矿用自卸汽车动力性、燃油经济性和平顺性虚拟试验技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合企业合作项目“矿用自卸汽车虚拟试验技术研究”和江苏省教育厅自然科学基金项目“矿用自卸汽车动力性和经济性的虚拟试验研究”(06KJD440026),论述了矿用自卸汽车虚拟试验的研究内容,构建了虚拟试验功能框架,建立了机械传动和液力机械传动矿用自卸汽车动力传动系各总成模型、工况循环模型、整车控制模型,并将各模型封装成整车模型。面向用户使用环境,采用转速和转矩为控制参数的两参数换挡规律,以前向仿真和后向仿真相接合的仿真方法,开发矿用自卸汽车性能仿真软件。该软件能虚拟试验指定工况循环的车辆跟随性能、车辆动力性和燃油经济性,仿真车辆驱动链之间的工作,可对各部件功率流进行分析。对液力机械传动和机械传动两种类型的矿用自卸汽车进行动力性和燃油经济性的虚拟试验,并与实车试验结果进行了对比,虚拟试验结果和实车测试结果吻合较好。以燃油经济性为优化目标,用遗传算法优化变速箱各挡传动比。考虑车架弹性,建立了整车刚-弹耦合动力学模型,利用该模型进行平顺性虚拟试验,并与实车试验结果进行了对比,提取了车架关键位置的动应力曲线,为研究车架的疲劳寿命提供了条件。基于计算机仿真技术的矿用自卸汽车动力性、燃油经济性和平顺性虚拟试验,缩短了新产品开发周期,降低了开发成本。本文的研究成果已在国内矿用自卸汽车生产的骨干企业中应用,为矿用自卸汽车的设计提供了依据。
Power performance, fuel economy and ride comfort are the main performances of mining dump truck that should be analyzed and tested when all the new vehicles are developed. The traditional method is to create a physical prototype on which various testing equipments are installed to do prototype test. Only after the actual prototype testing, the power performance, fuel economy and ride comfort of vehicle can be assessed according to existing regulations and standards. The deficiencies of the design can be improved according to the test results, then further test can be done. So the new product development period is long and the cost of test is high. Based on the above issues, this dissertation studied the virtual test of power performance, fuel economy and ride comfort of mining dump truck. It also studied and established the power-train model of mine dump truck, developed a mine dump truck performance simulation software for user-oriented environment, and based on this software it constructed the power-train parameter optimization method for user-oriented environment.
     Considering the frame elasticity, using the theory of elastomeric dynamics, established the rigid-elastic coupling dynamics model of the vehicle, using this model, not only the ride comfort of mine dump truck can be virtual tested but also the dynamic stress curve of the key location of frame can be extracted, this lays a foundation for the study of the fatigue life of frame.
     In light of the major study contents mentioned above, this dissertation has done some specific works as follows:
     First, through analyzing the research on virtual prototype technology, and the methods of virtual test of power performance, fuel economy and ride comfort of mining dump truck , building the platform for research on mining dump truck virtual test simulation based on virtual prototype technology.
     Second, it studied and established the power-train model of mine dump truck, including engine model, subsidiary system power distribution model, clutch model, Torque-converter model, gear-box model, drive axle model, wheel model, traveling resistance mathematical model, drive cycle model and vehicle control model, etc, the vehicle model can be gotten by encapsulating all the models above. Using two parameters shift law, the control parameters of which are the rotate speed and the torque of the engine, based on the graphic user interface design environment, developed the mine dump truck performance simulation software for user-oriented environment. The software can virtual test power performance and fuel economy of mine dump truck, it can also virtual test follow performance of specified drive cycle, moreover it can simulate the work between drive chain of the vehicle and analyze the power distribution of every components.
     Third, it did test on power performance and fuel economy of mine dump truck, the major test contents are as follows: consign engine manufacturer did engine performance test; did test on the position of the center of gravity and on sliding the results of which can be used to calculate the rolling resistance coefficient and the upwind drag coefficient; did the maximum speed test and the accelerated performance test; chose the direct block to do fuel consumption under one certain speed; joint and consigned the user of mine dump truck do the actual use of the fuel consumption test; did virtual test on power performance and fuel economy of mine dump truck, contrasted the results to the actual test results, this verifies the correctness of the power performance and fuel economy simulation model is correct. did virtual test on power performance and fuel economy of mine dump truck,which power-train model including torque-converter.
     Fourth, it designed optimization method for user-oriented environment, the user could choose drive cycle to optimize the power-train parameter based on the working conditions of mine dump truck, the optimization targets is fuel economy and the optimization variables are the gear-box transmission ratio from Part I to VIII block which can be optimized using genetic algorithm (GA). Virtual test results prove that the final result of the optimization program is better than the original design. It also analyzed the parameter sensitivity the computation and analysis results show that the parameter sensitivity order of the power performance and fuel economy of mine dump truck from the biggest to the smallest is drive efficiency, rolling resistance coefficient and air resistance coefficient. Fifth, using a 3D modeling software the name of which is UG to establish the physical model of the frame and got its finite element model in ANSYS, create the elastomer neutral file of the frame and put the file into ADAMS. Established the 3D geometric models of the components on the frame, front axle, rear axle, crossbeam and A-frame and put these models into ADAMS. Established the ADAMS model of tyre, the front and rear suspension, the rigid-elastic coupling dynamics model of the vehicle can be established on the base of this. Using harmonic superposition method to generate C-class road model, established a triangular block-pulse input model according to the pulse input regulations in the vehicle ride comfort test method in GB/T5902-1986.
     Sixth, it tested the ride comfort at the speed of 10km/h,20km/h,30km/h and 40km/h on the random road. Using the rigid-elastic coupling dynamics model of the vehicle, the acceleration on the fore-and-aft, right-and-left and vertical direction of the driver seat can be virtual tested on the C-class road. It tested the ride comfort on the step road at the speed of 10km/h and the ride comfort was also virtual tested on the triangular block pulse excitation road. The results of the virtual test and the actual test on the C-class road and the triangular block pulse excitation road show that the rigid-elastic coupling dynamics model of the vehicle in this paper is correct. It also did dynamics simulation on the C-class road and the triangular block pulse excitation road by the use of established rigid-elastic coupling dynamics model of mining dump truck, then the dynamic stress curve of the key location of frame can be extracted, this lays a foundation for the study of the fatigue life of frame.
     Virtual test of power performance, fuel economy and ride comfort of mining dump truck which is based on computer simulation technology and the dynamic stress simulation curve of the frame on the basis of virtual test of ride comfort shorten the time and ruduce the cost of the developmen of new products. The research results of this paper have been applied in a cooperative enterprise production design, they provide a basis for mine dump truck design.
引文
[1] 胡亚庄.简明汽车知识词典[M].北京:北京理工大学出版社,2001,41-42
    [2] 奚树才,李晓春.国产矿用自卸汽车的发展前景[J].中国水泥.2001,(1): 69-71
    [3] 吴植民.汽车构造(下册)[M]. 北京:人民交通出版社(第2版),1983,1-2
    [4] 洪炳熔,蔡则苏,唐好选.虚拟现实及其应用[M].北京:国防工业出版社,2005,5-10
    [5] D. Foley. Interfaces for Advanced Computing [J]. Scientific American, 1987. 257(4):127-135
    [6] 邹湘军, 孙健, 何汉武, 郑德涛.虚拟现实技术的演变发展与展望.系统仿真学报,2004. 16 (9): 1905-1909
    [7] Anon. Largest Mining Truck Challenges Part-size Variability [J]. Control Engineering, 2001,48:19-25
    [8] Slabber, Martin. Local Design of Wheeled Equipment for the Mining Industry [J]. South African Mechanical Engineer, 1988,10138(10):6-15
    [9] 张文明,杨耀东.非公路自卸汽车[J].金属世界.2003,(6):15-19
    [10] 王国彪.国外矿用汽车的现状与发展(Ⅰ)——大型运输汽车[J].矿山机械.1999,(12):6-10
    [11] 刘贤喜.机械系统虚拟样机仿真软件的实用化研究[D].博士学位论文.北京:中国农业大学,2001
    [12] 刘廷安.矿业骄子——超大型矿用汽车[J].国外金属矿山,2000,(5):36-43
    [13] 王国权.虚拟试验技术[M].北京:电子工业出版社,2004,2-3
    [14] 阎雪冬.轮轨/磁浮动车组虚拟样机若干关键技术研究与应用[D].博士学位论文. 大连:大连交通大学,2005
    [15] Tseng M M,Jianxin Jiao,etal.A Framework of Virtual Design for Product Customization. Proceedings of IEEE Intal Conference on Emerging Technologies and Factory Automation[C],1997
    [16] http://www.lmsintl.com/corporate
    [17] Stefan Hass.Cooperative Working on Virtual Prototype. Proceedings of Imech Conference if IP Workshop on VP[C], 1994
    [18] Fan Dai,Wolfgang Felger,Martin Gobel.Applying Virtual Reality to Electronic Prototypeing-Concept and First Results:Virtual Prototying: Virtual environments and the product design process[C],Chapman and Hall Press,1995
    [19] Alan B. Craig著.Understanding Virtual Reality: Interface, Apllication, and design[M].魏迎梅等译.北京: 电子工业出版社,2004:2-16
    [20] 任卫群.车—路系统动力学中的虚拟样机[M].北京:电子工业出版社,2005,1-9
    [21] 王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002,2-4
    [22] K.-H.,P.-S.Tang.Integration of design and manufacturing for structural shape optimization. Advances in Engineering Softwaer. 2001,(32):555-567
    [23] 熊光楞,郭斌,陈晓波.协同仿真与虚拟样机技术[M].北京:清华大学出版社,2004, 16-18
    [24] 郭孔辉,丁海涛,刘溧.汽车ABS 混合仿真试验台的开发与研究[J].中国机械工程,2000,11(12) :14-17
    [25] 孙鸿,欧阳明高,杜仲.电控柴油机实时控制仿真系统的试验验证与应用[J].内燃机工程,2000(3):25-28
    [26] 吴义虎,侯志祥,申群太.基于神经网络的车用汽油机过渡工况空燃比辨识[J].车用 发动机, 2007,168(2):40-43
    [27] 江发潮,曹正清,陈全世.虚拟试验技术及其在车辆上的应用[J].拖拉机与农用运输车.2004,(4):3-6
    [28] 张旭.机械系统虚拟样机技术研究[D].博士学位论文.北京:中国农业大学,2002
    [29] 朱辉,王丽清,程昌圻.ECU硬件在环仿真系统的构成技术.车用发动机,1998,10(5): 27-29
    [30] Shiau T N , Hwang J L.Generalized Polynomial Expansion Method for Dynamic Analysis of Rotor - Bearing Systems.Transactions of ASME,Journal of Engineering for Gas Turbines and Power,1993,115:209~217
    [31] Ingobert C, Schmid. Focusing Terramechanic Research towards Tools for Terrain Vehicle Development, Proc[C]. l3th International Conference of the ISTVS, Germany, Sep,1999
    [32] Niki C Deliman, Dennis W Maore and M Wendell. Gray Linking Soil Response Modeling and Vehicle Performance for Virtual Environments, Proc.l3th International Conference of the ISTVS, Germany, Sep,1999
    [33] P Chaufour, G Millet and M Hedna. Advanced Modeling of a Heavy Truck Unit-Injector System and Its Aplications in the Engine Design Process[C]. 2004 SAE World Congress Detroit, Michigan March,2004:8-11
    [34] Virtual System Design and Optimization[C]. Annual National Laboratory R&D Meeting, DOE Fuel Cells for Transportation, 1998
    [35] W C Water. General Purpose Automotive Vehicle Performance and Economy Simulator [J]. SAE paper, 720043
    [36] Z M Cik, P N Blumiberg. Simulation of Wide-Open Throtle Vehicle Performance[J]. SAE paper, 780289
    [37] http://www.ctts.nrel.gov/analysis.
    [38] Mechanical Dynamics Inc. ADAMS/Solver Documentation Mechanical Dynamics Inc. ADAMS/View Documentation
    [39] H E Chana, WL Fedewa, J E Mahoney. An Analytical Study of Transmission Modifications as Related to Vehicle Performance and Economy [J]. SAE paper, 770418
    [40] L T Wong. Power-train Matching for Better Fuel Economy [J]. SAE paper, 790045
    [41] Lngobert C. Schmid. Focusing Terrameehanie Research towards Tools for Terram Vehicle Development.Pro.13 International Conference of the ISTVS/Munich, Germany/September 4-17,1999:779-806
    [42] Segal L. An Overview of Developments in Road Vehicle Dynamics Past Present and Future[C]. Proceedings of IMech Conference on Vehicle Ride and Handling, London, 1993,1-12
    [43] R R Zub, R G Cloello. Efect of Vehicle Design Variables on Top Speed, Performance, and Fuel Economy [J]. SAE paper, 800215
    [44] A W Phillips, D N Assanis. Development and Use of Vehicle Power-train Simulation for Fuel Economy and Performance Studies [J].SAE paper, 90061
    [45] Lawence T W. Power-train Matching of Better Fuel Economy [J]. SAE paper, 830045
    [46] Dennis Wend, Paul F Skalny and David J Gorsich. Government-Industry Partnership for Improving the Military’s and Nation's Trucks: The 21st Century Truck Initiative [J]. SAE, 2000-01-3420
    [47] William C, Waters. General Purpose Automotive Vehicle Performance and Economy simulator[J]. SAE, 720043
    [48] 邬春会.基于模糊神经网络的汽车动力传动系匹配的研究[D].硕士学位论文.哈尔滨:哈尔滨工业大学,2001
    [49] 何仁.汽车动力传动系统优化匹配的研究[D].博士学位论文.镇江:江苏理工大学,1999
    [50] 江发潮.汽车AMT电控单元虚拟试验系统的研究[D].博士学位论文.北京:中国农业大学,2003
    [51] M?GOBBI,G?MASTINU,C?DONISELLI. Optimizing a Car Chassis [J]. Vehicle System Dynamics, 1999(32),149-170
    [52] 张 翔 , 钱 立 军 , 张 炳 力 , 赵 韩 . 电 动 汽 车 仿 真 软 件 进 展 [J]. 系 统 仿 真 学报,2004,16(8):1621-1623
    [53] 刘学琼.商用车动力传动系优化匹配研究[D].硕士学位论文.武汉:华中科技大学,2005
    [54] 敬绍勤,梁宁.汽车动力性计算的解析[J].四川理工学院学报(自然科学版),2004,17(2):21-26
    [55] 徐国宇,梅雪松,吴序堂.多自由度人体—车辆—道路系统的建模与模拟[J].机械工程学报,1999(4)
    [56] 王连明等.汽车平顺性建模及其仿真研究[J].哈尔滨工业大学学报,1998(10)
    [57] 容 一 鸣 , 阳 杰 . 车 辆 随 机 输 入 的 动 态 仿 真 和 试 验 研 究 [J]. 北 京 : 汽 车 工程,2001,23(5):349-351
    [58] 孙建成.车辆行驶平顺性的预测及研究[J].汽车研究与开发,1996,(11):70-76
    [59] 刘峥.重型矿用自卸汽车性能分析与优化.硕士学位论文[D].长沙:湖南大学,2006
    [60] 胡晓林.演化计算在混合驱动系统优化中的应用[D].硕士学位论文.武汉:武汉理工大学,2004
    [61] 胡晓林,王仲范,廖连莹,肖志勤.多目标演化算法在混合电动车设计和控制中的应用[J].武汉理工大学学报(交通科学版),2004,28(3):384-387
    [62] 张庆才.汽车七自由度振动模型建模及在汽车平顺性能仿真研究中的应用[J].上海汽车,1999(3)
    [63] 尹念东.汽车—驾驶员—环境闭环系统操纵稳定性虚拟试验技术的研究[D]. 博士学位论文.北京:中国农业大学,2000
    [64] 范文杰.挖掘装载机装载工作装置动力分析、动态应力仿真研究及动臂结构拓扑优化[D]. 博士学位论文.长春:吉林大学,2006
    [65] 张旭.机械系统虚拟样机技术的研究[D].博士学位论文.北京:中国农业大学,1999
    [66] 张越今.多体系统动力学在轿车动力学仿真及优化研究中的应用[D].博士学位论文. 北京:清华大学,1997
    [67] 王国权.车辆平顺性虚拟试验技术的研究[D].博士学位论文.北京:中国农业大学,2002
    [68] 关志伟.汽车发动机与传动系参数优化匹配的研究[D].硕士学位论文.长春:吉林农业大学,2000
    [69] 张京明.轻型载货汽车传动系的仿真技术与匹配评价的研究[D].硕士学位论文.镇江: 江苏理工大学,1999
    [70] 曾小华.军用混合动力轻型越野汽车动力总成匹配及控制策略研究[D].硕士学位论文.长春:吉林大学,2003
    [71] 李伟华.汽车行驶特性仿真与动力总成匹配优化[D].博士学位论文.上海:上海交通大学,2000
    [72] 阎开印.基于多体系统意义下的机车车辆虚拟样机研究[D].博士学位论文.成都:西南交通大学,2006
    [73] Andrew W Phillips and Dennis N Assanis. Development and Use of a Vehicle Power-train Simulation for Fuel Economy and Performance Studies[J]. SAE paper, 900619
    [74] Zachary J Rubin and John J Moskwa. A Modular HMMWV Dynamic Powertrain System Model [J]. SAE,1999-01-0740:49-59
    [75] Aaron Brooker,Terry Hendricks, Valerie Johnson. Advisor 3.1 Documentation [M]. National Renewable Energy Laboratory, 2001
    [76] 余志生.汽车理论(第3版)[M].北京:机械工业出版社,2000,6-7,74-75
    [77] 王 玉 海 , 宋 健 , 李 兴 坤 . 离 合 器 动 态 过 程 建 模 与 仿 真 [J]. 公 路 交 通 科技,2004,21(10):121-125
    [78] 雷雨龙.提高电控机械式自动变速器性能的研究[D].博士学位论文.长春:吉林工业大学论文, 1998
    [79] 常绿,王国强,张英爽.基于ADVISOR软件的液力变矩器仿真模块的开发[J].系统仿真学报,2006,18(12):3396-3398
    [80] 洪清泉,程颖.发动机与液力变矩器共同工作虚拟样机仿真[J].北京理工大学学报.2004,24(1):40-44
    [81] Randall Donn Senger. Validation of ADVISOR as a Simulation Tool for a Series Hybrid Electric Vehicle Using the Virginia Tech Future Car[D]. Master Thesis. Virginia Polytechnic Institute and State University, 1997
    [82] ADVISOR 2.0: A Second-Generation Advanced Vehicle Simulator for Systems Analysis [J]. NREL NAEVI'98 paper presented in Phoenix, AZ,1998
    [83] Chung-Hung Pan and John J Moskwa. Dynamic and Modeling and Simulation of the Ford AOD Automobile Transmission [J]. SAE, 950899
    [84] Sovran G, Bohn MS. Formulate for the Tractive Energy Requirements of Vehicles Driving the EPA Schedules[J]. SAE paper, 810184
    [85] U Kiencke, L Nielsen. Automotive Control Systems for Engine, Driveline and Vehicle[C]. New York: Spriner-Verlag Berlin Heidelberg, 2000
    [86] P Richards, P Richards. Results From a Million km, Heavy-Duty Truck Trail, Using FBC Regenerated DPFs [J].SAE, 2004-01-0074
    [87] Young Heub Kim and Jinseung Yang. A Study on the Transient Characteristics of Automatic Transmission with Detailed Dynamic modeling [J].SAE, 941014
    [88] K B Wipke, M R Cuddy and S B Burch. ADVISOR 2.1: A User Friendly Advanced Power-train Simulation Using a Combined Backward/Forward Approach [J]. NREL/JA-540-26839, 1999
    [89] R Fellini, P Papalambros, T Weber, Opel A G. Application of a Product Platform Design Process to Automotive Power-trains[c]. 8th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 2000
    [90] 陈俐.汽车AMT自动离合器接合过程的动力学与控制研究[D].博士学位论文. 上海:交通大学,2000
    [91] 张泰,葛安林,郭立书等.改善车辆起步换挡品质提高乘坐舒适性的研究[J].农业机械学,2003,34(1):18-21
    [92] 朱经昌,魏宸官,郑慕侨等.车辆液力传动[M].北京:国防工业出版社,1982:91-144
    [93] 常绿,王国强,李春然,杨涛,李志波.装载机性能仿真模块开发[J].农业机械学报,2007,38(1):193-195
    [94] 冯能莲,郑慕桥,马彪.车辆液力机械传动系统过程动态特性仿真[J].农业机械学报,2001,5:15-19
    [95] Sovran G, Bohn MS. Formulate for the Tractive Energy Requirements of Vehicles Driving the EPA Schedules[J]. SAE paper, 810184
    [96] Pan Chunghung, John J Moskwa. Dynamic Modeling and Simulation of the Ford AOD Automobile Transmission [J]. SAE, 950899
    [97] Watson H C. Predicting Fuel Consumption and Emissions Transferring Chassis Dynamometer Results to Real Driving Conditions [J]. SAE paper, 83043
    [98] 冯能莲.车辆综合传动换挡动态特性仿真及模糊控制研究[D].博士学位论文.北京:北京理工大学,2001
    [99] Ashley L Dunn, Gary J Heydinger Giorgio Rizzoni. New Model for Simulating the Dynamics of Pneumatic Heavy Truck Brakes with Integrated Anti-Lock Control [J]. SAE, 2003-01-1322
    [100] Khawar M Zuberi, Padmanabhan Pillai, Kang G Shin. EMERALDS-OSEK: A Small Real-time Operating System for Automotive Control and Monitoring [J]. SAE,1999-01-1102:1-7
    [101] 龚捷,赵丁选.工程车辆自动变速器换挡规律研究及自动控制仿真[J].西安交通大学学报,2001,(9):930-934
    [102] 焦生杰,许安.现代工程机械自动换挡控制系统(1)[J].筑路机械与施工机械化,1997,(3):17-20
    [103] 张 俊 智 , 王 丽 芳 , 葛 安 林 . 自 动 换 挡 规 律 的 研 究 [J]. 机 械 工 程 学报,1999,(8):38-41
    [104] Makoto Toyama and Yoshikazu Asai. New Transmission Control System for Bulldozers [J]. SAE,921689:481-489
    [105] 杨连生.内燃机性能及其与传动装置的优化匹配[M].北京:学术期刊出版社,1988,10-120
    [106] Alian J Kotwicki. Dynamic Models for Torque Converter Equipped Vehicles [J]. SAE paper, 820393
    [107] Kiyoyuke Minatoetal. A Performance Prediction of Hydrodynamic Torque Converter [J]. SAE paper, 900555
    [108] Rinie van Helden, Marcel van Genderen, Marcvan Aken and Ruud Verbeek. Engine Dynamometer and Vehicle Performance of a Urea SCR-System for Heavy-Duty Truck Engines [J]. SAE, 2002-01-0286
    [109] P Chaufour, G Millet and M Hedna. Advanced Modeling of a Heavy-Truck Unit-Injector System and Its Applications in the Engine Design Process [J]. SAE, 2004-01-0020
    [110] Mridul Gautam, Nigel Clark, Wesley Riddle. Development and Initial Use of a Heavy-Duty Diesel Truck Test Schedule for Emissions Characterization [J]. SAE, 2002-01-1753
    [111] Nigel N Clark, Mridul Gautam, W Scott Wayne. Creation and Evaluation of a Medium Heavy-Duty Truck Test Cycle [J].SAE, 2003-01-3284
    [112] [德]M 米奇克著,陈荫三译.汽车动力学 C 卷(第二版)[M].人民交通出版社,1997,206-295.
    [113] 张志涌.精通MATLAB 6.5版[M].北京:北京航空航天大学出版社,2003,160-161
    [114] 张智星.MATLAB程序应用设计与应用[M].北京:清华大学出版社,2002,131-141
    [115] Akira Watanable, Junzoh Kuroyanagi, Toshihro Hattori. Microcomputer Mechanical Clutch and Transmission Control [J]. SAE Paper, 84005
    [116] 施晓红,周佳.精通GUI图形界面编程[M]. 北京:北京大学出版社,2003,50-180
    [117] 薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002,65-198
    [118] 王诗恩.车辆整车性能仿真与决策[D].博士学位论文.镇江:江苏理工大学,1997.
    [119] Shuiwen Shen. Study on Intelligent Shift Strategy with the man-machine Technology [J]. SAE, 973279:665-670
    [120] Feredoom Jamzadeh, Tung-Ming Hsieh, Keith Struthers. Dynamic Simulation Modeling For Heavy Duty Automatic Transmission Control Development [J]. SAE 922441, 704-715
    [121] 安相璧.汽车试验工程[M].北京:国防工业出版社,200-220
    [122] GB/T 12538–1990,中国国家标准汇编:汽车重心高度测定方法[S]
    [123] GB/T 12544-90,中国国家标准汇编:汽车最高车速试验方法[S]
    [124] GB12543-90,中国国家标准汇编:汽车加速性能试验方法[S]
    [125] 尹权,许爱民,周锋.车辆行驶工况滚动阻力系数的测定[J].汽车技术,1999(2):23-25
    [126] 周锋,尹权,许爱民,姚凡,周小舒.功率平衡法测试汽车的滚动阻力系数.华南理工大学学报(自然科学版).1999,(27)7: 73-77
    [127] GB/T12536-1990,中国国家标准汇编:汽车滑行试验方法[S]
    [128] QC/T 76.6–1993,中国国家标准汇编:矿用自卸汽车燃油消耗量试验方法[S]
    [129] 《汽车工程手册》编辑委员会编.汽车工程手册?试验篇[M].北京:机械工业出版社,2001,180-185
    [130] 龚微寒.汽车现代设计制造[M].北京:人民交通出版社,1995,50-157
    [131] 徐中明,胡云龙.汽车动力性和燃油经济性的参数灵敏度[J].专用汽车,1994,1
    [132] 王国强,常绿,赵凯军,杨好志.现代设计方法[M].北京:化学工业出版社,2006,8
    [133] 李 峰 . 汽 车 动 力 传 动 系 统 控 制 最 优 化 模 拟 研 究 [J]. 山 东 工 程 学 院 学报,2002,16(3):21-26
    [134] 文孝霞,杜子学.基于遗传算法的汽车动力传动系匹配设计变量优化[J].重庆交通学院学报,2005,24(2):128-130
    [135] 葛安林,林明芳,吴锦秋.汽车动力传动系参数的最佳匹配[J].汽车工程,1991,(1):65-72
    [136] 刘惟信,戈平,李伟.汽车发动机与传动系参数最优化匹配的研究[J].汽车工程,1991,(2):20-24
    [137] Rudolph. Convergence Analysis of Canonical Genetic Algorithms [J]. IEEE Trans on Neural Networks,1994,5(1):96-101
    [138] H S Ryoo, N V Sahinidis. Global Optimization of Nonconvex NLPs and MINLPs with Applications in Process Design. Computers Engineering, 1995,19(5):551-566
    [139] He Ren, Gao Zongying, WeiJingxiu. Fuzzy Optimum of the Automobile Transmission Parameters [J]. SAE paper, 932922
    [140] Fonseca C M, Fleming P J. Genetic Algorithms for Multi-objective Optimization for Simulation, Discussion and Generalization.[C] Proceedings of the Fifth International Conference of Genetic Algorithms, Morgan Kaufmann, Los Altos, CA. Morgan Kaufmann Publishers,1993, 416- 423
    [141] Adleman L M .Molecular Computation of Solutions to Combinatorial Problems [J]. Science, 1994,266(5187):1021-1023
    [142] 常绿,杨涛,姚树建,李春然.基于神经网络和遗传算法的磨煤机结构和工作参数的优化[J].热能动力工程,2007,32(1):69-72
    [143] Lawence T W. Power-train Matching to Beter Fuel Economy [J]. SAE paper, 790045
    [144] 常绿,王国强,冯素丽.基于遗传算法的混凝土搅拌机上料机构的优化设计[J].建筑机械,2005,(12):76-78
    [145] 李军,刑俊文,覃文杰.ADAMS实例教程.北京:北京理工大学出版社,2002,191-193
    [146] 郑 建 荣 .ADAMS — 虚 拟 样 机 技 术 入 门 与 提 高 [M]. 北 京 : 机 械 工 业 出 版社,2002,50-158
    [147] F.Palcak,M.Hulla.Study of Component Flexibility Effects on Full-system Performance via Mixed Body Dynamics Approach [J].13TH European ADAMS User’s Conference,November 18-19,1998
    [148] Heetaek Lim, A Finite Element Approach to the Dynamic Simulation of Multibody Systems [D]. PhD thesis, University of California. 2001
    [149] 雷良育.基于虚拟现实的汽车平顺性仿真试验系统及其关键技术研究[D].博士学位论文.杭州:浙江大学,2005
    [150] Dr.A.Costa Neto, L.C.Ferraro, V.L.Veissid, C.A.M.Freitas. A Study of Vibrational Behavior of a Medium Sized Truck Considering Frame Flexibility with the Use of ADAMS [C].1998 internation ADAMS User Conference
    [151] Sigmund O. On the design of complaint mechanisms using topology optimization [J].Mech Struct Mach,1997, 25: 495-526
    [152] Bojczuk K, Mroz Z. Optimal design of trusses with account for topology variation [J].Mechanics of Structures and Machines, 1998,26(1):21-40
    [153] Liang Q Q, Xie Y M, Steven G P. Optimal topology selection of continuum structures with displacement constraints. Computers and Structrues, 2000,77(6):635-644
    [154] W.Schiehlen.Multibody.System.Handbook[M].Berlin:Springer-Verlag.1990,32-254
    [155] 詹文章.汽车独立悬架多体系统动力学仿真及转向高速摆振研究[D].博士学位论文.长春:吉林大学.2000
    [156] Matthew Cuddy. A Comparison of Modeled and Measured Energy Use in Hybrid Electric Vehicles [C]. SAE International Congress and Exposition, Detroit, Michigan, 1995
    [157] MDI. Using the ADAMS/Flex [D]. Mechanical Dynamics Inc, 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700