彩绘文物颜料无损分析鉴定和保护材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
彩绘类文物研究与保护的重要工作是颜料成分鉴定和表面加固保护。
     由于文物具有不可再生的特性,决定了理想的文物分析技术应当是无损的。目前常用的XRD、XRF等分析方法通常需要从文物上刮取粉末或制成合适规格的样品进行测试,会对文物产生破坏。国外有人采用价格昂贵的光导纤维反射光谱仪对颜料成分作鉴定,但在我国大多博物馆和文博单位这种昂贵的仪器是很难推广使用。
     彩绘文物保护的另一个亟待解决的难题是彩绘颜料表面的封护、加固保护问题。虽然,越来越多的有机高分子材料被“移殖”于文物保护领域,但对材料的稳定性缺乏系统、科学、全面的研究,选择材料具有很大的盲目性和片面性。
     根据文物保护的特殊要求,针对我国文物保护的具体现状和急需解决的难题,我们首次对国产仪器改装,研制出了一种价格低廉、性能优良的光导纤维反射光谱仪,并成功地分析鉴定了重庆大足石刻区、汉阳陵博物馆等处彩绘文物上的颜料成分。对常用彩绘类文物保护材料的稳定性进行了系统研究,通过加入紫外线吸收剂、由物理共混的方式提高了有机高分子文物保护材料的耐光老化性能。本论文的主要研究内容如下:
     研制出了一种简易光导纤维反射光谱仪。该仪器是在对国产72G型分光光度计改装基础上研制而成的,仪器由钨灯、单色器、双臂光纤、暗盒、光电倍增管检测器、读数装置、高压电源等部分组成。改装仪器的核心是采用玻璃双臂光纤传输光线,利用检测反射光谱信号实现对样品的无损测量。以高灵敏度的光电倍增管替代光电管作为检测器,这样对微弱的反射光信号能够实施有效的检测。设计防光性好的金属暗室来消除外界的干扰,提高了测量的准确性。同时,采用Perkin-Elmer Lambda 17紫外-可见分光光度计进行了对比分析,表明所研制的光导纤维反射光谱仪性能稳定,完全能够用于文物颜料的鉴定。
     通过对大量中国古代彩绘颜料的分析,归纳出颜料反射光谱曲线的三种类型:“钟”形、“S”形、和“斜线”形,总结出每种颜料反射光谱曲线的特征。研究了影响颜料反射光谱的因素,包括颜料饱和度、颜料粒度、颜料中的粘接剂、颜料底层材料、颜料表面保护材料等。建立了光导纤维反射光谱分析彩绘颜料的基本方法,即通过比较文物颜料样品和标准颜料的反射光谱曲线的形状、特征反射峰或一阶导数峰,实现对彩绘文物颜料的鉴定。
     采用自行研制的仪器对重庆大足千手观音、西汉彩俑、西安市长安县墓葬壁画等文物颜料进行了无损鉴定。通过用XRF、XRD方法进行验证,表明光导纤维反射光谱仪用于颜料分析鉴定结果是准确、可靠的。
     通过表征光老化过程中实验材料的反射光谱、红外光谱、显微分析、接触角、硬度等各项性能,系统地探讨了4类8种常用文物保护材料在老化降解中所产生的颜色、分子结构、表面形态、亲水性能、物理强度的变化,对这些材料的耐光老化性能进行了全面评估,并推导出降解机理。这4类8种材料分别是:①聚氨酯类:包括TDI型聚氨酯、MDI型聚氨酯、HDI型聚氨酯;②丙烯酸树脂:包括丙烯酸清漆、Primal AC 33、B72;③有机硅;④环氧树脂。实验所选择的人工加速老化光源是UVB紫外灯。实验结果表明,在所考察4类材料中,丙烯酸树脂较其它3类材料具有更优异的耐光老化性能,特别是Primal AC 33和B72,作为最佳的文物保护和修复材料值得大力推广、普遍使用。
     首次将UV-326、UV-327、UV-328、UV-531和UV-P紫外线吸收剂用于B72、MDI型聚氨酯和环氧树脂的改性研究,通过物理共混将紫外线吸收剂引入树脂体系,以提高现有文物保护材料的耐光老化性能。实验表明,这些紫外线吸收剂性能稳定,70h紫外光辐照后的损失不超过1.0%。通过对常用文保材料添加紫外线吸收剂改性,光老化后其颜色、红外光谱、硬度、失重、可逆性都有所改善,紫外线吸收剂的最佳浓度为0.5%~3%。综合多项考察指标,选择出3体系的最佳改性方案分别是3%UV327改性B72体系、0.25%UV327+0.25%UV531改性MDI型聚氨酯体系或0.25%UV328+0.25%UV531改性MDI型聚氨酯体系、3%UV328改性环氧树脂体系。
The main job in color relics studies and protection is to identify pigments and toconsolidate surfaces.
     Ideal relics analytical techniques should be non-destructive because cultural heritages havethe special characteristic of un-rebirth. Nowadays some commonly used analytical methods,such as XRD and XRF etc., need to take some samples from relics or need to prepare propersamples for identification, which brings about some damages to relics absolutely. Some kindsof fiber optics reflectance spectrophotometers have been used to identify pigments abroad, butit is difficult for the most Chinese museums and cultural relics departments to afford as theseinstruments are too expensive.
     Another problem to be solved urgently for color relics is surface protection andconsolidation. Although more and more organic polymers have been applied to the field ofrelics protection, there is so little systemic, scientific and complete research on materials'stability that it is blind and unilateral to choose relics protection materials.
     In order to meet the special demands of protecting relics, taking into account the situationin China, we have refitted a domestic instrument to a fiber optics reflectancespectrophotometer with low price and good function to identify pigments without any damage.With our self-made fiber optics reflectance spectrophotometer, we analyzed composition ofpigments on color relics in Dazu Stone Sculpture Area, Chongqing and Yangling Museum ofHan Dynasty. On the basis of investigating their stability, we have improved theanti-photoageing property of these color relics protection materials through addingUV-absorbers by a physical mix.
     In this thesis, we have developed a simple fiber optics reflectance spectrophotometer byrefitting from a domestic spectrophotometer, model 72G. It consists of a tungsten lamp, amonochromator, an optical fiber, a shielding chamber, a photomultiplier tube, a reading meter,a high voltage supply source. Here, (1) to assure non-destructive measurement a glassbifurcated optic fiber is used to transfer light. (2) this spectrophotometer can detect a weakreflectance signal as a photomultiplier tube substitutes for a photoelectric cell as the detector. (3) a metal shielding chamber has been designed to eliminate the light interference fromoutside, so it enhances accuracy of the measurement. Compared with Perkin-Elmer Lambda17 UV-Vis spectrophotometer, our instrument with stable performance has qualified forpigment identification on relics. Through analysis on a great variety of Chinese ancientpigments, we have deduced three reflectance spectrum shapes of pigments, bell-shaped,s-shaped and oblique line-shaped. Also, we have found out the reflectance spectrumcharacteristics of every pigment and the factors affecting on the reflectance spectra of thepigments, including the saturations, the grain sizes of the pigments, the adhesives in them,their underlying layers and the protection materials over their surfaces and so on. A basicanalytical method is established, in which we identify pigments on color relics by comparingtheir shapes of reflectance spectra and positions of reflectance peaks or first derivative peakswith those of related standard pigments.
     With our self-developed spectrophotometer, pigments on One Thousand Hand Buddha inDazu Chongqing, color pottery figurines of Han dynasty, frescoes from the tombs in Chang'anCounty etc. have been identified. It has been indicated that the results of relics pigments withfiber optical reflectance spectroscopy are accurate and reliable, verified by XRD and XRF.
     Eight polymeric materials'changes on color, molecular structures, surface configurations,hydrophilicity, physical intensities have been investigated systematically by diffusereflectance spectroscopy, FTIR spectroscopy, microscopical analysis, contact angle, hardnessduring UV-irradiation. According to these data, the anti-photodegradation abilities areassessed and the degradation mechanisms are also deduced. These relics protection materialsbelong to four kinds. They are:①polyurethanes, including TDI-polyurethane,MDI-polyurethane and HDI-polyurethane;②poly (acrylic acid)s, including poly (acrylic acid)varnish, Primal AC 33 and B72;③the organic-silicon;④the epoxy-resin. In our experiments,an UVB-lamp was selected as artificial weathering source. It has been showed that amongthese four kinds of materials poly (acrylic acid)s, especially Primal AC 33 and B72, as the bestrelics protection material, has the best anti-photodegradation property and is valuable to useextensively.
     In order to enhance the anti-photodegradation of these relics protection materials, B72,MDI-polyurethane and the epoxy-resin have been modified firstly with the UV-absorbers, UV-326, UV-327, UV-328, UV-531 and UV-P by a physical mix.
     The results have indicated that these UV-absorbers are stable with the weight loss ofmore less 1.0% under UV-irradiation for 70h. The characteristics of color, FTIR spectra,hardness, weight loss and reversibility have all been improved after the modification. The bestconcentration of UV-absorbers is 0.5%~3%. Considered above factors comprehensively, theoptimum plans about the modification of three systems have been selected, that is B72modified with 3%UV-327, MDI-polyurethane modified with 0.25% UV-327 and 0.25%UV-531 or 0.25% UV-328 and 0.25% UV-531, the epoxy-resin modified with 3% UV-328.
引文
[1] Matheus P F, Andr'eia Sabadin Leandro M S. Prediction of drag dissolution profiles from tablets using NIR diffuse reflectance spectroscopy: a rapid and nondestructive method.Journal of Pharmaceutical and Biomedical Analysis, 2005, 39: 17-21.
    [2] Wilson R H, Tapp H S. Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods. Trends in Analytical Chemistry,1999,18(2): 85-93.
    [3] Heise H M, Kuckuk R, Bereck A. Mid-infrared diffuse reflectance spectroscopy of textiles containing finishing auxiliaries. Vibrational Spectroscopy, 2004, 35: 213-218.
    [4] Heise H M, Kuckuk R, Damm U. Quantitative diffuse reflectance infrared spectroscopy of cotton fabrics treated with a cyclodextrin derivative finishing auxiliary. Journal of Molecular Structure, 2005, 744-747: 877-880.
    [5] Palomba E. Infrared reflectance spectra of martian analogues. Phys.Chem.Earth(C), 1999,24(5): 609-613.
    [6] Moliner-Martinez Y, Campins-Falc'o P. Detector supports: application to aliphatic amines in wastewater. Talanta, 2005, 65: 217-222.
    [7] Amy B J, Alexis G C. Chemical durability of commercial silicate glasses. I. Material Characterization. Journal of Non-Crystalline Solids, 2001,281:6-24.
    [8] Krivacsy Z, Barcza T, Geleneser A. FTIR study of atmospheric aerosols. Journal of Aerosol Science, 1997,28: (S): 113-114.
    [9] Gotardo M A, Gigante A C, Pezza L. Determination of furosemide in pharmaceutical formulations by diffuse reflectance spectroscopy. Talanta, 2004, 64: 361-365.
    [10]Agatonovic-Kustrin S, Beresford R, Razzak M. Determination of enantiomeric composition of ibuprofen in solid state mixtures of the two by DRIFT spectroscopy. Analytica Chimica Acta, 2000,417: 31-39.
    [11]Blanco M, Coello J, Eustaquio A. Analytical control of pharmaceutical production steps by near infrared reflectance spectroscopy. Analytica Chimica Acta, 1999, 392: 237-246.
    [12] Gregory M P, Nirmala R. Diagnosis of breast cancer using optical spectroscopy. Medical Laser Application, 2003, 18: 233-248.
    [13] Frank K, Rickard L, Henrik E. Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma. Urology, 1999, (2): 342-345.
    [14] Mike J. A, Firas A, Suresh B. Prediction of oil yield from oil shale minerals using diffuse reflectance infrared Fourier transform spectroscopy. Fuel, 2005, 84: 1986-1991.
    [15] Andr'es J M, Bona M T. Analysis of coal by diffuse reflectance near-infrared spectroscopy. Analytica Chimica Acta, 2005, 535: 123-132.
    [16] Belton P S, Kemsley E K, McCann M C. The identification of vegetable matter using Fourier Transform Infrared Spectroscopy. Food Chemistry, 1995, 54(4): 437-441.
    [17] Ramaier N, Fortunato S. Paper tape analyser for gases based on optical fibers. Analyst, 1988, 113: 661-663.
    [18] 王丽琴,王晓琪,马永强.纸带.光纤技术对硫化氢气体测量的初探.分析试验室,2002,21(4):49-51.
    [19] Missori M, Righini M, Selci S. Optical reflectance spectroscopy of ancient papers with discoloration or foxing. Optics Communications, 2004, 231: 99-106.
    [20] Kautek W, Pentzien S, Conradi A. Diagnostics of parchment laser cleaning in the near-ultraviolet and near-infrared wavelength range: a systematic scanning electron microscopy study. Journal of Cultural Heritage, 2003, (4s): 179-184.
    [21] Song W L, Burtrand I L, Larry A M. Characterization of carbonate on BaTiO_3 ceramic powders. Materials Research Bulletin, 2000, 35:1303-1312.
    [22] Stuart B H, Forbes S, Dent B B. Studies of adipocere using diffuse reflectance infrared spectroscopy. Vibrational Spectroscopy, 2000, 24: 233-242.
    [23] Dumont N, Depecker C. Depth profiling analysis of polymer film using diffuse, Reflectance Infrared Fourier Transform Spectroscopy. Vibrational Spectroscopy, 1999, 20: 5-14.
    [24] Puurunen R L, Beheydt B G, Weckhuysen B M. Monitoring chromia/alumina catalysts in situ during propane dehydrogenation by optical fiber UV-Visible diffuse reflectance spectroscopy. Journal of Catalysis, 2001, 204: 253-257.
    [25] Almeida E, Balmayoro M, Santos T. Some relevant aspects of the use of FTIP, associated techniques in the study of surfaces and coatings. Progress in Organic Coatings, 2002, 44:233-242.
    [26] Gao X T, Wachs I E. Structural characteristics and reactivity properties of highly dispersed Al_2O_3/SiO_2 and V_2O_5/Al_2O_3/SiO_2 catalysts. Journal of Catalysis, 2000,192: 18-28.
    [27] Li X Y, Quan X, Kutal C. Synthesis and photocatalytic properties of quantum confined titanium dioxide nanoparticle. Scripta Materialia, 2004, 50: 499-505.
    [28] Ferretto L, Glisenti A. Study of the surface acidity of an hematite powder. Journal of Molecular Catalysis A: Chemical, 2002, 187: 119-128.
    [29] Nijnatten P A V. An automated directional reflectance/ transmittance analyser for coating analysis. Thin Solid Films, 2003,442(1-2): 74-79.
    [30] Allen N S, Edge M, Ortega A. Factors affecting the interfacial adsorption of stabilisers on to titanium dioxide particles (flow microcalorimetry, modelling, oxidation and FTIR studies): Nano versus pigmentary grades. Dyes and Pigments, 2006, 70(3): 192-203.
    [31] Orlando A, Picollo M, Radicati B. Principal component analysis of near-infrared and visible spectra: an application to a XIIth century Italian work of art. Applied Spectroscopy,1995,49: 459-465.
    [32] Bacci M, Picollo M. Non-destructive spectroscopic detection of Cobalt(II) in paintings and glass. Studies in Conservation, 1996,41: 1361-44.
    [33] Bacci M, Baronti S, Casini H. Non-Destructive spectroscopic investigations on paintings using optical fibers. Material Research Society Symposium Proceeding, 1992, 267:265-283.
    [34] Bacci M, Baldini F, Carla R. A color analysis of the Brancacci Chapel frescoes. Applied Spectroscopy, 1991,45: 26-31.
    [35] Bacci M. Fibre-optics applications to works of art. Sensors and Actuators B, 1995, 29:190-196.
    [36] Bacci M, Casini A, Cucci C. Non-invasive spectroscopic measurements on the II ritratto della figliastra by Giovanni Fattori: identification of pigments and colourimetric analysis.Journal of Cultural Heritage, 2003, 4: 329-336.
    
    [37] Bacci M, Fabbri M, Picollo M. Non-invasive fiber optic Fourier transform-infrared reflectance spectroscopy on painted layers identification of materials by means of principal component analysis and Mahalanobis distance. Analytica Chimica Acta, 2001, 446: 15-21.
    [38] Dupuis G, Elias M, Simonot L. Pigment identification by fiber-optics diffuse reflectance spectroscopy. Applied Spectroscopy, 2002, 56(10): 1329-1336.
    [39] Wang L, Dang G,Wang X. Analysis and Protection of One Thousand Hand Buddha in Dazu Stone Sculptures. Chinese Journal of Chemistry, 2004, 22(2): 172-176.
    [40] Wang L, Zheng L, Dang G. Spectrum analysis of the colored pottery figurines from Yangling tombs of the Han dynasty. Analytical Letters, 2000, 33(8): 1655-1663.
    [41] 郑利平,王丽琴,李库.汉阳陵彩绘陶俑颜料成分及其病因探讨.考古与文物,2000,(3):80-84.
    [42] Bullock L. Reflectance spectrophotometry for measurement of color change. Natl. Gallery Tech. Bull., 1978, (2): 49-55.
    [43] Saunders D. The measurement of color change in paintings. Eur. Spectrosc. News, 1986, 67: 10-18.
    [44] Bacci M, Orlando A, Picollo M. Color analysis of historical red lakes using non-destructive reflectance spectroscopy. PACT (Athens Greece), 2000, 58: 21-35.
    [45] Bacci M, Picollo M, Porcinai S. Evaluation of the museum environmental risk by means of tempera-painted dosimeters. Thermochimica Acta, 2000, 365: 25-34.
    [46] Bacci M. Principal component analysis of near-infrared spectra Of alteration products in calcareous samples: an application to works of Art. Chemometrics and Intelligent Laboratory Systems, 1997, 39(1): 115-121.
    [47] Bacci M, Baldini F, Carla R. Color analysis of the bancci chapel frescos: part Ⅱ. Applied Spectroscopy, 1993, 47: 399-402.
    [48] 张志军.秦始皇兵马俑文物保护研究.西安:陕西人民教育出版社,1998:4.
    [49] 张秉坚,尹海燕,铁景沪.石质文物表面防护中的问题和新材料.文物保护与考古科学,2000,12(2):1-4.
    [50] 周双林.文物保护有机高分子材料及要求.四川文物,2003,(3):94-96.
    [51] Chiantore O, Lazzari M. Photo-oxidative stability of paraloid acrylic protective polymers. Polymer, 2001, 42: 17-27.
    [52] Borgia G C, Bortolotti V, Camaiti M. Performance evolution of hydrophobic treatments for stone conservation investigated by MRI. Magnetic Resonance Imaging, 2001, 19:513-516.
    [53] Melo M J. Photodegradation of acrylic resins used in the conservation of stone. Polymer Degradation and Stability, 1999, 66: 23.
    [54] Charies M S. The use of epoxy resins in fiecd projects for stone stabilization. Material Research Society Symposium Proceeding, 1992,267: 925
    [55] U.S. Patent. 4113665.
    [56] Baer N S, Senthlage R. Saving our architectural heritage (the conservation historic stone structures). Chichester: John Wiley & Sons, 1996.
    [57] Jacques L F E. Accelerated and outdoor/natural exposure testing of coatings. Progress in Polymer Science, 2000,25,1337-1362.
    [58] Martin J W, Nguyen T, Byrd E. Relating laboratory and outdoor exposures of acrylic melamine coatings I. Cumulative damage model and laboratory exposure apparatus. Polymer Degradation and Stability, 2002, 75: 193-210.
    [59] Liu M, Horrocks A R. Effect of Carbon Black on UV stability of LLDPE films under artificial weathering conditions. Polymer Degradation and Stability, 2002, 75: 485-499.
    [60] Brunner S, Richner P, Muller U. Accelerated weathering device for service life prediction for organic coatings. Polymer Testing, 2005,24: 25-31.
    [61] Johnson B W, McIntyre R. Analysis of test methods for UV durability predictions of polymer coatings. Progress in Organic Coatings, 1996, 27: 95-106.
    [62] Decker C, Zahouily K. Photostabilization of polymeric materials by photoset acrylate coatings. Radiation Physics and Chemistry, 2002, 63: 3-8.
    [63] Decker C, Zahouily K. Photodegradation and photooxidation of thermoset and UV-cured acrylate polymers. Polymer Degradation and Stability, 1999, 64: 293-304.
    [64] Brugnara M, Degasperi E. The application of the contact angle in monument protection:new materials and methods, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004,241:299-312.
    [65] Konig U, Nitschke M, Pilz M. Stability and ageing of plasma treated poly (tetrafluoroethylene) surfaces. Colloids and Surfaces B: Biointerfaces, 2002,25: 313-324.
    [66] Larena Ay Jimenez de Ochoa S. Use of different surface analysis techniques for the study of the photo-degradation of a polymeric matrix composite. Applied Surface Science, 2004,238: 530-537.
    [67] Allen N S, Edge M, Ortega A. Degradation and stabilization of polymers and coatings:nano versus pigmentary titania particles. Polymer Degradation and Stability, 2004, 85:927-946.
    
    [68]Soto-Oviedo M A, De Paoli M A. Photo-oxidative degradation of poly(epichlorohydrin-co-ethylene oxide) elastomer at 254nm. Polymer Degradation and Stability, 2002, 76: 219-225.
    [69] Carretti E, Dei L. Physicochemical characterization of acrylic polymeric resins coating porous materials of artistic interest. Progress in Organic Coatings, 2004,49: 282-289.
    [70] Bauer D R, Mielewski D F, Gerlock J L. Polymer Degradation and Stability, 1992, 38: 57.
    [71] Wu K H, Wang Y R, Hwu W H. FTIR and TGA studies of poly (4-vinylpyridine-co-divinylbenzene) - Cu(II) complex. Polymer Degradation and Stability, 2003, 79:195-200.
    [72] Irusta L, Fernandez-Berridi M J. Photooxidative behaviour of segmented aliphatic polyurethanes. Polymer Degradation and Stability, 1999, 63: 113-119.
    [73] Jin C, Christensen P A, Egerton T A. Rapid measurement of polymer photo-degradation by FTIR spectrometry of evolved carbon dioxide. Polymer Degradation and Stability 2006,91: 1086-1096.
    [74] Guignot C, Betz N, Legendre B. Degradation of segmented poly(etherurethane) Tecoflex induced by electron bean irradiation: characterization and evaluation. Nuclear Instruments and Methods in Physics Research B, 2001,185: 100-107.
    [75] Decker C, Zahouily K. Photodegradation and photooxidation of thermoset and UV-cured acrylate polymers. Polymer Degradation and Stability, 1999,64: 293-304.
    [76] Lazzari M, Chiantore O. Thermal-ageing of paraloid acrylic protective polymers. Polymer,2000,41:6447-6455.
    [77] Wilhelm C, Gardette J L. Infrared analysis of the photochemical behaviour of segmented polyurethane: 1.Aliphatic poly (ester-urethane). Polymer, 1997, 38(16): 4019-4031.
    [78] Chiem L T, Huynh L, Ralston J. An in situ ATR-FTIR study of polyacrylamide adsorption at the talc surface.Journal of Colloid and Interfacs Science, 2006,297:54-61.
    [79] Gulmine J V, Janissek P R, Heise H M. Degradation profile of polyethylene after artificial accelerated weathering. Polymer Degradation and Stability, 2003, 79: 385-397.
    [80] Pamula E, Blazewicz M, Paluszkiewicz C. FTIR study of degradation products of aliphatic polyesters-carbon fibers composites. Journal of Molecular Structure, 2001, 596: 69-75.
    [81] Philippe L, Sammon C, Lyon S B. An FTIR/ATR in situ study of sorption and transport in corrosion protective organic coatings: Paper 2. The effects of temperature and isotopic dilution. Progress in Organic Coatings, 2004, 49:315-323.
    [82] Lu Y F, Han L, Jeffrey B C. Chemical sensors based on hydrophobic porous sol-gel films and ATR-FTIR spectroscopy. Sensor and Actuators B, 1996, 35-36:517-21.
    [83] Motyakin M V, Schlick S. Thermal degradation at 393K of poly (acrylonitrile-butadiene-styrene) (ABS) containing a hindered amine stabilizer: a study by 1D and 2D electron spin resonance imaging (ESRI) and ATR-FTIR. Polymer Degradation and Stability, 2002, 76: 25-36.
    [84] Monney L, Belali R, Vebrel J. Photochemical degradation study of an epoxy material by IR-ATR spectroscopy. Polymer Degradation and Stability, 1998, 62: 353-359.
    [85] Perrin F X, Irigoyen M, Aragon E. Evaluation of accelerated weathering tests for three paint systems: a comparative study of their aging behavior. Polymer Degradation and Stability, 2001, 72:115-124.
    [86] 张俐娜编著.高分子物理近代研究方法.武汉:武汉大学出版社,2003:43-44.
    [87] Chiantore O, Trossarelli L, Lazzari M. Photooxidative degradation of acrylic and methacrylic, polymers. Polymer, 2000, 41:1657-1668.
    [88] McNeill I C, Mohammed M H. A comparison of the thermal degradation behavious of ethylene-ethyl acrylate copolymer, low density polyethylene and poly (ethyl acrylate). Polymer Degradation and Stability, 1995, 48:175-187.
    [89] Tran T A, Said S, Grohens Y. Compared study of cooperativity in PMMA nanocomposites and thin films. Composites: Part A, 2005, 36: 461-465.
    [90] Palmas P, Campion L L, Bourgeoisat C. Curing and thermal ageing of elastomers as studied by ~1H broadband and ~(13)C high-resolution solid-state NMR. Polymer, 2001, 42: 7675-7683.
    [91] Somers A E, Bastow T J, Burgar M I. Quantifying rubber degradation using NMR. Polymer Degradation and Stability, 2000, 70: 31-37.
    [92] Fechine G J M, Rabello M S, Souto-Maior R M. The effect of ultraviolet stabilizers on the photodegradation of poly(ethylene terephthalate). Polymer Degradation and Stability,2002, 75: 153-159.
    [93] Skaja A D, Croll S G. Quantitative ultraviolet spectroscopy in weathering of a model polyester-urethane coating. Polymer Degradation and Stability, 2003, 79:123-131.
    [94] Sionkowska A, Skopinska J, Wisniewski M. Photochemical stability of collagen/poly (vinyl alcohol) blends. Polymer Degradation and Stability, 2004, 83: 117-125.
    [95] Kaczmarek H, Kaminska A, Herk A V. Photooxidative degradation of poly(alkyl methacrylate)s. European Polymer Journal, 2000,36: 767-777.
    [96] Decker C, Biry S, Zahouily K. Photostabilization of organic coatings. Polymer Degradation and Stability, 1995,49: 111-119.
    [97] Wang W Z, Qu BJ. Photo- and thermo-oxidative degradation of photocrosslinked ethylene-propylene-diene terpolymer. Polymer Degradation and Stability, 2003, 81:531-537.
    [98] Benseddik E, Makhlouki M, Bernede J C. XPS studies of environmental stability of polypyrrole-poly(vinyl alcohol)composites. Synthetic Metals, 1995, 72: 237-242.
    [99] Rjeb A, Letarte S, Tajounte L. Polypropylene natural aging studied by X-ray photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2000,107:221-230.
    [100] Balkova R, Zemek J, Cech V. XPS study of siloxane plasma polymer films. Surface and Coatings Technology, 2003,174-175: 1159-1163.
    [101] Dole P, Chauchard J. Thermooxidation of poly(ethylene-co-methyl acrylate) and poly (methyl acrylate) compared to oxidative thermal aging of polyethylene. Polymer Degradation and Stability, 1996, 53: 63-72.
    [102] Edreira M C, Feliu M J, Ferna'ndez-Lorenzo C. Spectroscopic analysis of roman wall paintings from Casa del Mitreo in Emerita Augusta. Me'rida, Spain. Talanta, 2003, 59:1117-1139.
    
    [103]Edreira M C, Feliu M J, Ferna'ndez-Lorenzo C. Roman wall paintings characterization from Gripta del Museo and Alcazaba in Merida (Spain): chromatic,energy dispersive X-ray flurescence spectroscopic, X-ray diffraction and Fourier transform infrared spectroscopic analysis. Analytica Chimica Acta, 2001, 434:331-345.
    [104] Leona M, Winter J.Fiber optics reflectance spectroscopy: a unique tool for the investigation of Japanese paintings. Studies in Conservation, 2001, 46: 153-162.
    [105] 王丽琴,党高潮,郑利平.一种简易光导纤维反射光谱仪的研制及其在文物颜料鉴定中的应用.分析化学,2000,28(4):513-517.
    [106] Wang L Q, Dang G C, Wang X Q. Analysis and Protection of One Thousand Hand Buddha in Dazu Stone Sculptures. Chinese Journal of Chemistry, 2004, 22(2): 172-176.
    [107] Wang L, Zheng L, Dang G. Spectrum analysis of the colored pottery figurines from Yangling tombs of the Han dynasty. Analytical Letters, 2000, 33(8): 1655-1663.
    [108] Wang L, Dang G, Zheng L. Studies on the identification on pigments on relics and the analysis of color changes by fiber optical reflectance. Analytical Letters, 2001, 34(13):2403-2414.
    [109] Wang L, Liang Q, Dang G. A study on the protection to relics and the related problems with diffuse reflectance spectroscopy. Spectrochimica Acta Part A, 2005, 61:1021-1024.
    [110] Coskun M, Demirelli K, Erol I. Thermal degradation of poly [2-(3-aryl-3methylcyclobutyl)-2-hydroxyethyl methacrylate]. Polymer Degradation and Stability, 1998, 61:493-497.
    [111] Zulfiqar S, Masud K, Siddique B. Thermal degradation of phenyl methacrylate-styrene coplymers. Polymer Degradation and Stability, 1996, 52:293-299
    [112] Hemvichiana K, Laobutheeb A, Chirachanchaib S. Thermal decomposition processes in polybenzoxazine model dimers investigated by TGA-FTIR and GC-MS. Polymer Degradation and Stability,2002, 76:1-15.
    [113] Levchik S, Camino G, Luda, M P. Epoxy resins cured with aminophenylmethylphosphme oxide-Ⅱ.Mechanism of thermal decomposition. Polymer Degradation and Stability, 1998, 60:169-183.
    [114] SchuEtz E, Berger F, Dirckx O. Study of degradation mechanisms of a paint coating during an artificial aging test. Polymer Degradation and Stability, 1999, 65:123-130.
    [115] Demirelli K, Coskun M, Kaya E. A detailed study of thermal degradation of poly(2-hydroxyethyl methacrylate). Polymer Degradation and Stability, 2001, 72:75-80.
    [116] 马清林,苏伯民,胡之德.中国文物分析鉴定与科学保护,北京:科学出版社,2001:233.
    [117] Scalarone D. Ageing behaviour and analytical pyrolysis characterisation of diterpenic resins used as art materials: Manila copal and sandarac. Journal of Analytical and Applied Pyrolysis, 2003, 68-69:115.
    [118] Esmeralda Lo'pez-Ballester, Teresa Dome' nech-Carbo M, Vicente Gimeno-Adelantado J. Study by FT-IR spectroscopy of ageing of adhesives used in restoration of archaeological glass objects. Journal of Molecular Structure, 1999, (482-483): 525-531.
    [119] Cocca M, Arienzo L D, Orazio L D. Polyacrylates for conservation: chemico-physical properties and durability of different commercial products. Polymer Testing, 2004, 23: 333-342.
    [120] D'Orazio L, Gentile G, Mancarella C. Water-dispersed polymers for the conservation and restoration of Cultural Heritage: a molecular, thermal, structural and mechanical characterization. Polymer Testing, 2001, 20: 227-240.
    [121] Toniolo L, Poli T, Castelvetro V. Tailoring new fluorinated acrylic copolymers as protective coatings for marble. Journal of Cultural Heritage, 2002, 3:309-316.
    [122] Bacci S, Melo M J. Correlating natural ageing and Xenon irradiation of Paraloid B72 applied on stone. Polymer Degradation and Stability, 2003, 80: 533-541.
    [123] Khabbaz F, Albertsson A C, Karlsson S. Trapping of volatile low molecular weight photoproducts in inert and enhanced degradable LDPE. Polymer Degradation and Stability, 1998, 61:329-342.
    [124] Mahon A, Kemp T J, Coates R J. Thermal and photodegradation of polysulfide pre-polymers: products and pathways. Polymer Degradation and Stability, 1998, 62:15-24.
    [125] Ravat B, Gschwind R, Grivet M. Nuclear Instruments and Methods. Physics Research B, 2000, 160: 499.
    [126] Ravat B, Gschwind R, Grohens Y. Electron irradiation of polyesterurethane: study of chemical and structural modifications using FTIR, UV spectroscopy and GPC. Radiation Measurements, 2001, 34:31-36.
    [127] McCarthy S J, Gordon F. In-vivo degradation of polyurethanes: transmission-FTIR microscopic characterization of polyurethanes sectioned by cryomicrotomy. Biomaterials, 1997, 18: 1387-1409.
    [128] Schoonover J R, Dattelbaum D M, Osbom J C. Spectrochim. Pressure-dependent Fourier transform infrared spectroscopy of a poly (ester urethane). Spectrochim.Acta Part A, 2003, 59: 309-319.
    [129] Schoonover J R, Thompson D G, Osbom J C. Infrared linear dichroism study of a hydrolytically degraded poly(ester urethane). Polymer Degradation and Stability, 2001, 74: 87-96.
    [130] Posplsil J, Nespurek S. Photostabilization of coatings. Mechanisms and performance. Progress in Polymer Science, 2000, 25: 1261-1335.
    [131] Allen N S, Edge M, Ortega A. Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilisers on the photooxidative stability of water based acrylic andisocyanate based acrylic coatings. Polymer Degradation and Stability, 2002, 78: 467-478.
    [132] Dearth M A. The LC/MS/MS characterization of photolysis products of benzotriazole-based ultraviolet absorbers. Polymer Degradation and Stability, 1995, 48: 111.
    [133] McGarry P. A dramatic solvent effect on high-yield pulp yellowing inhibition for a benzophenone-based ultraviolet absorber. Journal of Photochemistry and Photobiology A: Chemistry 2002, 151: 145-155.
    [134] 《化工百科全书》编辑委员会,《化工百科全书》编辑部编.树脂与塑料:《化工百科全书》专业卷.北京:化学工业出版社,2003:235-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700