, van Tetering G, VerheulM, et al. Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis[J]. Genome Res,2006,16 (10):1289-1298
    [2]Liang H, Li WH. MicroRNA regulation of human protein-protein interaction network[J]. RNA,2007,13(9):1402-1408
    [3]Wienholds E, Kloosterman WP, Miska E, et al. MicroRNA expression in zebrafish embryonic development[J]. Science,2005,309(5732):310-311
    [4]Lee RC, Feinbaum RL, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75(5):843-584
    [5]Reinhart B J, Slack F J, Basson,M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J].Nature,2000,403(6772):901-916
    [6]Johnston RJ, Hobert O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans[J]. Nature,2003,426(6968):845-849
    [7]Chang S, Johnston RJ Jr, Frokjaer-Jensen C, et al. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode[J]. Nature, 2004,430(7001):785-789.
    [8]Xu P, Vemooy SY, Guo M, et al. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism[J].Curr Biol,2003,13(9):790-795
    [9]Giraldez AJ, Cinalli RM, Glasner ME, et al. MicroRNAs regulate brain morphogenesis in Zebrafish[J].Science,2005,308(5723):833-838
    [10]Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation[J]. Science,2004,303(5654):83-86
    [11]Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion[J]. Nature,2004,432(7014):226-230
    [12]Esau C, Kang X, Peralta E. MicroRNA-143 regulates adipocyte differentiatio[J]. J Biol Chem,2004,279(50):52361-52365
    [13]Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J], Nat Genet,2006,38(2):228-233
    [14]Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight[J]? Nat Rev Genet,2008,9(2):102-114
    [15]Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors[J]. Science,2004,303(5654):95-98
    [16]Schwarz DS, Hutvagner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex[J]. Cell,2003,115(2):199-208
    [17]Lagos-Quintana M,Rauhut R,Yalcin A, et al. Identification of tissue-specific microRNAs from mouse[J]. Curr Biol,2002,12(9):735-739
    [18]Deo M,Yu JY,Chung KH,et al. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides[J].Dev Dyn,2006,235(9):2538-2548
    [19]Conaco C,Otto S,Han JJ,et al. Reciprocal actions of REST and a microRNA promote neuronal identity[J].Proc Natl Acad Sci USA,2006,103(7):2422-2427
    [20]Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of targetmRNAs[J].Nature,2005,433(7027):769-773
    [21]Makeyev EV, Zhang J, Carrasco MA, et al. The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing[J]. Mol Cell, 2007,27(3):435-448
    [22]Baroukh N,Ravier MA,Loder MK,et al.MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines[J]. J Biol Chem, 2007,282(27):19575-19588
    [23]Krichevsky AM,Sonntaq KC,Isacson O, t al.Specific microRNAs modulate embryonic stem cell-derived neurogenesis[J].Stem Cells,2006,24(4):857-864
    [24]Wang C,Yao N,Lu CL,et al. Mouse microRNA-124 regulates the expression of Hesl in P19 cells[J].Front Biosci,2010,2:127-132
    [25]Yu JY,Chung KH,Deo M,et al. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation[J]. Exp Cell Res,2008,314(14):2618-2633
    [26]Cheng LC,Pastrana E,Tavazoie M,et al. MiR-124 regulates adult neurogenesis in the subventricular zone stem cell niche[J].Nat Neurosci,2009,12(4):399-408
    [27]Visvanathan J,Lee S,Lee B,et al.The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development[J]. Genes Dev,2007,21(7):744-749
    [28]Cao X,Pfaff SL,Gage FH. A functional study of miR-124 in the developing neural tube[J]. Genes Dev,2007,21(5):531-536
    [29]Vo N,Klein ME,Varlamova O, et al.A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis[J]. Proc Natl Acad Sci USA,2005,102(45):16426-16431
    [30]Schratt GM,Tuebing F,Nigh EA,et al. A brain-specific microRNA regulates dendritic spine developmen[J]. Nature,2006,439(7074):283-289
    [31]Gao FB.Posttranscriptional control of neuronal development by microRNA networks[J]. Trends Neurosci,2008,31(1):20-26
    [32]Zhao Y,Srivastava D.A developmental view of microRNA function[J]. Trends Biochem Sci,2007,32(4):189-197
    [33]Boutz PL,Chawla G,Stoilov P,et al. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development[J]. Genes Dev,2007,21(1):71-84
    [34]Boutz PL,Stoilov P,Li Q,et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons[J]. Genes Dev, 2007,21(13):1636-1652
    [35]Spellman R,Llorian M,Smith CW.Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1 [J]. Mol Cell,2007,27(3):420-434
    [36]SMIRNOVA L, GRAFE A, SEILER A, et al.Regulation of microRNA expression during neural cell specification[J].Eur J Neurosci,2005,21:1469-1477
    [37]NELSON P T, BALDWIN D A, KLOOSTERMAN W P, et al.RAKE and LNA-ISH revealmicroRNA expression and localization in archival human brain[J].RNA,2006,12: 187-191
    [38]PRESUTTIC, ROSATI J, VINCENTI S, et al.Non coding RNA and brain[J].BMC Neurosci,2006,7:S5
    [39]HOBERTO.Common logic of transcription factor and microRNA action [J].Trand Biochem Sci,2004,29:462-468
    [40]DOENCH JG, SHARP PA. Specificity of microRNA targetselection in translational repression[J].GeneDev,2004,18:504-511
    [41]VO N, KLEINM E, VARIAMOVA O, et al.A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis[J].ProcNatlAcad SciUSA, 2005,102;16426-16431
    [42]KLEINM E, IMPEY S, GOODMAN RH.Role reversa:l the regulation ofneuronal gene expression bymicroRNA[J].Curr OpinNeurobiol,2005,15:507-513
    [43]XIE X, LU J, KULBOKAS E J, et al. Systematic discovery of regulatorymotifs in human promoters and 3'UTRsby comparison of severalmammals[J].Nature,2005,434:338-345
    [44]LIM L P, LAUN C, GARRETT-ENGELE P, et al.Microarray analysis shows that somemicroRNAs downregulate large numbers of target mRNAs[J].Nature,2005,433: 769-773
    [45]TURNER D.The role ofmicroRNAmiR124a in neuronal differentiation[G].SocNeurosci, 2004, P36:P11
    [46]Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus[J]. Neuroreport,2007;18(3):297-300
    [47]Wang WX, Rajeev BW, Stromberg AJ, et al. The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme l[J]J.Neurosci,2008, 28(5):1213-1223
    [48]Hebert SS,Horre K,Nicolai L, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACEl/beta-secretase expression[J]. Proc Natl Acad Sci USA,2008,105(17):6415-6420
    [49]Faghihi MA,Modarresi F,Khalil AM, et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase[J]. Nat Med,2008,14(7):723-730
    [50]Xu XL,Li Y,Wang F,et al. The steady-state level of the nervous-system-specific microRNA-124a is regulated by dFMRl in Drosophila[J].J Neurosci,2008,28(46):11883-11889
    [51]Kim J, Inoue K, Ishii J, et al. A MicroRNA feedback circuit in midbrain dopamine neurons [J]. Science,2007,317(5842):1220-1224
    [52]Hebert SS, De Strooper B. Molecular biology miRNAs in neuro-degeneration[J]. Science, 2007,317(5842):1179-1180
    [53]CuellarTL, Davis TH, Nelson PT, et al. Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration[J]. Proc NatlAcad Sci USA,2008,105(14):5614-5619
    [54]Wang G, van derWalt JM, Mayhew G, et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein[J]. Am J Hum Genet,2008,82(2):283-289
    [55]Pierson J,Hostager B,Fan R,et al. Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma[J].J Neurooncol,2008,90(1):1-7
    [56]Hohjoh H,Fukushima T. Marked change in microRNA expression during neuronal differentiation of human teratocarcinoma NTera2Dl and mouse embryonal carcinoma P19 cells[J]. Biochem Biophys Res Commun,2007,362(2):360-367
    [57]Silber J,Lim DA,Petritsch C,et al. MiR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells[J].BMC Med,2008,6:14
    [58]Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion[J]. Stroke,2008,39(3):959-966
    [59]文全庆,贾延劫,王明闯,等.大鼠脑缺血急性期脑组织miRNA的表达变化[J].重庆医科大学学报,2008,33(S1):23-26
    [60]Valastyan S, Weinberg RA. Roles for microRNAs in the regulation of cell adhesion molecules. J Cell Sci.2011 Apr 1;124(Pt 7):999-1006.
    [61]Sato F, Tsuchiya S, Meltzer SJ, Shimizu K. MicroRNAs and epigenetics. FEBS J.2011 Mar 12.
    [62]Millan MJ. MicroRNA in the regulation and expression of serotonergic transmission in the brain and other tissues. Curr Opin Pharmacol.2011 Feb 21.
    [63]Zheng H, Song F, Zhang L, Yang D, Ji P, Wang Y, Almeida M, Calin GA, Hao X, Wei Q, Zhang W, Chen K. Genetic variants at the miR-124 binding site on the cytoskeleton-organizing IQGAPl gene confer differential predisposition to breast cancer. Int J Oncol.2011 Apr;38(4):1153-61. doi:10.3892/ijo.2011.940.
    [64]Chandrasekar V, Dreyer JL. Regulation of MiR-124, Let-7d, and MiR-181a in the Accumbens Affects the Expression, Extinction, and Reinstatement of Cocaine-Induced Conditioned Place Preference. Neuropsychopharmacology.2011 Feb 9.
    [65]Bang-Berthelsen CH, Pedersen L, Floyel T, Hagedorn PH, Gylvin T, Pociot F. Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes. BMC Genomics.2011 Feb 4;12:97.
    [66]Kersigo J, D'Angelo A, Gray B, Soukup GA, Fritzsch B. The role of sensory organs and the forebrain for the development of the craniofacial shape as revealed by Foxgl-cre mediated microRNA loss. Genesis.2011 Jan 10.
    [67]Bitel CL, Perrone-Bizzozero NI, Frederikse PH. HuB/C/D, nPTB, REST4, and miR-124 regulators of neuronal cell identity are also utilized in the lens. Mol Vis.2010 Nov 4;16:2301-16.
    [68]Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-a-PU.1 pathway. Nat Med.2011 Jan;17(l):64-70.
    [69]Liu K, Liu Y, Mo W, Qiu R, Wang X, Wu JY, He R. MiR-124 regulates early neurogenesis in the optic vesicle and forebrain, targeting NeuroD 1. Nucleic AcidsRes.2010 Dec 3.
    [70]Hunt S, Jones AV, Hinsley EE, Whawell SA, Lambert DW. MicroRNA-124 suppresses oral squamous cell carcinoma motility by targeting ITGB1. FEBS Lett.2011 Jan 3;585(1):187-92.
    [71]Smith P, A1 Hashimi A, Girard J, Delay C, Hebert SS. In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. J Neurochem.2011 Jan;116(2):240-7.
    [72]Farrell BC, Power EM, Me Dermott KW. Developmentally regulated expression of Sox9 and microRNAs 124,128 and 23 in neuroepithelial stem cells in the developing spinal cord. Int J Dev Neurosci.2011 Feb;29(1):31-6.
    [73]Vazquez I, Maicas M, Marcotegui N, Conchillo A, Guruceaga E, Roman-Gomez J, Calasanz MJ, Agirre X, Prosper F, Odero MD. Silencing of hsa-miR-124 by EVI1 in cell lines and patients with acute myeloid leukemia. Proc Natl Acad Sci U S A.2010 Nov 2;107(44):E167-8;
    [74]Gao FB. Context-dependent functions of specific microRNAs in neuronal development. Neural Dev.2010 Oct 1;5:25. Review.
    [75]Tian L, Huang K, DuHadaway JB, Prendergast GC, Stambolian D. Genomic profiling of miRNAs in two human lens cell lines. Curr Eye Res.2010 Sep;35(9):812-8.
    [76]Szczurek E, Biecek P, Tiuryn J, Vingron M. Introducing knowledge into differential expression analysis. J Comput Biol.2010 Aug;17(8):953-67.
    [77]Haflidadottir BS, Bergsteinsdottir K, Praetorius C, Steingrimsson E. miR-148 regulates Mitf in melanoma cells. PLoS One.2010 Jul 14;5(7):e11574.
    [78]Jorgensen S, Baker A, Moller S, Nielsen BS. Robust one-day in situ hybridization protocol for detection of microRNAs in paraffin samples using LNAprobes. Methods.2010 Dec;52(4):375-81.
    [79]Wilting SM, van Boerdonk RA, Henken FE, Meijer CJ, Diosdado B, Meijer GA, le Sage C, Agami R, Snijders PJ, Steenbergen RD. Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol Cancer.2010 Jun 26;9:167.
    [80]Varble A, Chua MA, Perez JT, Manicassamy B, Garcia-Sastre A, tenOever BR. Engineered RNA viral synthesis of microRNAs. Proc Natl Acad Sci U S A.2010 Jun 22;107(25):11519-24.
    [81]Maiorano NA, Mallamaci A. The pro-differentiating role of miR-124:Indicating the road to become a neuron. RNA Biol.2010 Sep 1;7(5):528-33.
    [82]Peng T, Jia YJ, Wen QQ, Guan WJ, Zhao EY, Zhang BA. [Expression of microRNA in neonatal rats with hypoxic-ischemic brain damage]. Zhongguo Dang Dai Er Ke Za Zhi. 2010May;12(5):373-6.
    [83]Huang T, Liu Y, Huang M, Zhao X, Cheng L. Wntl-cre-mediated conditional loss of Dicer results in malformation of the midbrain and cerebellum and failure of neural crest and dopaminergic differentiation in mice. J Mol Cell Biol.2010 Jun;2(3):152-63.
    [84]Wang WX, Wilfred BR, Xie K, Jennings MH, Hu YH, Stromberg AJ, Nelson PT. Individual microRNAs (miRNAs) display distinct mRNA targeting "rules". RNA Biol.2010 May-Jun;7(3):373-80.
    [85]Nelson PT, Wang WX. MiR-107 is reduced in Alzheimer's disease brain neocortex: validation study. J Alzheimers Dis.2010;21(1):75-9.
    [86]Arvanitis DN, Jungas T, Behar A, Davy A. Ephrin-B1 reverse signaling controls a posttranscriptional feedback mechanism via miR-124. Mol Cell Biol.2010 May;30(10):2508-17.
    [87]Nelson PT, Dimayuga J, Wilfred BR. MicroRNA in Situ Hybridization in the Human Entorhinal and Transentorhinal Cortex. Front Hum Neurosci.2010 Feb 22;4:7.
    [88]Clark AM, Goldstein LD, Tevlin M, Tavare S, Shaham S, Miska EA. The microRNA miR-124 controls gene expression in the sensory nervous system of Caenorhabditis elegans. Nucleic Acids Res.2010 Jun 1;38(11):3780-93.
    [89]Takane K, Fujishima K, Watanabe Y, Sato A, Saito N, Tomita M, Kanai A. Computational prediction and experimental validation of evolutionarily conserved microRNA target genes in bilaterian animals. BMC Genomics.2010 Feb 9;11:101.
    [90]Liu S, Gao S, Zhang D, Yin J, Xiang Z, Xia Q. MicroRNAs show diverse and dynamic expression patterns in multiple tissues of Bombyx mori. BMC Genomics.2010 Feb 2;11:85.
    [91]Arora A, Guduric-Fuchs J, Harwood L, Dellett M, Cogliati T, Simpson DA. Prediction of microRNAs affecting mRNA expression during retinal development. BMC Dev Biol.2010 Jan 6;10:l.
    [92]Wang WX, Wilfred BR, Hu Y, Stromberg AJ, Nelson PT. Anti-Argonaute RIP-Chip shows that miRNA transfections alter global patterns of mRNA recruitment to microribonucleoprotein complexes. RNA.2010 Feb;16(2):394-404.
    [93]Wang C, Yao N, Lu CL, Li D, Ma X. Mouse microRNA-124 regulates the expression of Hes 1 in P19 cells. Front Biosci (Elite Ed).2010 Jan 1;2:127-32.
    [94]Patnaik SK, Kannisto E, Knudsen S, Yendamuri S. Evaluation of microRNA expression profiles that may predict recurrence of localized stage I non-small cell lung cancer after surgical resection. Cancer Res.2010 Jan 1;70(1):36-45.
    [95]Huang J, Hao P, Chen H, Hu W, Yan Q, Liu F, Han ZG. Genome-wide identification of Schistosoma japonicum microRNAs using a deep-sequencing approach. PLoS One.2009 Dec 8;4(12):e8206.
    [96]Zhang Z, Chang H, Li Y, Zhang T, Zou J, Zheng X, Wu J. MicroRNAs:potential regulators involved in human anencephaly. Int J Biochem Cell Biol.2010 Feb;42(2):367-74.
    [97]Guo L, Sun B, Sang F, Wang W, Lu Z. Haplotype distribution and evolutionary pattern of miR-17 and miR-124 families based on population analysis. PLoS One.2009 Nov 23;4(11):e7944.
    [98]Sober S, Laan M, Annilo T. MicroRNAs miR-124 and miR-135a are potential regulators of the mineralocorticoid receptor gene (NR3C2) expression. Biochem Biophys Res Commun. 2010 Jan 1;391(1):727-32.
    [99]Hendrickson DG, Hogan DJ, McCullough HL, Myers JW, Herschlag D, Ferrell JE, Brown PO. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol.2009 Nov;7(11):e1000238.
    [100]Rybak A, Fuchs H, Hadian K, Smirnova L, Wulczyn EA, Michel G, Nitsch R, Krappmann D, Wulczyn FG. The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2. Nat Cell Biol.2009 Dec;11(12):1411-20.
    [101]Maiorano NA, Mallamaci A. Promotion of embryonic cortico-cerebral neuronogenesis by miR-124. Neural Dev.2009 Nov 2;4:40.
    [102]Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis.2010 May;31(5):766-76.
    [103]Grandjean V, Gounon P, Wagner N, Martin L, Wagner KD, Bemex F, Cuzin F,
    [104]Rassoulzadegan M. The miR-124-Sox9 paramutation:RNA-mediated epigenetic control of embryonic and adult growth. Development.2009 Nov;136(21):3647-55.
    [105]Liu S, Zhang L, Li Q, Zhao P, Duan J, Cheng D, Xiang Z, Xia Q. MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori). BMC Genomics.2009 Sep 28;10:455.
    [106]Rajasethupathy P, Fiumara F, Sheridan R, Betel D, Puthanveettil SV, Russo JJ, Sander C, Tuschl T, Kandel E. Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron.2009 Sep 24;63(6):803-17.
    [107]Fischbach SJ, Carew TJ. MicroRNAs in memory processing. Neuron.2009 Sep 24;63(6):714-6.
    [108]Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK, Johnson JM, Sina JF, Fare TL, Sistare FD, Glaab WE. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem.2009 Nov;55(11):1977-83.
    [109]Chandrasekar V, Dreyer JL. microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Mol Cell Neurosci.2009 Dec;42(4):350-62.
    [110]Yoo AS, Staahl BT, Chen L, Crabtree GR. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature.2009 Jul 30;460(7255):642-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700