免耕稻田磷素动态及组分特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
免耕是实现低碳经济的一项重要农业措施;水稻是湖北省主要粮食作物之一,稻田免耕已得到了大面积的推广,但对于稻田免耕磷素养分循环的研究还不完善,本研究旨在探究该地区免耕稻田的磷素转化特征,为免耕技术的进一步优化提出理论依据。于2008年与2009年,选取湖北省武穴市油菜-水稻轮作制度下稻田为研究对象,通过大田试验与室内分析研究了免耕稻田水体与土壤的磷素转化特点及对环境的影响。试验共设4个处理,分别是免耕+不施肥(NTO)、翻耕+不施肥(CTO)、免耕+复合肥(NTC)和翻耕+复合肥(CTC)。主要研究了田面水、渗漏水的磷素动态与渗漏损失,施肥与耕作对土壤不同土层的速效磷(OP)、全磷(TP)的影响,耕作与施肥对磷酸酶活性的影响,耕作与施肥对有机磷(OP)和无机磷(IOP)及其组分的影响,施肥与耕作对土壤磷的吸附-解析特性与土壤固磷能力的影响。主要结论有:
     1)渗漏水溶解磷(RP)/渗漏水总磷(TP)在61.13%~92.74%范围,说明稻田肥料磷主要以可溶态磷下渗;施肥显著提高稻田田面水的磷素浓度,施肥后NTC和CTC田面水TP浓度分别达到9.79±0.65 mg/L和8.25±0.29 mg/L,一周后显著下降,施肥后一周内是控制田面水磷素径流损失的关键时期;在施磷肥后,田面水溶解磷(DP)的浓度达到稳定后仍保持在0.04mg/L-0.1 mg/L,渗漏水RP浓度在0.047 mg/L~0.117mg/L,超过了水体富营养化的临界值,表明这部分磷对环境的影响是不可忽视的;处理NTC田面水各形态磷素浓度均显著高于CTC处理。
     2)施肥显著增加了稻田土壤0~5 cm土层的AP和TP含量,在土壤中呈现上高下低的分布,且这种随土层加深而含量降低的趋势免耕较翻耕明显。在施肥条件下TP有逐年增加的趋势;免耕没有影响0~5 cm土层的TP和AP;但免耕施肥TP显著高于翻耕施肥处理;而翻耕施肥AP显著高于免耕施肥;施肥与耕作不影响5~20 cm土层的AP与TP。
     3)免耕有利于提高磷酸酶活性,施磷肥有抑制磷酸酶活性的趋势。土壤磷酸酶活性在土层中的分布与AP分布相似,但是通过相关分析在表土层与AP没有相关性,而在深土层与AP呈现出显著正相关。
     4)施肥在表层土上降低了土壤磷固定能力。施肥降低了土壤的磷缓冲能力与对磷的吸附,增加了解析能力,但吸附与解析并不是简单的相反过程。在不施磷肥的条件下,免耕比翻耕促进土壤磷缓冲能力的增加;在翻耕条件下施肥降低了土壤磷缓冲能力,但在免耕的条件下,施肥增加了土壤磷缓冲能力。
     5)施肥与耕作不影响TOP含量。OP含量高低顺序为:MLOP>HROP>MROP>LOP;施肥抑制OP各组分转化动态向LOP方向进行。免耕促进了LOP的转化。MLOP是较活跃的一个组分,向LOP与MROP和HROP的转化都比较活跃。IOP含量高低顺序为:Fe-P, O-P>Al-P>Ca-P;水稻收获后的TIOP含量较水稻种植前的TIOP含量降低。Al-P与Fe-P的有效性较高,翻耕促进Al-P与Fe-P的转化。免耕土壤磷的有效性高于翻耕。
Rice was one of the major Grain crops in Hubei province China. The no-tillage is an important agricultural practices to implement low-carbon economy. No-tillage had implemented promotion over large areas, but the study of paddy tillage is not perfect. This study aimed to explore P transformation in no-tillage (NT) paddy fields in the region and contribute to further optimization of no-tillage technology. Test point was located at Hubei Province Wuxue City was rape-rice rotation system in 2008 and 2009. The four treatments in this study were no-tillage+no fertilizer (NT0), conventional tillage+no fertilizer (CT0), no-tillage+compound fertilizer (NTC) and conventional tillage+ compound fertilizer (CTC) in rice (Oryza sativa L.) cultivation. This study was conducted to Mainly studied floodwater and percolation water P dynamics, leakage losses and effects of tillage and fertilizer on available phosphorus (AP), total P (TP), phosphatase activities, organic P (OP) and inorganic P (IOP) and their fractions, soil P adsorption-desorption and solid ability to fixed P et al. The results indicate:
     1) Reactive phosphorus (RP)/total phosphorus (TP) in Percolating water was 61.13%-92.74%, was mainly P state in percolation water; Application of P fertilizer significantly enhanced concentration of TP, dissolved P (DP) and particulate phosphorus (PP) concentrations in floodwater, in witch concentration of TP respectively came up to 9.79±0.65 mg/L和8.25±0.29 mg/L in NTC and CTC. It was the key time in one week after P application to control P losser; P fertilizer applied, floodwater DP concentrations remained 0.04 mg/L-0.1 mg/L, leakage of water RP concentration remained 0.047 mg/L-0.117 mg/L, contributed to eutrophication, indicated that this part of the environmental impact of phosphorus can not be ignored; P concentrations in floodwater is higher in NTC than CTC.
     2) P application significantly increased AP, TP in 0-5cm layer soil, their content decreased with layer deepened, and this tendency was more significant in NT than CT. TP content increased year by year in CT. NT did not afect AP and TP in 0-5cm layer soil, but TP is significantly higher in NT than that in CT, while AP is significantly higher in CT than that in NT. Fertilizer and tillage did not affect AP and TP in 5-20cm layer soil.
     3) P application restrained Soil phosphatase activity, NT promoted soil phosphatase activity. Distribution of Soil phosphatase activity in the soil was similar to AP, but phosphatase activity was not relevant to AP in surface soil, while relavant toAP in deep soil by correlation analysis.
     4) P fixed capacity of the soil is relatively stable, was not subject to fertilization and tillage. P application reduced the P buffering capacity and adsorption, while increased the desorption capacity, but adsorption is not a simple contrast with desorption. Buffering ability in NTO higher than that in CTO, in CTO was higher than that in CTC, in NTC was higher than that in NTO.
     5) Fertilizer and tillage did not affect the TOP content. The content of OP fractions and ratio of each fractions to TOP were as follows:Moderately labile organic P (MLOP)> moderately stable organic P (MROP)>highly stable organic P (HROP)> labile organic P (LOP). Fertilizer restrained the transformation of LOP. Tillage promoted the transformation of LOP. The content of IOP fractions and ratio of each forms to TIOP were as follows:Fe-P, O-P> Al-P> Ca-P; Fe-P and O-P was major existing form of IOP. CT promoted the transformation of Al-P and Fe-P. correlation analysis showed, Al-P, Fe-P, Ca-P, O-P and MLOP existed better correlation to AP in NT than that in CT.
引文
1.鲍士旦,土壤农化分析.北京:中国农业出版社,2000,42-56
    2.曹凑贵,严力蛟,刘黎明,等.生态学概论.北京:高等教育出版社2002,5,388-397
    3. 陈俊,姚菊强,俞永远,等.施磷水田田表排水磷素流失特征及其机制研究.广东农业科学2007年第8期.
    4.代光照,免耕施肥对稻田土壤生物学特性及温室气体排放的影响.华中农业大学,硕士学位论文,2009
    5. 国家环保局,水和废水分析方法.北京:中国环境科学出版社1989,274-275
    6. 范成新.太湖水体生态环境历史演变.湖泊科学,1996,8(4):297-304.
    7.冯跃华,邹应斌,Buresh RJ,等.免耕直播对一季晚稻田土壤特性和杂交水稻生长及产量形成的影响.作物学报,2006,32(11):1728-1736.
    8.冯跃华,邹应斌,王淑红,等.免耕对土壤理化性状和直播稻生长及产量形成的影响.作物研究2004,3137-140.
    9.高超,张桃林.太湖地区农田土壤磷素动态及流失风险分析.农村生态环境2000,16(4):24-27.
    10.高超,张桃林,吴蔚东.氧化还原条件对土壤磷素固定与释放的影响.土壤学报,2002,39(4):542-549.
    11.高明,张磊,魏朝富,等.稻田长期垄作免耕对水稻产量及土壤肥力的影响研究.植物营养与肥料学报2004a,10(4):343-348.
    12.高明,周保同,魏朝富,等.不同耕作方式对稻田土壤动物、微生物及酶活性的影响研究.应用生态学报2004b,15(7):1177-1181.
    13.顾益初,蒋柏藩.石灰性土壤无机磷分级的测定方法.土壤,1990,22(2):101-110.
    14.顾永明,汪寅虎.磷肥在土壤中的转化及其与土壤有效磷的关系.土壤,1986,18(3):120-125.
    15.韩永俊,尹大庆,赵艳忠.秸秆还田的研究现状.农机化研究,2003(2):39-40
    16.何园球,李成亮,刘晓利,等.水分和施磷量对简育水耕人为土中磷素形态的影响.土壤学报,2008,45,(6):1081-1086.
    17.黄绍敏,宝德俊,皇甫湘荣,等.长期施肥对潮土土壤磷素利用与积累的影响.中国农业科学,2006,39(1):102-108.
    18.黄庆海,赖涛,吴强,等.长期施肥对红壤性水稻土有机磷组分的影响.植物营养与肥料学报,2003,9(1):63-66.
    19.黄东迈.免耕少耕条件下土壤肥力与施肥.土壤通报,1988,19(2):93-97.
    20.黄锦法,俞建明,陆建贤,等.稻田免耕直播对土壤肥力性状与水稻生长的影响.浙江农业科学,1997,5:226-228.
    21.侯方安,陈海燕.保护性耕作技术溯源及在世界的发展.农业机械,2005(5):76-77.
    22.贺铁,李世俊,Bowman C.土壤有机磷分组法的探讨.土壤学报,1987,24(2):152-159.
    23.胡荣根,赵燕洲,安徽省化肥施用现状及提高利用率对策.安徽农学通报,2007,13(4):54-57.
    24.蒋柏藩,鲁如坤等,南方水稻土中的磷酸铁对水稻磷素营养的意义.土壤学报,1963,11(4):361-369.
    25.顾益初,蒋柏藩石灰性土壤无机磷分级的测定方法.土壤.1990,22(2):101-102
    26.金洁,杨京平,施洪鑫,等.水稻田面水中氮磷素的动态特征研究.农业环境科学学报,2005,24(2):357-361.
    27.江晶,张仁陟,海龙.耕作方式对黄绵土无机磷形态的影响.植物营养与肥料学报,2008,14(2):387-391
    28.鲁如坤主编.土壤农业化学分析方法.北京:中国农业科技出版社,1999.
    29.鲁如坤,时正元.退化土壤肥力障碍特征及重建措施Ⅲ.典型地区红壤磷素积累及其环境意义.土壤,2001,33(5):227-231.
    30.鲁如坤,蒋柏藩.我国南方几种水稻土的磷肥施用问题.土壤学报,1962,10(2):175-182
    31.鲁如坤主编.土壤-植物营养学:原理和施肥.北京:化学工业出版社,1998.
    32.鲁如坤.土壤磷素化学研究进展.土壤学进展,1992,18(6):1-5
    33.李卫正,王改萍,张焕朝,等.两种水稻土磷素渗漏流失及其与Olsen磷的关系.南京林业大学学报,2007,31(3):52-56.
    34.李孝良.几种水稻土对磷的吸附及解吸特性研究.安徽农业技术师范学院学报1999,13(1):21-26
    35.李孝良,于群英,陈如梅.土壤有机磷形态的生物有效性研究.土壤通报,2004,34(2):98-101
    36.李成芳,曹凑贵,汪金平,等.稻鸭、稻鱼共作对稻田P素动态变化的影响.长江流域资源与环境,2009,18:(2)126-131.
    37.李春杰,张强,韩宝文.农业非点源污染状况与防治.河北农业科学,2006
    38.刘建玲,李仁岗,廖文华,等.白菜-辣椒轮作中磷肥的产量效应及土壤磷积累研究.中国农业科学,2005,38(8):1616-1620.
    39.刘方,黄昌勇,何腾兵,等长期施磷对黄壤旱地磷库变化及地表径流中磷浓度的影响.应用生态学报2003,14(2):196-200.
    40.刘方,黄昌勇,何腾兵,等.长期施肥下黄壤早地磷对水环境的影响及其风险评价.土壤学报,2003,40(6):838-844.
    41.陆海明.土壤无机磷组成及有效性研究.扬州大学,硕士论文,2003.
    42.吕唤春.千岛湖流域农业非点源污染及其生态效应的研究.浙江大学,博士学位论文,2002.
    43.刘世平,庄恒扬,陆建飞,等.免耕对土壤结构的影响.土壤学报,1998,35(1):33-37.
    44.卢维盛,李华兴,刘远金,陈喜崇.不同耕作方法对抛秧水稻生长和氮素利用的影响.华南农业大学学报2001,22(4):8-10,42
    45.马立珊,汪祖强,张水铭,等.苏南太湖水系农业面源污染及其控制对策研究.环境科学学报,1997,17(1):39-47.
    46.潘遵谱,许学前,吴敬民.灭茬免耕发在太湖地区多熟制水稻土上的应用.江苏农业科学,1983,(10):37-40.
    47.彭春瑞.水稻免耕栽培的主要问题及解决途途径.中国农村小康科技2004,2(1):14-15.
    48.钱泽澎,闵航编著.沼气发酵微生物学杭州.浙江科学技术出版社,1986.
    49.全国明,章家恩,严会超,等.免耕对稻田土壤肥力的影响研究进展.中国农学通报2005,21(9):266-269,278.
    50.全为民,严力蛟.农业面源污染对水体富营养化的影响及其防止措施.生态学报,2002,22(3):291-299.
    51.任泽明.湖南水稻免耕直播、免耕抛秧技术的发展前景.作物研究,2003,17(4):174-175
    52.施彩凤.免耕与翻耕直播对土壤特性及水稻生长的影响.土壤肥料,1999,5:8-10
    53.史春余,张夫道,张俊清,等.长期施肥条件下设施蔬菜地土壤养分变化研究.植物营养与肥料学报,2003,9(4):437-441
    54.世界资源研究所、联合国环境规划署、联合国开发计划署编.世界资源报告(1992-1993).北京:中国环境科学出版社,1993.
    55.沈仁芳,蒋柏藩.石灰性土壤的形态分布及其有效性.土壤,1992,9(1):80-85.
    56.孙瑞莲,赵秉强,朱鲁生,等.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用.植物营养与肥料学报,2003,9(4):406-410.
    57.孙顺才,黄漪平(主编).太湖.北京:海洋出版社,1993.
    58.宋海燕,叶优良,曲日涛.山东省粮食生产与化肥施用状况研究.中国农学通报2005,21(9):380-384.
    59.谭向勇.我国玉米市场问题分析及对策建议.农产品供需前景与结构优化研 讨会专栏1998,30-33.
    60.张为政,陈魁卿.有机肥对土壤有机磷组分及其有效性的影响.东北农学院学报1988,19(2):112,119.
    61.王明权,李效栋,景明.覆盖免耕的节水效应与土壤温度的变化.甘肃农业大学学报,2007,42(1):119-122
    62.王道涵,何娜,梁成华.淹水条件下有机酸(糖)对土壤磷素固定的影响.土壤通报,2005,36,(4):518-522
    63.王英.淹水和旱作稻田土壤中微生物群落多样性的研究.南京农业大学硕士学位论文,2006
    64.王昌全,魏成明,李廷强,等.不同免耕方式对作物产量和土壤理化性状的影响.四川农业大学学报,2001,19(2):152-154,187.
    65.王旭东,李祖荫,张一平.不同有机物料施入土壤后的磷素转化及其供磷能力的差异土壤通报,1998,29(3):113-115.
    66.王海燕,杜一新,梁碧元.我国化肥使用现状与减轻农业面源污染的对策.现代农业科技,2007,20,135-136.
    67.徐阳春,储国良等.水旱轮作下长期免耕和施用有机肥对土壤某些肥力性状的影响.应用生态学报,2000,11(4)549-552.
    68.徐祖祥.连续秸秆还田对作物产量和土壤养分的影响.浙江农业科学,2003(1):35-36.
    69.徐向阳,刘俊.太湖湖区有机物流失模拟.湖泊科学,1999,11(1):81-85.
    70.73.徐阳春,沈其荣,雷宝坤,等.水旱轮作下长期免耕和施用有机肥对土壤某些肥力性状的影响.应用生态学报,2000,11(4):549-552.
    71.徐菁,姜玲若.太湖地区稻田耕作方法研究.免耕稻田土层中磷的活.江苏农业科学,1984,(1):25-27.
    72.徐明岗.土壤磷扩散规律及其能量特征的研究.Ⅱ.施肥量及水肥温相互作用对磷扩散的影响.土壤学报,1998,35(1):55-65.
    73.杨文,龙杨,树华.滇池流域非点源控制区划研究湖泊科学.湖泊科学,1998,10(3):55-60.
    74.杨珏,阮晓红.土壤磷素循环及其对土壤磷流失的影响.土壤与环境,2001,10(3):256-258.
    75.尹金来,沈其荣,周春霖,等.猪粪和磷肥对石灰性土壤有机磷组分及有效性的影响.土壤学报,2001,38(3):295-300.
    76.宇万太,陈欣,张璐,等.磷肥低量施用制度下土壤磷库的发展变化.土壤总磷库和有机、无机磷库.土壤学报,1996,33(4):373-379.
    77.袁可能.植物营养元素的土壤化学.科技出版社.1983,110-156.
    78.张志剑,朱荫湄,王珂,等.水稻田土-水系统中磷素行为及其环境影响研究.应用生态学报,2001,12(2):229-232.
    79.张磊.自然免耕稻田的土壤微生物与肥力关系.西南农业大学硕士学位论文2002.
    80.张玉珍.九龙川江上游五川流域农业非点源污染研究.厦门大学博士学位论文,2003.
    81.张海涛,刘建玲,廖文华,等.磷肥和有机肥对不同磷水平土壤磷吸附-解吸的影响.植物营养与肥料学报,2008,14(2):284-290.
    82.张海林,高旺盛,陈阜,等.保护性耕作研究现状、发展趋势及对策.中国农业大学学报,2005,10(1):16-20.
    83.张志剑,王坷,朱荫湄,等.浙北水稻主产区由间土-水磷系流失潜能.环境科学,2001,22(1):98-101.
    84.张志剑,阮俊华,朱荫湄,等.稻田层间流活性磷素的动态变化.环境科学,2003,24(2):46-49.
    85.张水铭,马杏法,汪祖强.农田排水中磷素对苏南太湖水系的污染.环境科学,1993,14(6):24-29.
    86.张宪武.几种土壤的酶活性与土壤肥力评价.土壤学报,1962,10(1):1212.
    87.赵少华,宇万太,张璐,等.土壤有机磷研究进展.应用生态学报,2004,15(11):2189-2194.
    88.赵国臣,郭晞明,隋鹏举,等.水田免耕试验示范研究.吉林农业科学,2004,29(1):6-9
    89.赵聚宝.秸秆覆盖对旱地作物水分利用率的影响.中国农业科学,1996,29(2):59~66.
    90.赵之重.土壤酶与土壤肥力关系的研究.青海大学学报(自然科学版),199816(3):24229.
    91.周全来,赵牧秋,鲁彩艳,等.施磷对稻田土壤及田面水磷浓度影响的模拟.应用生态学报,2006,17(10):1845-1848.
    92.周萍,范先鹏,何丙辉,等.江汉平原地区潮土水稻田面水磷素流失风险研究[J].水土保持学报,2007,21(4):47-50,116.
    93.周广业,阎龙翔.长期施用不同肥料对土壤磷素形态转化的影响.土壤学报,1993,30(4):443-446.
    94.邹应斌,李克勤,任泽民.水稻的直播与免耕直播栽培研究进展.作物研究,2003,(1):52-59.
    95.[苏]Φ.x哈兹耶夫.土壤酶活性.北京:科学出版社,1980.
    96. Dag O. Hessen et al.氮流失对淡水和海洋受体富营养化的重要意义.AMBIO-人类环境杂志.1997,26(5):306-313
    97. Boers P C M. Nutrient em issions from agriculture in the Netherlands causes and remedies. Water Sciencc and Technology,1996,33(4-5):183-189.
    98. Borie F, Redel Y, Rubio R, et al. Interactions between crop residues application and mycorrhizal developments and some soil-root interface properties and mineral acquisition by plants in an acidic soil. Biol Fertil Soils,2002,36:151-160.
    99. Bowman R. A., Cole C. V. An exploratory method for fractionation of organic phosphorus from grassland soils. Soil Sci.,1978,125:95-101.
    100.C. Daverede, A. N. Kravchenko, R. G. Hoeft, et al. Phosphorus Runoff: Effect of Tillage and Soil Phosphorus Levels. J Environ. Qual.,2003,32,1436-1444.
    101.Chang, S, C. and M, L. Jackson, Fractionation of soil phosphorus. Soil Sci,195784:133-144.
    102.Derpsch R. Frontiers of conservation tillage and advances in conservation practice. Paper Presented at the 10th ISCO Conference,1999,24-28. West Lafayette Institute, USA.1999.
    103.Dennis L Crowin, Keith Loague, Timothy R, et al. GIS-based modeling of non-point source pollutants in the vadose zone. Soil and Water Conservation,1998,53:34-38.
    104.Smillie G. W., Curtin D. and Syers. J. K. Influence of Exchangeable Calcium on Phosphate Retention by Weakly Acid Soils. Soil Sci Soc Am J 1987,51:1169-1172
    105.Gaynor J D, Findlay W I. Soil and phosphorus loss from conservation and conventional tillage in corn production. J Environ Qual,1995,24:734-741.
    106.Gupta VVSR,Germida J.J.Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation. Soil Boil&Biochem.,1998,20:777-786.
    107.Hansen N C, Gupta S C. Snowmelt. Runoff, sediment, and phosphorus losses under three different tillage systems. Soil Till Res,2000,57:93-100.
    108.Heckrath G, Brooks PC, Poulton PR, et al. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk Experiment. J Environ Qual,1995,24:904-910.
    109.J.M. Andersen, An ignition method for determination of total phosphorus in lake sediments. Water Res,1976,10(4):329-331.
    110.JuoASR and LalR. Nutrieni Profileinatro Piealalfisol under eonventiona lnad no-till systems.Soil Sei,1979,127:168-173.
    111.Kronvang B, Grasboll P, Larsen S E, et al. Diffuse Nutrient losses in denmark. Water Science and Technology,1996,33(4-5):183-189.
    112.Lumunyon J. L., Gilbert R. G. The concept and need for a phosphorus assessment tool. J Prod Agric,1993,6:483-496.
    113.Lal R.No-tillage effcts on soil Pro-Perties unde rdie fferni CroP sin westenr Nigeria. Soil Sci Soc Am J,1976,40:762-768
    114.N. J. Barrow. A mechanistic model for describing the sorption and desorption of phosphate by soil. Eu J Soil Sci,1983,34 (4),733-750
    115.Phiri S, Amezquita E, Rao IM, etal.. Disc harrowing intensity and its impact on soil properties and plant growth of agropastoral systems in the Llanos of Colombia [J]. Soil Till Res,2001,62,131-143.
    116.P.C. Brookes D.S. Powlson D.S. Jenkinson Phosphorus in the soil microbial biomass.
    117.Soil Biology and Biochemistry,1984,16(2):169-175
    118.Reddy DD, Rao AS, Takkar PN.. Effects of repeated manure and fertilizer phosphorus additions on soil phosphorus dynamics under a soybean-wheat rotation. Biol Fert Soils,1999,28:150-155.
    119.Reddy DD,Rao AS,Rupa TR. Effects of continuous use of cattle manure and fertilizer phosphorus on crop yields and soil organic phosphorus in a Vertisol. Bioresour Technol 2000,75:113-118
    120.R.Mrabet. Total, Particulate organic matter and structural stability of a Calcixeroll soil under different wheat rotations and tillage systems in a semiarid area of Morocco. Soil Till Res,2001,57:225-235
    121.R. Strauss, G.W. Brummer and N.J. Barrow, Effects of crytallinity of goethite:Ⅱ. Rates of sorption and desorption of phosphate. Eur. J. Soil Sci.1997,48:87-99.
    122.Sharpley A N, Meyer M. Managing agruculture nonpoint-source overview. J Environ Qual,1994,23:1-3.
    123.Sharpley A N. The selective erosion of plant nutrients in runoff. Soil Sci Soc Am J,1985,49:1527-1534
    124.Simard RR, Beauchemin S, Haygarth PM. Potential for preferential pathways of phosphorus transport. J Environ Qual,2000,29:97-105.
    125.S. Saggar, R. L., Parfitt, G. Salt et al. Phosphorus transformations during decomposition of pine forest floor with different phosphorus status. Biol Fertil Soils,1998,27(2):197-204.
    126.Shear. GM. and W.W.W.Moschler. Continus corn by the no-tillage and conventional tillgae method:A six-year comParision.Agron.J,1969,61:524-526.
    127.Thompson, L. M. and Black C. A. The effect of temperature on the mineralization of soil organic phosphorus. Proc. Soil Sci Soc Am J, 1947,12:323-326.
    128.Takeda I A, Fukushima and Tanaka R. Non-point pollution reduction in a paddy-field watershed using a circular irrigation system. Water Res,1997,31:2685-2692.
    129.Udoyuru S Tim, Robbert Jolly.Evaluating Agricultural Non-point Source Pollution Using Intergrated Geographic Information Systems and Hydrologic Water quality Model. J Environ Qual,1994,23(1):25-35
    130.Unger P.W. Organic matter, nutrient and PH distribution in no and conventional tillage semiarial soil. Agron,1991,83(1):186-189
    131.Verma L.P.,Singh A.P and Srivastva M.K. Relationship between Olsen-P and inorganic P fraction. Journal of Indian Society of soil science,1991,39:361-362
    132.Wier DR,Black CA.. Mineralization of organic phosphorus insoils as affected by addition of inorganic phosphorus. Soil Sci Soc A m Proc,1968,32:51-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700