小水线面双体船粘性流数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小水线面双体船(Small Waterplane Area Twin Hulls,SWATH)是近三十年逐渐发展起来的具有独特船型的高性能船舶。和传统船型相比,SWATH具有更多的优势,特别由于其优良的耐波性,目前已被大多数有造船及海洋探测优势的国家广泛采用。我国作为世界上的海洋大国之一,面临着人口的膨胀,土地的减少,能源的短缺等困难,在21世纪这个海洋的世纪,开发和利用海洋对我国尤为重要。在军事应用方面,SWATH也具有着无可比拟的优越性。因此,我国很有必要拥有自己的SWATH。自然而然,我们要对SWATH进行一系列的开发研究。
     现在,计算流体动力学(Computational Fluid Dynamics,CFD)已经发展得相当成熟,各种CFD商业软件如雨后春笋般涌现出来,而且涉及的范围越来越广。CFD商业软件以其模拟复杂流动现象的强大功能、人机对话的界面操作以及直观清晰的流场显示得到了人们的广泛关注,其发展在西方国家得到了工业界和政府部门的大力支持。借助CFD商业软件这一开发平台,研究人员可以避免编程方面的重复性劳动,减轻繁琐沉重的编程工作量,有望加快自身工作的进度和提高自身工作的质量和水平。因此,我们完全可以利用商业软件来协助对SWATH的研究,加快我国开发SWATH这一高性能船型的步伐。
     本文即利用商业软件FLUENT对SWATH的粘性流场进行了数值模拟。首先对一SWATH数学船型做了研究,得到不同航速下的物面总压力、物面切应力分布及相应的粘性阻力系数等结果,并将各航速下的粘性阻力计算结果和经验公式估算结果做了比较,吻合得较好。随后对一真实SWATH的粘性流场进行数值模拟。由各点的型值来建立模型,除了得到阻力方面的结果,还对该船型桨盘处的伴流分布做了研究。通过对这些例子的计算,进一步验证了利用FLUENT计算SWATH粘性流场的有效性和实用性。
     本文是将商业软件用于SWATH粘性流场计算的一个尝试和探讨,随着今
    
    武汉理工大学硕士学位论文
    后工作的深入,将会取得更加令人满意的结果。随着我国对造船的日益重视,
    对CFD科研力量投入的日益增加,相信在不久的将来,我国对SWrA’1,H这类
    高性能船型的研究将会上一个新的台阶。
Small Waterplane Area Twin Hulls (SWATH) is a kind of high performance ship with special shape which has been developed during last decades. Compared with conventional ships SWATH has more advantages. Especially because of its excellent seakeeping performance, SWATH has been accepted by some countries accomplished in shipbuilding and ocean exploration. China is one of the greatest ocean countries in the world, meanwhile it faces many difficulties such as population expanding, soil decreasing and energy sources reducing. It is very important for our country to exploit and use ocean resource in the 21 century. SWATH also has enormous advantages in aspect of military application. Therefore it is much necessary for us to possess our own SWATH and we must carry out a series of research into SWATH.
    Nowadays, Computational Fluid Dynamics (CFD) has developed quite mature. Many CFD commercial softwares appear and the scope related to becomes wider and wider. CFD commercial softwares receive extensive attention for their strong function to simulate complicated flow phenomena, man-machine conversation interfacial operation, intuitionistic and clear flow field visualization. The development of the softwares gains powerful sustainment from industry and government in West countries. In virtue of CFD commercial software workbench, researchers can avoid repeating work of programme, lighten heavy programme workload, accelerate work speed and enhance work quality. So we can completely make use of commercial softwares to help studying and developing SWATH.
    In this paper the viscous flows around SWATH are simulated based on the commercial software FLUENT. Firstly a mathematical SWATH in full scale is studied. The numerical results of total pressure, wall shear stress, corresponding viscous resistance coefficient at different velocity and so on are obtained. The computational viscous resistance coefficients are compared with the estimated ones using empirical formula and the results are found to be in good agreement.
    
    
    
    Then the numerical simulation of the flow around a real full-scale SWATH ship is conducted. The full-scale SWATH model is established through every offsets. In addition to resistance results the wake distribution at propeller plan is also obtained. In conclusion, the validity and practicability of the software FLUENT to predict the three-dimensional viscous flow field of SWATH are proved by these examples.
    This paper is an attempt to use commercial software in simulating viscous flow field of SWATH. More satisfying results would be achieved along with further study. As we put emphasis on shipbuilding and invest more in CFD research, it is believed that the research of our country on high performance ship like SWATH would rise to a new stage in future.
引文
[1]马乾初,王家楣.流体力学.大连海事大学出版社,1994
    [2]Cai R.Q., Shen Q.X. Chen Y.G. and Chen Z.G. Solving Incomp. 3D RANS Equation by Using Flux-Difference Splitting Upwind Differencing Scheme-A Computation of Flow around HSVA Tanker, Selected Papers of CSNAME.Vol.10,1995
    [3]周连第.船舶计算流体力学发展现状和前景.上海造船,1998年,第2期
    [4]谢家骥,郑明,李佳才.我国第一艘小水线面双体船设计与建造简介.广东造船,2001年,第4期
    [5]黄鼎良.小水线面双体船性能原理.北京:国防工业出版社,1993
    [6]蔡荣泉.船舶计算流体力学的发展与应用.船舶,2002年8月,第4期
    [7]赵峰,周连第.潜艇含指挥台附体区域周围粘性流场的多块耦合计算.水动力学研究与进展,A辑,1996,(4)
    [8]高秋新,周连第,用三维不定常RANS方程求解船尾绕流.水动力学研究与进展,1994,(4)
    [9]赵峰,周连第.带前置导叶的潜艇尾流场的研究,船舶力学,1998,2(1)
    [10]周连第,赵峰,唐登海.CSSRC在船舶粘性流场计算流体力学领域中的研究与进展.船舶力学,Vol.1,No.2,Oct.1997
    [11]高秋新.船舶CFD研究进展.船舶力学,Vol.3,No.4,Aug.1999
    [12]周连第.船舶与海洋工程计算流体力学的研究进展与应用.空气动力学学报,1998年,第16卷
    [13]沈奇心,蔡荣泉等.通量差分分裂上风差分格式求解船舶粘性流动.水动力学研究与进展,1996,11(4)
    [14]蔡荣泉,陈义根.采用Rankine源,RANSFS组合方法求解计以自由面影响的船舶粘性绕流问题.船舶力学,2000,4(3)
    [15]陈义根.非定常不可压N-S方程求解方法研究及三维水面舰船粘性绕流的数值模拟.中国船舶与海洋工程设计研究院,博士学位论文,1998
    [16]张怀新,刘应中等.带自由面三维船体周围粘性流场的数值模拟.上海交通大学学报,Vol.35,No.10,Oct.2001
    [17]李廷秋.三维船舶尾流场的数值计算及方形系数Cb和尾型UV度的变换对其尾流场影响的数值试验研究.武汉交通科技大学,博士学位论文,1992
    
    
    [18]徐立.三维RANS方法数值解法及船舶尾流场的数值模拟方法.武汉交通科技大学,博士学位论文,1994
    [19]张谢东.三维船体操纵运动粘性问题数值研究.武汉交通科技大学,博士学位论文.1999
    [20]王言英,王清霞.实际流体中船体绕流流场的理论计算.大连理工大学学报,1995,35(5)
    [21]吴子牛.计算流体力学基本原理.科学出版社,2001
    [22]Versteeg H.K., Malalasekera W. An Introduction to Computational Fluid Dynamics.世界图书出版公司北京公司,2000
    [23]Cebeci T, Smith A M O. Analysis of Turbulent Boundary Layers [M]. Acad. Press, 1974
    [24]Baldwin B S, Lomax H. Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows [A]. AIAA Paper [C], 78-257, 1978
    [25]PHOENICS\Polis\Lectures\Turbulence Models[Z]
    [26]N.Hirata, T.Hino. A Comparative Study of Zero-and One-Equation Turbulence Models for Ship Flows. J.KansaiSoc.N, A. Japan, No.234, Sep.2000
    [27]G.Deng, M.Visonneau. Evaluation of Eddy Viscosity and Second-Moment Turbulence Closures for Steady Flows Ships. 21st Symposium on Naval Hydrodynamics, 1997
    [28]G.B.Deng, M. Visonneau. COMPARISON OF EXPLICIT ALGEBRAIC STRESS MODELS AND SECOND-ORDER TURBULENCE CLOSURES FOR STEADY FLOWS AROUND SHIPS. MARNET-CFD First Workshop, Barcelona, Nov. 1999
    [29]U.S.Svennberg. On Turbulence Modelling for Bilge Vortices: A Test of Eight Models for Three Cases. Department of Naval Architecture and Ocean Engneering, CHALMERS UNIVERSITY OF TECHNOLOGY, Goteborg, Sweden, 2001
    [30]Launder B.E., Spalding D.B. The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering, Vol.3, 1974
    [31]Thompson J F, Warsi E U A, Mastin C W. Numerical Grid Generation. Elsevier Science Publishing Co., 1985
    [32]Sorenson R L. A Computer Program to Generate Two-Dimensional Grids about Airfoils and Other Shapes by the Use of Poisson's Equation. NASA TM 81198, 1980
    [33]Thomas P D, Middlecoff J F. Direct Control of the Grid Point Distribution in Meshs Generated by Elliptic Equations. AIAA J.18: 652-656, 1979
    [34]Hilgenstock A. A Fast Method for the Elliptic Generation of Three-Dimensional Grids with Full Boundary Control. Num.Grid Generation in CFM'88, Pineridge Press Ld., pp 137-146,1988
    
    
    [35]Steger J L, Chaussee D S. Generation of Body Fitted Coordinates Using Hyperbolic Partial Differential Equations. SIAM J.Sci. Stat. Comput. 1:431-437,1980
    [36]Steger J L, Rizk Y M. Generation of Three Dimensional Body Fitted Coordinates Using Hyperbolic Partial Differential Equations. NASA TM 86753, 1985
    [37]Chart W M, Steger J L. A Generized Scheme for Three-Dimensional Hyperbolic Grid Generation. AIAA 91-1588
    [38]Thompson J F. Composite Grid Generation Code for General 3-D Regions-the EAGLE Code. AIAA J. 26: 271-272, 1998
    [39]Steinbrener J P, Chawner J R, Fouts C L. Multiple Block Grid Generation in the Interactive Environment. AIAA90-1602
    [40]Remotigue M G, Hart E T, Stokes M L. EAGLEView: A Surface and Grid Generation Program and Its Data Management. NASA CP 3143:243-252, 1988
    [41]Soni B K, Thompson J F, Stokes M L, Shih M H. GANIE++, EAGLEView and Tiger: General and Special Purpose Graphically Interactive Grid Systems. AIAA 92-0417
    [42]Sorenson R L, McCann K. A Method for Interactive Specifications of Muitipleblock Topologies. AIAA 91-0417
    [43]Sorenson R L, McCann K. GRAPEVINE: Grids about Anything by Poisson's Equation in a Visually Interactive Network Environment. NASA CP 3143:319-331, 1992
    [44]Boerstoel J W, Spekreijse S P. An Informatin System for the Numeracal Simulation of 3-D Euler Flows around Aircraft. Comp. Math. In Applied Mech. And Eng. 89:237-257, 1991
    [45]Dener C, Hirsch Ch. IGG-An Interactive 3-D Surface Modelling and Grid Generation System. AIAA 92-0073
    [46]Rill S, Becker K. Simulation of Transonic Flow Over Twin-Jet Transport Aircraft. J. of Aircraft, 29:640-646, 1992
    [47]Shaw J A, Peace A J, May N E, Pocock M F. Verification of the CFD Simulation System SAUNA for Complex Aircraft Configuration. AIAA 94-0393
    [48]GRIDPRO, TM/AZ 3000, Userls Guid and Reference Manual. Program Development Corporation, White Plains, NT, 1993
    [49]Zeeuw D De, Powell K G. An Adaptively Refined Cartesian Mesh Solver for the Euler Equation. J. of Comp. Phys. 104, 56-68, 1993
    [50]Quirk J J. An Alternative to Unstructured Grids for Computing Gas Dynamic Flows around Arbitrary Complex Two-Dimensional Bodies. Computers & Fluids. 23:125-142, 1994
    
    
    [51]Smith R J, Johnston L J. Automatic Grid Generation and Flow Solution for Complex Geometries. AIAA J 34:1120-1124, 1996
    [52]MacCormack R.W., Paullay A.J. Computational Efficiency Achieved by Time Splitting of Finite Difference Operators. AIAA Paper. 1972.72-154
    [53]谭维炎.计算浅水动力学—有限体积法的应用.北京:清华大学出版社,1998
    [54]姚征,陈康民.CFD通用软件综述.上海理工大学学报,Vol.24,No.2,2002
    [55]李勇,刘志友,安亦然.介绍计算流体力学通用软件——Fluent.水动力学研究与进展,2001,16(2)
    [56]陈耀松,陈沪东.力学小议.力学与实践,2001,23(4)
    [57]Chapman R B. Spray Drag of Surface Piercing Strut. Proceeding of AIAA/SNAME Advanced Marine Vehicles Meeting, Naval Research Engineering Center and DTNSRDC, 1972. Annapolis: [s. n.], 1972
    [58]Salvensen Net al. Hydro-Numeric Design of SWATH Ships. Trans. of SNAME, 1985, 93:325-346
    [59]刘儒勋,王志峰.数值模拟方法和运动界面追踪.合肥:中国科学技术大学出版社,2001
    [60]H Raven, H. V, Brummelen. A New Approach to Computing Steady Free-Surface Viscous Flow. AROBLEMS, MARNET-CFD Workshop, Barcelona, NOV. 1999
    [61]Abdul Waheed & Jerry Yan. Parallelization of NAS Benchmarks for Shared Memory Multiprocessors. NAS Report Number NAS-98-010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700