熔融碳酸盐燃料电池堆温度场的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文探讨熔融碳酸盐燃料电池(MCFC)的多组分电化学反应和传热传质机理。建立了熔融碳酸盐燃料电池堆内部单体的暂态温度模型,并考虑了电堆的辐射换热、转换反应、反应气体组分变化对温度场的影响;根据MCFC的微分控制方程组,考虑气体组分的热力学性质及动量变化的影响,利用数值分析方法求解熔融碳酸盐燃料电池堆的三维流场与温度场,分析了各作用因素对熔融碳酸盐燃料电池堆温度分布的影响机制。
Studying the heat-mass transfer and multi-spices electric-chemical reaction, a dynamic temperature model was deduced for molten-Carbonate fuel cell stack. The thermal radiation, shift reaction, and the change of gas spices were considered in this model. Establishing momentum equation, the paper has developed a 3D temperature and flow fields model for MCFC stack based on CFD technique. The change of momentum and thermal property were considered in this model. Detail results of temperature and flow fields have been got through solving model by different methods. The predominant effect factors on the temperature of MCFC stack ware also analyzed in the paper.
引文
[1] Fuel Cell HandBook.
    [2] 衣宝廉.燃料电池.北京.化学工业出版社.2003.
    [3] 沈承,曹广益,朱新坚.熔融碳酸盐燃料电池(MCFC)系统建模与控制的研究现状与发展.能源技术.10.2001.
    [4] B. Bosio et al .Chemical Engineering Science 54(1999) 2907-2916
    [5] R.S. Gemmen. Application of a Computation Fluid Dynamics Code to Fuel Cell-Integrated SOFC Fuel Cell and Post Oxidizer. AFRC International Symposium Newport Beach, CA, USA, 9, 2000.
    [6] T.L. wolf, G.J. milemski. J. Wlectrochem. Soc130(1)(1983)48-55.
    [7] Yuh, C.Y, Selman, J.R. Porous ElectrodeModeling of Molten carbonate fuel cell Electrode[J].J. Electrochem. Soc. 1992,143:1373-1379.
    [8] Bockris J.O' M.& Srinivasan, S. (1969).Fuel Cells: Their electrochemistry. New York:Mcgraw-Hill.
    [9] Christensen, p.s.,& livbjerg, h. (1992).a new model for gas diffuision eledtrodes. Application to molten carbonates fuel cells. Chem..engng. sci.,47,2933-2938.
    [10] T. Watanabe, E. Koda, et al. Development of Molten Carbonate Fuel Cell Stack Performance Analysis Model[R] Yokosuda Research Laboratory, Rep. no. W90028. Japan, 1991, 30.
    [11] F. Standaert, K. Hemmes, N. Woudstra. Analytical fuel cell mo deling [J]. Power Source 63 (1996) 221-234.
    [12] Joon-Ho koh, Hai-Kung Seo, Young-Sung Yoo, Hee Chun Lim .Consideration of numerical simulation parameters and heat transfer models for a molten carbonate fuel cell stack. Chmical Engineering Journal 87 (2002)367-379.
    [13] H. Fujimura, N. Kobayashi, K. Ohtsuka. Heat and Mass Transfer in a Molten Carbonate fuel cell(Performance and Temperature Distribution inacell stack) [J] JSME Int , J, 1992, 35(1):81-88.
    [14] Wei. He Solution techniques for a molten carbonate fuel cell
    
    stack using PHOENICS program. International report, Delf university of Technology, Delf, The Netherlands, 1997, 100pp.
    [15] Wei He, Chen, Q.Three-dimention simulation of a molten carbonate fuel cell stack using computation fluid dynamics technique[J] Power Source, 1995, 55:25-32.
    [16] G.K. Wilemski, A. Gelb. Molten Carbonate Fuel Cell Stack Performance Model update: Final Report, Physical Sciences[R] Research Park, USA, 1985.
    [17] F. Yoshiba,T. Abe, T. Watnabe. Numerical analysis of molten carbonate fuel cell stack performance: diagnosis of internal conditions using cell votage profiles.
    [18] Prins-Jansen, JA, Fehribach, JD, Hemmes, K, &deWitJHW. A Three-phase homogeneous model for porous electrodes in molten carbonate fuel cell. [J]Electrochem. Soc. 1996, 143:1617-1628.
    [19] Barbara bosio, Paolacostamagagna, et al. modeling and experimention of Molten carbonate fuel cell reactors in scale-up process[J]Chemical engineer science, 1999, 54:2907-2916.
    [20] Haruhiko Hirata, Takao Nakagaki. Michio Hori. Effect of gas channel height on gas flow and gas diffusion in a molten carbonate fuel cell stack: Journal of Power Source 83 (1999)41-49.
    [21] Lukas, MD.,K.Y. Lee,and H. Ghezel-Ayagh1999, "Development of a Stack Simulation Model for Control Study on Direct Reforming Molten Carbonate Fuel Cell Power Plant" IEEE Power Emgineering Society, 1999Winter Meeting, New Yorl, NY.
    [22] E. Hontanon, M.J. Escudero .Optimization of flow -field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques, Journal of Power Sources 86(2000)363-368.
    [23] S. Um, C-Y, WangandK. S, Chen [J]Electrocbem. Soc. 147.12(2000).
    [24] Ugur Pasaogullari, Chao—Yang Wang, Computational Fluid Dynamics Modeling of ProtonExchange Membrane Fuel cell using Fluent. 2002 Presented in FLUENT USER GYOUP MEETING, Manchester, NH.
    [25] ACENBACH E. Three-dimensional and time-pendent simulation of a planar solid oxide fuel cellstack [J]. J Power sources. 1994, 49:333-348.
    
    
    [26] Z. Ma, S.M. Jeter, S.I. Abdel-Khalik. Modeling the transport processes within multichannel molten carbonate fuel cells International Journal of Hydrogen Energy 28 (2003)85-97.
    [27] THIRUMALAID, WHITERE, Mathematical, modeling, of, proton, exchange membrane fuel cell stacks [J] . J Electrochem Soc. 1997, 144 (5):1717-1723.
    [28] Boresmarj, sammesnm, disrtributation of gas flow in internally manifolded solid oxide fuel cell stacks[J].J power sources, 1997, 66:41-45.
    [29] Joon-Ho Koh, Hai-Kyung Seo, Choong Gon Lee, Young-Sung Yoo, Hee Chun Lim. Pressure and flow distribution in internal gas manifolds of a fuel-cell stack[J]Journal of Power Sources 115 (2003) 54-65.
    [30] Gidaspow. D.,B.S. Saker:Heat Transfer in a Fuel Cell 8atery.AIChE J.,11,828(1965).
    [31] 孙兴进,朱新坚.熔盐燃料电池电堆动态特性的建模和分析.[J].上海交通大学学报.V.36 No.7Jul.2002.
    [32] 曹广益,孙文辉.熔融碳酸盐型燃料电池温度特性的建模与求解[J].上海交通大学学报1993,(27)2:140~145.
    [33] Nariyoshi Kobyashi, Hidekazu Fujimura, Keizo Ohtsuka. Heat and Mass Transfer in a Molten Carbonate Fuel Cell. JSME International Jounal ,series, Ⅱ, 1989,32(3):420-427.
    [34] FLENT 5 users' Guide Volume 2, FLUENT INCORPORATED. 2000.11.
    [35] S.V帕坦卡(Suhas V. Patankar).传热与流体流动的数值计算(Numerical Heat Transfer and Fliud Flow) [M].北京:科学出版(Beijing:Science Press), 1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700