PHEX在小鼠磨牙牙胚发育的表达及其抗体抑制牙本质生成的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究PHEX基因在小鼠磨牙牙胚发育过程中的时空表达模式,以及PHEX抗体对小鼠牙胚发育的影响,探讨PHEX在牙齿发育过程的矿化作用。
     方法:
     1、制备小鼠牙胚发育各个时期的模型:帽状早期(E14)、帽状期(E16)、钟状早期(E18)、钟状晚期(P1)、牙齿硬组织形成矿化期(P3、P5)。采用免疫组织化学检测小鼠牙胚发育各个时期中PHEX蛋白的表达,成牙本质细胞的定量分析;
     2、根据PHEX蛋白在各个时期的表达检测结果,选取E17天的孕鼠尾静脉注射不同浓度的PHEX抗体。共分为三组,A组:0.1mg/kg、B组:0.5mg/kg、对照组N组:0.5mg/kg0.1MPBS。观察钟状早期(E18)、钟状晚期(P1)、牙齿硬组织形成和矿化期(P3)牙胚发育情况。采用Mallory三色法观察牙胚硬组织形成情况;免疫组织化学法观察牙胚PHEX表达情况。
     结果
     1、PHEX在牙胚正常发育过程中的时空表达:PHEX在E14(帽状早期)无表达;E16(帽状晚期)的内、外釉上皮细胞和牙囊细胞中,PHEX有零星的弱阳性表达;E18(钟状早期),PHEX主要表达在内釉上皮细胞、牙囊细胞,外釉上皮层和中间层,靠近基底膜的牙乳头细胞中也有少量表达。P1(钟状晚期),PHEX在成釉细胞和成牙本质细胞中的表达随着牙胚的发育而增强。颈环处的内釉上皮细胞有PHEX的表达。P3、P5(牙齿硬组织形成和矿化期)PHEX在成牙本质细胞中和成釉细胞中高度表达,靠近成牙本质细胞的牙乳头细胞也有表达,颈环处的内釉上皮细胞有表达,而相邻的牙乳头细胞和外釉上皮细胞无表达。
     2、PHEX在成牙本质细胞不同时期不同部位的定量表达分析结果:PHEX蛋白在E16(帽状期)的牙胚牙乳头细胞各个部位中的表达无差异(P>0.05),而在E18、P1、P3、P5各个时间段中,同一时间点的不同部位之间有显著性差异(P<0.05),其中牙尖处的成牙本质细胞中表达均为最高,牙颈部细胞均为最低;在不同时间点的相同部位,高柱状细胞(牙尖处)、矮柱状细胞和立方状细胞中的表达有显著性差异(P<0.05)。
     3、PHEX抗体注射后牙胚Mallory三色法染色结果:E18(钟状早期),A、B、N三组牙胚发育未见明显差异,内釉细胞分化成高柱状成釉细胞;P1(钟状晚期):A、B、N三组有分化成熟的高柱状成釉细胞,A、N组中牙胚可见成熟的高柱状成牙本质细胞,细胞核远离基底膜,呈极化趋势,有牙本质形成,B组的成牙本质细胞呈立方状排列不规则,无牙本质形成;P3(牙齿硬组织形成和矿化期):A、B、N三组均有分化成熟的高柱状成釉细胞,有釉质生成;A、N组牙胚可见成熟的高柱状成牙本质细胞,有牙本质形成,B组成牙本质细胞成柱状,细胞核位于细胞中央,未有极化趋势,无牙本质生成。
     4、PHEX抗体对牙胚PHEX表达的影响:E18,N、A、B三组牙胚的内釉细胞和牙囊细胞中有阳性表达,外釉细胞层、中间层和靠近基底膜处牙乳头细胞可见有少量的弱阳性表达;P1:N、A、B三组成釉细胞有阳性表达,外釉上皮细胞层、中间层有少量表达,N、A组分化成熟的成牙本质细胞有阳性表达,B组成牙本质细胞仅有少量的弱阳性表达;P3:N、A、B三组成釉细胞有阳性表达,外釉上皮细胞层、中间层有少量表达,N、A组分化成熟的成牙本质细胞有阳性表达,B组成牙本质细胞仅有少量的弱阳性表达。
     5、PHEX抗体对牙胚成牙本质细胞不同时期牙尖处PHEX表达的定量分析:E18,各组中PHEX表达无显著差异,在P1、P3组中B组与A、N组间有显著差异,A、N组间无显著差异,同时A、N组间随时间有显著差异,B组则无显著差异。
     结论:PHEX在牙胚的发育中有特定的时空表达模式,0.5mg/kgPHEX抗体浓度可显著抑制成牙本质细胞PHEX的表达,抑制牙本质的生成。对成釉器的发育过程和釉质的矿化则无明显作用。本研究结果提示PHEX参与了牙胚的形成发生和矿化作用,在成牙本质细胞的分化和牙本质的形成中起重要的作用。
Objective:To investigate spatio-temporal expression and effect of PHEX-antibody and possible roles of PHEX during tooth germ development in mouse, especially in the development of odontoblast.
     Methods
     1 To establish a model of tooth germ in mouse in the stages: early cap stage (E14), late cap stage (E16), early bell stage (E18), late bell stage (P1), the stage of dentin and enamel formation (P3, P5). Expression of PHEX protein was detected by method of immunohistochemistry in different developmental stages of tooth germ in mouse.
     2 According to the above expression of PHEX in different stages, the E17 mice received the injection with tail vein of the different concentrations of PHEX antibody(group A 0.1mg/kg, group B 0.5mg/kg, group N(control group) 0.5mg/kg0.1MPBS)to observe the subsequent development of the tooth germ. The hard tissues of tooth germ was observed by Mallory’s trichrome stain, and expression of PHEX protein was detected by the method of immunohistochemistry.
     Results
     1 Spatio-temporal expression of PHEX protein during the tooth germ development: no positive staining of PHEX was found in early cap stage. In late cap stage PHEX was expressed weakly and sporadically in inner and outer enamel epithelium and dental sac. In early bell stage, PHEX mainly expressed in inner enamel epithelium and dental sac. Weak positive signals were also found in outer enamel epithelium, stratum intermedium and dental papilla cells adjacent to basement. In late bell stage PHEX which showed stronger positive expression gradually in ameloblasts and odontoblasts with the development of tooth germ. Positive PHEX expression was also detected in inner enamel epithelium at cervical loop, meanwhile it was negative in nearby dental papilla and outer enamel epithelium.
     2 To analyze the quantitative assessment of expression PHEX in the odontoblast : Significant difference of PHEX expression was not found in the location of odontoblast in E16 germ tooth(P>0.05), and was found in that of E18, P1, P3, P5(P<0.05)especially odotoblast of cusp’s dentin. There is significant difference on stage of the germ tooth in the cylindrical cell, cube cell(P<0.05).
     3 Result of injecting anti-PHEX by the Mallory’s trichrome stain: there was not different in development of the tooth germ in the E18. In the P1, P3, there was the odontoblast with the polarization and the dentinification in the group A and group N.The same thing was not shown in the group B. The inner enamel epithelium differentiated the ameloblast from enamel formation.
     4 Effect of expression PHEX with injecting anti-PHEX: In the E18, P1, P3, positive staining of PHEX was found in the inner enamel epithelium and the ameloblas, and a little in the outer enamel epithelium and dental sac with group A, group B, group N. In the P1, P2, it was found the ameloblast and the odontoblast with group A and group N, but was not find the odontsblast with group B.
     5 To analyze the quantitative assessment of expression PHEX in the odontoblast with injecting anti-PHEX: Significant difference of PHEX expression was not found in the odontoblast of E18. There was significant difference in the P1 and P3 with group A, group B and group N and spatio-temporal model with group A and group N, and we didn’t find any difference in group B.
     Conclusions
     Spatio-temporal expression of PHEX protein during the tooth germ development, expression of PHEX protein and dentinification was inhibited in the odontoblast with 0.5mg/kg PHEX antibody concentration.
引文
1. 于世凤主编. 口腔组织病理学. 人民卫生出版社,2003: 23-71.
    2. 张震康, 樊明文,傅民魁主编. 现代口腔医学. 科学卫生出版社, 2003: 57-114.
    3. Ruch JV, Lesot H, Begue-Kirn C. Odontoblast differentiation. Int J Dev Biol, 1995; 39(1): 51.
    4. Lesot H, Lisi S, Peterkova R, et al. Epigenetic signals during odontoblast differentiation. Adv Dent Res, 2001; 15(8): 8.
    5. Turner AJ, Tanzawa K. Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX. FASEB J. 1997; 11(5): 355-364.
    6. Fiona Francis,Tim M Strom, Steffen Henning, et al. Genomic Organization of the Human Pex Gene Mutated in X-Linked Dominant Hypophosphatemic Rickets. Genome Res.1997; 7(6): 573-585.
    7. Sabbagh Y, Boileau G, Campos M, et al. Structure and function of disease-causing missense mutations in the PHEX gene. J Clin Endocrinol Metab. 2003; 88(5): 2213-2222.
    8. Beck L, Soumounou Y, Martel J, et al. Pex/PEX tissue distribution and evidence for a deletion in the 3’ region of the Pex gene in X-linked hypophosphatemic mice. J Clin Invest. 1997; 99(6)1200-1209.
    9. Du L, Sesbarats M, Viel J, et al. cDNA cloning of the murine Pex gene implicated in X-linked hypophosphatemia and evidence for expression in bone. Genomics. 1996; 36(1): 22-28.
    10. Ruchon AF, Tenenhouse HS, Marcinkiewicz M, et al. Developmental expression and tissue distribution of Phex protein: effect of the Hyp mutation and relationship to bone markers. J Bone Miner Res. 2000; 15(8): 1440-1450.
    11. Sabbagh Y, Jones AO, Tenenhouse HS. PHEXdb, a locus-specific database fpr, itations causing X-linked hypophosphatemia. Hum Mutat. 2000; 16(1): 1-6.
    12. Thompson DL, Sabbagh Y, Tenenhouse HS, et al. Ontogeny of Phex/PHEXprotein expression in mouse embryo and subcellular localization in osteoblasts. J Bone MinerRes. 2002; 17(2): 311-320.
    13. Boukpessi T, Septier D, Bagga S , et al. Dentin alteration of deciduous teeth in human hypophosphatemic rickets. Calcif Tissue Int. 2006; 79(5): 294-300.
    14. 秦满,石广香,葛立宏. 低磷酸酯酶症乳牙的光镜和扫描电镜研究. 中华口腔医学杂志. 1999,34(1): 200-200.
    15. Rows PS. The wrickened pathways of FGF 23, MEPE, and PHEX. Grit Rev Oral Biol Med, 2004, 15(5): 264-81.
    16. Herasse M, Spentchian M, Taillandier A, et al. Molecular study of three cases of odontohypophosphatasia resulting from heterozygosity for mutations in the tissue non-specific alkaline phosphatase gene. Journal of Medical. Genetics. 2003; 40(8): 605-609.
    17. Ruchon AF, Marcinkiewicz M, Siegfried G, et al. Pex mRNA is localized in developing mouse osteoblasts and odontoblasts. J Histocem Cytochem. 1998; 46(4): 459-468.
    18. Boileau G, Tenenhouse HS, Desgroseillers L, et al. Characterization of PHEX endopeptidase catalytic activity: identification of parathyroid-houmone-related peptide107-139 as a substrate and osteocalcin, PPi and phosphate as inhibitors. Biochem J. 2001; 355(3): 707-713.
    19. Camps M, Couture C, Hirata IY, et al. Human recombinant endopeptidase PHEX has a strict S1’ specificity for acidic residues and cleaves peptides derived from fibroblast growth factor-23 and matrix extracellular phosphoglycoprotein. Biochem J. 2003; 373(1): 271-179.
    20. Row PS, Garrett IR, Schwarz PM, et al. Surface plasmom resonance (SPR) confirms that MEPE binds to PHEX via the MEPE-ASARM motif: a model for inpaired mineralization in X-linked rickets (HYP). Bone. 2005; 36(1): 33-46.
    21. Guo R, Liu S, Spureny RF, et al. Analysis of recombinant Phex: an endopeptidase in search of a substrate. Am J Physiol Endocrinol Metab. 2001; 281(4): 837-847.
    22. Bowe AE, Finnegan R, Jan de Beur SM, et al. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun. 2001; 284(4): 977-981.
    23. Benet-Pages A, Lorenz-Depiereux B, Zischka H, et al. FGF23 is processed by proprotein convertases but not by PHEX. Bone .2004; 35(2): 455-462.
    24. Liu S, Gou R. Simpson LG, et al. Regulation of fibroblastic growth factor 23 ezpression but not degradation by PHEX. J Biol Chem. 2003; 278(39):37419-37426.
    25. Matsumoto N, Jo OD, Shih RN, et al. Altered cathepsin D metabolism in PHEX antisense human osteoblast cells. Biochem Biophys Res Commun. 2005; 332(1): 248-253.
    26. Alos N, Ecarot B. Downregulation of osteoblast Phex expression by PTH. Bone. 2005;37(4): 589-598.
    27. Alos N, Ecarot B. Downregulation of osteoblast Phex expression by PTH. Bone. 2005;37(4): 589-598.
    28. Vargas MA, St-Louis M, Desgroseillers L, et al. Parathyroid hormone-related protein (1-34) regulates Phex expression in osteoblasts through the protein kinase A pathway. Endocrinology. 2003; 144(11): 4876-4885.
    29. Hines ER, Collins JF, Jones MD, et al. Glucocorticoid regulation of the murine PHEX gene. Am J Physiol Renal Physiol. 2002; 283(2)356-363.
    30. Zoidis E, Gosteli-Peter M, Ghirlanda-Keller C, et al. IGF-I and GH stimulate Phex mRNA expression in lungs and bones and 1,25-dihydroxyvitamin D(3) production in hypophysectomized rats. Eur J Endocrinol. 2002; 146(1): 97-105.
    31. Zoidis E, Zapf J, Schmid C. Phex cDNA cloning from rat bone and studies on phex mRNA expression: tissue-specificity, age-dependency, and regulation by insulin-like growth factor (IGF) I in vivo. Mol Cell Endocrinol .2000; 168(1-2): 41-51.
    32. Blyde-Hansen TD, Benenhouse HS, Goodyer P. PHEX expression in parathyroid gland and parathyroid hormone dysregulation in X-linked hypophosphatemia. Pediatr Nephrol. 1999; 13(7): 607-611.
    33. Meyer RA Jr, Meyer MH. MRNA expression of Phex in mice and rats: the effect of low phosphate diet. Endocrine. 2000; 13(1): 81-87.
    34. Meyer RA Jr, Young CG, Meyer MH, et al. Effect of age on the expression of Pex(Phex) in the mouse. Galcif Tissue Int. 2000; 66(4): 282-287.
    35. Guo R, Quarles LD. Cloning and sequencing of human PEX from a bone cDNA library: evidence for its developmental stage-specific regulation in osteoblasts. J Bone Miner Res.1997; 12(7): 1009-1017.
    36. Qin C, Baba O, Butler WT. Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol Med. 2004; 15(13): 126-136.
    1. Fiona Francis , Tim M Strom, Steffen Henning, et al. Genomic Organization of the Human Pex Gene Mutated in X-Linked Dominant Hypophosphatemic Rickets. Genome Res.1997; 7(6):573-585.
    2. Turner AJ, Tanzawa K. Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX. FASEB J. 1997; 11(5):355-364.
    3. Sabbagh Y, Boileau G, Campos M, et al. Structure and function of disease-causing missense mutations in the PHEX gene. J Clin Endocrinol Metab. 2003; 88(5):2213-2222.
    4. Beck L, Soumounou Y, Martel J, et al. Pex/PEX tissue distribution and evidence for a deletion in the 3’ region of the Pex gene in X-linked hypophosphatemic mice. J Clin Invest. 1997; 99(6)1200-1209.
    5. Du L, Sesbarats M, Viel J, et al. cDNA cloning of the murine Pex gene implicated in X-linked hypophosphatemia and evidence for expression in bone. Genomics. 1996; 36(1):22-28.
    6. Ruchon AF, Tenenhouse HS, Marcinkiewicz M, et al. Developmental expression and tissue distribution of Phex protein: effect of the Hyp mutation and relationship to bone markers. J Bone Miner Res. 2000;15(8):1440-1450.
    7. Sabbagh Y, Jones AO, Tenenhouse HS. PHEXdb, a locus-specific database fpr ,itations causing X-linked hypophosphatemia. Hum Mutat. 2000; 16(1):1-6.
    8. Thompson DL, Sabbagh Y, Tenenhouse HS, et al. Ontogeny of Phex/PHEXprotein expression in mouse embryo and subcellular localization in osteoblasts. J Bone Miner Res. 2002; 17(2):311-320.
    9. Herasse M, Spentchian M, Taillandier A, et al. Molecular study of three cases of odontohypophosphatasia resulting from heterozygosity for mutations in the tissue non-specific alkaline phosphatase gene. Journal of Medical Genetics. 2003; 40(8):605-609.
    10. Ruchon AF, Marcinkiewicz M, Siegfried G, et al. Pex mRNA is localized in developing mouse osteoblasts and odontoblasts. J Histocem Cytochem. 1998; 46(4):459-468.
    11. Boileau G, Tenenhouse HS, Desgroseillers L, et al. Characterization of PHEX endopeptidase catalytic activity: identification of parathyroid-houmone-related peptide107-139 as a substrate and osteocalcin, PPi and phosphate as inhibitors. Biochem J. 2001; 355(3):707-713.
    12. Camps M, Couture C, Hirata IY, et al. Human recombinant endopeptidase PHEX has a strict S1’ specificity for acidic residues and cleaves peptides derived from fibroblast growth factor-23 and matrix extracellular phosphoglycoprotein. Biochem J. 2003; 373(1):271-179.
    13. Row PS, Garrett IR, Schwarz PM, et al. Surface plasmom resonance (SPR) confirms that MEPE binds to PHEX via the MEPE-ASARM motif: a model for inpaired mineralization in X-linked rickets (HYP). Bone. 2005; 36(1):33-46.
    14. Guo R, Liu S, Spureny RF, et al. Analysis of recombinant Phex: an endopeptidase in search of a substrate. Am J Physiol Endocrinol Metab. 2001; 281(4):837-847.
    15. Bowe AE, Finnegan R, Jan de Beur SM, et al. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun. 2001; 284(4):977-981.
    16. Benet-Pages A, Lorenz-Depiereux B, Zischka H, et al. FGF23 is processed by proprotein convertases but not by PHEX. Bone .2004; 35(2):455-462.
    17. Liu S, Gou R. Simpson LG, et al. Regulation of fibroblastic growth factor 23 ezpression but not degradation by PHEX. J Biol Chem. 2003; 278(39):37419-37426.
    18. Matsumoto N, Jo OD, Shih RN, et al. Altered cathepsin D metabolism in PHEX antisense human osteoblast cells. Biochem Biophys Res Commun. 2005; 332(1):248-253.
    19. Alos N, Ecarot B. Downregulation of osteoblast Phex expression by PTH. Bone. 2005;37(4): 589-598.
    20. Vargas MA, St-Louis M, Desgroseillers L, et al. Parathyroid hormone-related protein (1-34) regulates Phex expression in osteoblasts through the protein kinase A pathway. Endocrinology. 2003; 144(11):4876-4885.
    21. Hines ER, Collins JF, Jones MD, etc. Glucocorticoid regulation of the murine PHEX gene. Am J Physiol Renal Physiol. 2002; 283(2)356-363.
    22. Zoidis E, Gosteli-Peter M, Ghirlanda-Keller C, et al. IGF-I and GH stimulate Phex mRNA expression in lungs and bones and 1,25-dihydroxyvitamin D(3) production in hypophysectomized rats. Eur J Endocrinol. 2002; 146(1):97-105.
    23. Zoidis E, Zapf J, Schmid C. Phex cDNA cloning from rat bone and studies on phex mRNA expression: tissue-specificity, age-dependency, and regulation by insulin-like growth factor (IGF) I in vivo. 2000; 168(1-2):41-51.
    24. Blyde-Hansen TD, Benenhouse HS, Goodyer P. PHEX expression in parathyroid gland and parathyroid hormone dysregulation in X-linkedhypophosphatemia. Pediatr Nephrol. 1999; 13(7):607-611.
    25. Meyer RA Jr, Meyer MH. MRNA expression of Phex in mice and rats: the effect of low phosphate diet. Endocrine. 2000; 13(1):81-87.
    26. Meyer RA Jr, Young CG, Meyer MH, et al. Effect of age on the expression of Pex(Phex) in the mouse. Galcif Tissue Int. 2000; 66(4):282-287.
    27. Guo R, Quarles LD. Cloning and sequencing of human PEX from a bone cDNA library: evidence for its developmental stage-specific regulation in osteoblasts. J Bone Miner Res.1997; 12(7):1009-1017.
    28. Boukpessi T, Septier D, Bagga S , et al. Dentin alteration of deciduous teeth in human hypophosphatemic rickets. Calcif Tissue Int. 2006; 79(5):294-300.
    29. 秦满,石广香,葛立宏. 低磷酸酯酶症乳牙的光镜和扫描电镜研究. 中华口腔医学杂志. 1999,34(1):200-200.
    30. Qin C, Baba O, Butler WT. Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol Med. 2004; 15(13):126-136.
    31. Onishi T, Okawa R, Ogawa T, et al. Phex mutation causes the reduction of npt2b mRNA in teeth. J Dent Res. 2007;86(2):158-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700