多级渗滤系统对西部小城镇农业径流污染拦截净化效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个多山的国家,山地面积占国土面积的三分之二,西南地区的比例更高,如四川和重庆地区的山地面积占到了97.46%。山地地貌的特殊性带来了山地生态环境的敏感性和脆弱性,水源地水质水量丰枯变化大,面源污染突出。本课题前期,已经开展了生物-生态的联合措施修复水源地补给河水的试验,试验过程发现,雨季面源污染的冲击作用影响了修复的稳定性。
     本文立足于减轻生物-生态修复的冲击负荷,保护水源地补给河流,针对工程设计要素,依据生态多样性理论,构建多级渗滤系统拦截削减农业径流污染。基于对特征汇水区域农业面源污染的调研和径流监测,研究了系统对农业径流污染的处理效能与特性,分析了污染物负荷、水力负荷、植物等因素对污染物去除率的影响。
     通过对特征汇水区域径流监测发现:非雨季时,径流污染的CODMn、TN、TP含量较低;雨季,径流污染中CODMn、TN、TP超出《地表水环境质量标准》(GB3838-2002)III类水质标准,部分指标超出V类水质类水质。污染物随时间变化幅度大,但污染高峰基本与降雨高峰及农田施肥季节一致。
     多级渗滤系统运行结果表明,系统对进水水质水量变化有较好的适应性,对SS、CODMn、NH4+-N、TN和TP具有较好的去除效果,平均去除率分别为80%、35%、78%、37%、48%。随着渗滤系统级数的增加,各污染物浓度在沿程上逐渐降低,去除率在最后一级达到最大。系统对TN、NH4+-N、CODMn去除效率的增加不随着串联级数的增加而线性递增,呈逐渐平缓的趋势,但SS、TP去除率的增加在系统三级上没有出现明显减缓趋势。系统各级进出水浓度的回归分析结果表明,系统第一级对SS、CODMn、TP的去除效率最高,第二级对TN、NH4+-N的去除效率最高,第三级在进水浓度较低的情况下,NH4+-N、SS仍保持了较好的去除效果。从系统各级N、P去除特性的分析结果看,对N元素的去除,系统第一级以拦截颗粒态为主,第二、三级以溶解态去除为主,在对P元素的去除中,系统第一级对颗粒态与溶解态去除作用均较好,系统第二级以颗粒态的去除为主,第三级在对P去除率较低,溶解态与颗粒态的去除有均化现象。
     从系统净水效果影响因素分析结果看,种植植物后,系统对SS、PN、PP、CODMn、DTN的去除率明显提高,NH4+-N、DTP去除率提高效果不明显;系统对SS、CODMn、PN、NH4+-N、DTN去除率随水力负荷的变化相似,在低、中水力负荷条件下去除率相差不大或略有升高,进入高水力负荷后,去除率有比较明显的降低,DTP去除率随水力负荷变化不明显;系统CODMn、NH4+-N、DTP的去除率随污染负荷的增大而升高,污染负荷对SS和DTN的去除影响不明显。
China is a mountainous country, and mountain area accounts for two thirds of land area, a higher proportion in the southwest, which is 97.46% in Sichuan and Chongqing area. The particularity of mountain area landform leads to sensitivity and vulnerability of ecological environment, with the quantity and quality of the water source fluctuating largely and non-point pollution being outstanding.
     In our previous research, the test that biological-ecological restoration of joint measures to supply water to the river system had been carried out, in the course of which discovering that the non-point pollution impact in rainy season affected the stability of restoration.
     On the basis of reducing the impact load of biological-ecological restoration and protecting water source to supply the river, considering engineering design elements, according to ecological diversity theory, the Multi-stage filtration system was built to abate agricultural runoff pollution in this paper; based on the investigation of agricultural nonpoint pollution and runoff monitoring in the characteristic catchment areas, the efficiency and characteristics of the system for agricultural runoff pollution treatment were studied, and the influences of pollutant load, hydraulic load, vegetation and other factors on the pollutant removal rate were investigated.
     The runoff monitoring of characteristic catchment areas showed: in the non-rainy season, the concentration of CODMn,TN and TP in runoff pollution were lower; in the rainy season, the CODMn, TN and TP went beyond III class of Surface Water Environmental Quality Standard (GB3838-2002), even exceeded V class in some time. The pollutant changed a lot with time, however, its loss was basically consistent to the time of rainfall peak and agricultural fertilization.
     The result of the Multi-stage filtration system showed that it was well adaptive to variation of inflow quality and quantity and better removal effect for SS, CODMn, NH4 +-N, TN and TP, with the average removal rates were 80 %, 35%, 78%, 37%, 48% respectively. The concentration of various pollutants decreased gradually along the way with the increase of stages in filtration system, the removal rate reaching maximum at the last stage.
     The removal rates of TN, NH4 +-N, CODMn increased steadily not linearly with the increase of stages, but the SS, TP removal rate of increase in the system, there is no significant slow down the trend along system. The regression analysis on inlet and outlet water load of system showed that removals of SS, CODMn and TP were at the highest level in the first stage, removals of TN, NH4 +-N were at the highest level in the second stage and in the third stage there was still a better removal efficiency of NH4 +-N ,SS even when the inlet water load was low.
     The analysis on N, P removal characteristics of system showed that N was removed mainly in particulate state during the first stage, mainly removed in dissolved state during the second and third stage; the removal efficiency of particulate and dissolved P were both better during the first stage, P was removed mainly in particulate state during the second stage, and in the third stage, in the case of removal of P was low,particle states and dissolved states have equal contribution to removal of P.
     The analysis on effect factors of water treatment showed that removals of SS, PN, PP, CODMn and DTN significantly increased, but NH4 +-N, DTP removal rate increased not markedly; the removal rates of SS, CODMn, PN, NH4 +-N and DTN similar with the hydraulic load. In conditions with low, average hydraulic load, the removal rates were similarly or increasing a little; with high hydraulic load, the removals of SS, CODMn, PN, NH4 +-N and DTN decreased significantly; DTP removal rate did not change with the hydraulic loading.CODMn, NH4 +-N and DTP removal rates increased with pollution load increasing, however,pollution load had no significant effect on the removals of the SS and DTN.
引文
[1]王小芳,杨玲娟.从我国水资源的现状论水污染治理的策略[J].天水师范学院学报,2001,21(5):41-43.
    [2]李雪英.我国应开发利用废水这一“第二水资源”[J].广东水利电力职业技术学院学报,2004,2(1):28-30.
    [3]杨志清.21世纪水资源展望[J].水资源保护,2004(4):66-68.
    [4]钱易.人与环境的协调发展一来自科学前沿的报告[M].北京:清华大学出版社,1996.
    [5]余谋昌.中国资源现状[J].中国城市经济,2004,(8):4-9.
    [6]许群,季杰.对我国水资源安全战略研究的思考[J].中国矿业,2004,13(6):47-48.
    [7]任远军,王豪.水资源危机与水工业的发[J].山东科技大学学报,2001,3(3):48-51.
    [8]白振光,王成伟.我国水污染状况及控制对策[J].舰船防化,2006,(增刊):15-17.
    [9]国家环境保护总局.中国环境状况公报[R].2005.
    [10]余啸雷,骆尚廉,郭振泰等.台湾地区水库集水区非点源污染控制技术及策略之研究.台大环工所研究报告第354号(NSC-52-041-EO02-332):l,1993.
    [11] Novotny V,Olen H. Water quality: Prevention, Identification and management of Pollution. New York: Van Nostrand Reinhold Company),1994.
    [12]贺缠生,傅伯杰,陈利顶.非点源污染管理及控制.环境科学,1998,19(5):87-91.
    [13] U S Environmental Protection Agency. National Water Quality Inventory:1998 Report to Congress,2000.
    [14] Vighi M. EutroPhication in Europe:the role of agricultural activities in Hodgon.rev Environ,1987,3.
    [15] Kronvang B et al. Diffuse Nutrient Losses in Denmark.water Sei Technol,1996,(3):81.
    [16] Boets P C M. Nutrient Emissions from Agriculture in the Netherlands:Causes and Remedies.Water Sci Technol,1996,33:183.
    [17] Dago & Hessen,et al.氮流失对淡水和海洋受体富营养化的重要意义.AMBIO-人类环境杂志,1997,(26):306-313.
    [18]汪达.美国非点源水污染问题及其对策综述.世界环境,1993,(4):14-19.
    [19]徐谦.我国化肥和农药的非点源污染状况综述.农村生态环境,1996,12(2):39-43.
    [20]杨苏树.大理洱海流域农业非点源污染现状.农业环境与发展,1999,16(2):43-44.
    [21]吕耀.苏南太湖流域农业非点源污染及农业持续发展战略.环境科学动态,199(2):1-4.
    [22]党啸.巢湖流域水环境问题的观察与思考.环境保护,1998,(9):38-40.
    [23] Anderson,D.L·,Flaig,E.G,Agrieultural best management Praetiee sand surfacewaterimProvement and manaement.Wster Science and Technology,1995,Vol.31(8) .
    [24] Venkatachalam Anbumozhi, J R, Eiji Yamaji. Impact of riparian buffer zones on water quality and associated management considerations[J]. Ecological Engineering ,2005,24:517-523.
    [25]金可礼,陈俊,龚利民.最佳管理措施及其在非点源污染控制中的应用.水资源与水工程学报,2007,18(l):37-40:109-121.
    [26]仓恒瑾,许炼峰,李志安等.农业非点源污染控制中的最佳管理措施及其发展趋势.生态科学,2005,24(2):173-177.
    [27] C.Martin Y.RuPerd and M.Legret.Urban stormwater drainage management:The Development of a multieriteria decision aid approach for bestmanagement Praetices.European Journal of Operational Research,2007,Vol.181(l):338-349.
    [28] ShaWL.Yu,Jenny Xiaoyue Zhen,Sam YanyunZhai.Development of astormwater best Management Practice Placement strategy for the virginiade Partment of transPortation.Final contract report. Virginia TransPortation ResearehCouncil,2003.
    [29]陈洪波,王业耀.国外最佳管理措施在农业非点源污染防治中的应用.环境污染与防治,2006,28(4):279-282.
    [30] Henglun, Sun, Jack Houston, John BerStrom.加姆河流域水质最佳管理措施的效益分析.水土保持科技情报,1995(l):13-16.
    [31] Y.A.Yousef,T.HvitVed-Jacobsen,M.P.Wa11ielista and H.H.Harper.Removal of coniaminants in highway run off flowing through swales.The Seience of The Total Environment, 1987,Vol.59:391-399.
    [32] Y.A.Yousef,M.P.Wanielista,T.HvitVed-Jacobsen and H.H.Harper.Fateofheavymetals in Stormwater runoff rom highwaybridges.Seience of The Total Environment , 1984 ,Vol.33(l-4):233-244.
    [33] T.HvitVed-Jacobsen, Y.A. Yousef, M.P.Wanielista and D.B.Pearce. Fate of Phosphorus and nitrogen in Ponds receiving highway runoff.Seience of The Total EnVironment, 1984,Vol.33(l-4):259-270.
    [34]韩秀娣.最佳管理措施在非点源污染防治中的应用.上海环境科学,2000,19(3):102-105.
    [35] Tony H.F.Wong, Tim D.Fletcher, Hugh P.Duncan and GrahamA.Jenkins.Modelling urban stormwatertreatmeni-AunifiedapProach·Eeological Engineering,2006,Vol.27(l):58-70.
    [36]林镇洋,邱逸文著.生态工法概论.台湾:明文书局,2004.
    [37] DonaldA:Hammer.Designing constructed wetlands systems to treat agricultural nonpoint source Pollution·Ecological Engineering,1992,Vol.l(l-2):49-82.
    [38] Herman. Role of groundwater recharge in treatment and storage of wastewater for reuse [J].Water Science and Technology, 1991. 24 ( 9 ) : 267-275.
    [39] Quanrud D M, Hafer J, Karp iscakM M , et al. Fate of organics during soil2aquifer treatment: sustainability of removals in the field [J]. Water Research, 2003, 37 (14) : 3401-3411.
    [40] Zhang Z Y, Lei Z F, Zhang Z Y, et al. Organics removal of combined wastewater through shallow soil infiltration treatment: A field and laboratory study [J]. Journal of Hazardous Materials,2007, 149: 657– 665.
    [41] Hsieh C H, Davis A P. Evaluation and optimization of bioretention media for treatment of urban storm water runoff [J]. Journal of Environmental Engineering, 2005, 131 (11) : 1521 - 1531.
    [42]姜凌,秦耀民.利用土壤层净化雨水补给地下水的试验研究[J].水土保持学报, 2005,19 (6) : 94-96.
    [43]郑艳侠,冯绍元,蔡金宝,等.用土壤含水层处理系统去除水库微污染有机物的试验研究[J].水利学报, 2005,36 ( 9 ) :1083-1087.
    [44]许萍,李俊奇,郭靖,等.北京城区雨水人工土植物系统水质净化研究[J].北京建筑工程学院学报, 2005,21 (4) : 45-50.
    [45]田猛,张永春.用于控制太湖流域农村面源污染的透水坝技术试验研究[J].环境科学学报, 2006, 26 ( 10 ) : 1665-1670.
    [46]纪荣平,吕锡武,李先宁.人工介质对富营养化水体中氮磷营养物质去除特性研究[J].湖泊科学, 2007, 19 ( 1) : 39- 45.
    [47]王占生,刘文君,微污染水源引用水处理[M]。北京:中国建筑工业出版社.
    [48]徐丽华,周琪,暴雨人工湿地处理系统设计的几个问题[J].给水排水,2001,27(8)32-34.
    [49]张伟,刘振鸿.多级串联式生物接触氧化池的优化设计[J].中国纺织大学学报, 2000,26 (5):37-39.
    [50]赵桂瑜,秦琴,周琪,几种人工湿地基质对磷素的吸附作用研究[J],环境科学与技术,2006,29(6):84-87.
    [51] C A Arias, M Del Bubba, H Brix. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds[J]. Water. Research., 2001, 35(5): 1159- 1168.
    [52]常会庆,寇太记等,几种植物去除污染水体中养分效果研究[J],水土保持通报,2009,29(5):119-121.
    [53] Miao Li, Yue-Jin Wu, Zeng-Liang Yu, Nitrogen removal from eutrophic water by floating-bed-grown water spinach (Ipomoea aquatica Forsk.) with ion implantation[J].water research,2007,41:3152-3158.
    [54] ABE KAORU, HIRAKA MASAAKI, TOKIWA HIDEO. Treatment of Discharged Solution from the Rose Soilless Culture System by Using Plant Bed Filter Ditches[J]. Japanese Journal of Soil Science and Plant Nutrition,2003,74(3):273-279.
    [55]陈力,郭沛涌等.不同种植方式对陆生植物美人蕉与紫背万年青净化富营养化水体中氮的影响[J].华中科技大学学报,2009,26(2):24-30.
    [56] S. Nakai, G. Zou, X. Song, Q. Pan, S. Zhou and M. Hosomi, Release of anti-cyanobacterial allelochemicals from aquatic and terrestrial plants applicable for artificial floating islands [J]. Water and Environment Technology, 2008,l.(6): 55-63.
    [57] Dennis Konnerup, Thammarat Koottatep, Hans Brix,Treatment of domestic wastewater in tropical, subsurface flow constructed wetlands planted with Canna and Heliconia[J]. Ecological Engineering, 2 0 0 9 ,(35)248–257.
    [58]国家环境保护局科技标准司编.城市污水土地处理技术指南[Ml.北京:中国环境科学出版社,1997.
    [59] Novotny and H.Olem Water quality: Prevention,identifieation and Management of diffuse Pollution.VanNostrand Reinhold 1994.NewYork.
    [60] Reddy,k.R.and W.H.Patrick,Nitrogen Transformations and Loss in Flooded Soils and Sediments.CRC Critieal Reviews in Environmental Control,1984,13(4):273-309.
    [61] Kadlee , R.H.andR.L.Knight.Treatmentwetlands.CRCLewisPublishers.BoeaRatonFlorida ,1996.
    [62] Mitseh,W.J.,andJ.G.GosselinkWetlands.VanNostrandReinhold.NewYork ,NewYork,1993.
    [63]叶剑峰,徐祖信.垂直潜流人工湿地中污染物去除机理研究.同济大学博士学位论文[D],2007,1.
    [64]刑禹贤.新编无土栽培原理与技术[M].北京:中国农业出版社,2002.12-34.
    [65] BrixH.肠eatlnentofwastewaterintherhizosPhereofwetlandPlants一therootzonemethod WaterSeieneeandTeehology.1987,19:107-118.
    [66] PlazerC,NetterR.Faetors affeeting nitrogen removal in horizontal fiow reed beds.wat. SciTech.1994,29(4):319-324.
    [67] MaehlumT,JessenPD,Waner W S.Cold-climate constructed wetlands.wat.SciTech..1995,32(3):95-101.
    [68] GalePM , ReddyKR.GraetZDA.Nitrogen removal from reelaimed water applied to ConPNlcted and natural wetland mieroeosms.Wat.Envir.Res.1993,65(2):162-168.
    [69] DrizoA, FrostCA, SmithKA.etal.PhosPhateand a jrnrnonium removal sbye on strueted Wetlands with horizontal subsurfaceflow usings haleasa substrate. Wat.SciTeeh. 1997,35(5):95-10.
    [70] Mays,P.A.,Edwards,G.S.Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage[J].Ecological Engineering,200l,16(4):487-500.
    [71] Sistani,K.R.,Mays,D.A,Taylor,R.W..Development of natural conditions in constructed wetlands:biological and chemical changes[J].Ecological Engineering,1999,12(1-2):125-131.
    [72] Geary PM,Moore J A .Suitability of a treatment wetland for dairy wastewater[J] .water sciene and Technology .1999,40(3):179-185.
    [73]江萍,胡九成.国产轻质球形陶粒用于曝气生物滤池的研究[J].环境科学学报, 2002, 22(4): 459-464.
    [74]孙文全.水耕蔬菜型人工湿地的应用研究.东南大学硕士毕业论文[D],2002,3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700