磨盘山水库防治农业面源污染的滨岸缓冲带优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饮用水水源地污染已成为全球共同遭遇的重大环境问题之一。防治农业面源污染,保护饮用水水源地水质安全也是当前国内外研究的热点。本研究选取了哈尔滨市饮用水源地—磨盘山水库为背景,试验共分两个部分,一部分为植物筛选试验,研究不同浓度营养液和同一浓度营养液下,五种经济植物草木犀、白三叶、野薄荷、马唐、夏枯草的分叶数、根长、茎长及对氨氮和可溶性磷酸盐的去除率;另一部分利用自行设计的小型试验装置模拟缓冲带,选取植物筛选试验的草木犀、白三叶、马唐、夏枯草,通过人工配水模拟农田径流水,进行草种不同配置方式以及草皮与其他生物处理方式结合方式的缓冲带对渗流水和径流水净化效果试验研究。结果如下:
     (1)在整个培养周期内,植物的分叶数、根长、茎长都有不同的变化,植物适应的营养液浓度也不同。植物对氨氮和可溶性磷酸盐的去除率表现为浓度越低,去除率越大,但夏枯草在三种营养液中的去除率差别不大。
     (2)五种植物在不同周期下对氨氮和可溶性磷酸盐表现出不同的去除率,培养初期去除率逐渐增大,出现一个峰值,然后有所下降,在试验结束时,培养瓶底部已出现富营养化现象。
     (3)四种不同的缓冲带配置方式对渗流水的氨氮的去除能力表现为配置方式越复杂,缓冲带对氨氮的去除能力越高,单种在二号浓度对氨氮的去除能力最大为52.19%,两种混栽、三种按顺序、三种混栽在三号浓度的去除率达到最大值,分别为60.52%、66.53%、70.49%,对可溶性磷酸盐的去除能力却表现不出明显的趋势,单种、两种混栽、三种顺序、三种混栽对可溶性磷酸盐的去除率最大值,分别出现在二号、一号、三号、二号,分别为35.34%、41.89%、54.89%、57.39%,对径流中的氨氮的去除率表现为配置方式越复杂氨氮去除率越低,对可溶性磷酸盐的去除率趋势则不明显。
     (4)草种和其它方式结合缓冲带对渗流中的氨氮能起到一定的去除作用,三种混栽+人工浮床在三号浓度达到最大值52.32%,三种混栽+小沟在一号浓度达到最大值为58.34%;对渗流中的可溶性磷酸盐能起到一定的去除作用,三种混栽+小沟的去除率在二号浓度最高,达到57.99%;三种混栽+人工浮床在一号浓度最高,达到56.38%。对径流中的氨氮的去除作用,三种混栽+小沟、三种混栽+人工浮床都在一号浓度对径流氨氮的去除率最高,分别达到25.40%、30.10%:对径流中的可溶性磷酸盐的去除作用,三种混栽+小沟、三种混栽+人工浮床都在一号浓度的去除率最高,分别达到29.00%、26.70%。
     (5)同一浓度下,在渗流中,不同配置方式和草皮与其他生物处理方式结合的缓冲带,三种混栽方式的氨氮、可溶性磷酸盐的去除效果最高分别为59.8%、53.6%。在径流中,不同配置方式中三种混栽方式的氨氮、可溶性磷酸盐的去除效果最高分别为23.3%、25.6%;草皮与其他生物处理方式结合缓冲带,三种混栽+小沟对可溶性磷酸盐的去除效果最高达29.0%,三种混栽+人工浮床对氨氮去除效果最高,达30.1%。三种混栽方式对渗流的净化效果较好,而草皮与其他生物处理方式结合的缓冲带对径流有较好的净化效果。
The pollution of the drinking water source has become one of the most important environmental issues which the global people are facing together. The prevention and control of agricultural non-point source pollution, as well as the protection of drinking water sources area, are also the currently hot spots of research at home and abroad. This study selected source of drinking water in Harbin-Mopan Mountain Reservoir as the background, began to experiment. Test is divided into two parts,one is the plant screening test, in the different concentration of nutrient solution and the same, Five economic hydrophytes (Melilotus suaveolens、Trifolium repens、Digitaria sanguinalis、Prunella asiatica and DracocephalummoldavicumL) were selected to carry out a research on the purification N and P ability and bio-ecological character of them were also studied, the root, stem and detached leaf length of each species have different degrees of growth. Other is small test research,four kinds of economic plants (Melilotus suaveolens、Trifolium repens、Digitaria sanguinalis and Prunella asiatica) were selected from the plant screening test. By using the artificial water of farmland runoff, in the different concentration of nutrient solution and the same the study carried out in different configuration ways of plantings and sod combined with other biological treatment. The results are as follows:
     1. Throughout the experimental period, leaf number, root length, stem length of the plant has a different change, of plants to adapt to different concentrations of nutrient. Plants on the removal rate of ammonia and soluble phosphate showed lower concentrations removal rate higher, but soluble phosphate in nutrient solution in the removal of three little difference.
     2. Period of five plants under different nitrogen and soluble phosphate showed different removal, the removal rate increases the initial training, the emergence of a peak and then decline, in the end of the trial, the rich have emerged bottom flask Nutrition phenomenon.
     3. Four different buffer zone configuration on flow of water removal capacity of ammonia showed more complex configuration, the buffer zone on the ammonia removal capacity of the higher concentration of single species in the concentration 2 maximum ammonia removal capacity of 52.19% mixed farm of two, three order, three concentrations of mixed farm in the concentration 3 maximum removal rate were 60.52%,66.53%,70.49%, the removal of soluble phosphate capacity is not performance a clear trend, a single species, mixed farm of two, three order, mixed farm of three maximum removal of soluble phosphate, respectively, in the 2nd, the 1st, the 3rd, the 2nd, respectively,35.34%,41.89%, 54.89%,57.39%, on the runoff of ammonia nitrogen removal performance for the more complex configuration, the lower ammonia removal, the removal of soluble phosphate trend was not significant.
     4. Removal ability of ammonia in runoff water different configuration ways of plantings and sod combined with other biological treatment, "three kinds of plants and artificial floating bed" and "three kinds of plants and a small ditch" was as high as 30.10% and 25.40% in concentration 1. Removal ability of soluble phosphate in runoff water different configuration ways of plantings and sod combined with other biological treatment, "three kinds of plants and artificial floating bed" and "three kinds of plants and a small ditch" was as high as 26.70% and 29.00%in concentration 2.
     5. In seepage flow, among all the configuration ways of plantings and sod combined with other biological treatment, the mixed planting of three plants had high removal capacity, with the removal rate of ammonia reached 59.80%, and that of soluble phosphate 53.6%; in the runoffs, the highest removal rate of ammonia and soluble phosphate reached 25.6% and 23.30% in different planting ways; considering different configuration ways of sod combined with other biological treatment, the dispositions of "three kinds of plants and a small ditch" had a high soluble phosphate removal rate of 29.0%, and the ammonia removal rate of "three kinds of plants and artificial floating bed" was as high as 30.1%.
引文
[1]Sunil Narumalani, Yingchun Zhon, John R. Jensenb. Application of remote sensing and geographic information systems to the delineation and analysis of riparian buffer zones. Aquatic Botany 58 (1997) 393-409
    [2]Mariet M. Hefting, Jeroen J.M. de Klein. Nitrogen removal in buffer strips along a lowland stream in the Netherlands:a pilot study[J]. Environmental Pollution 102, S1(1998) 521-526.
    [3]路炳军,袁爱萍,李永贵,段淑怀,陆大明.密云水库上游典型水保措施减少面源污染效益分析[J].中国水土保持,2007,(1):30-31.
    [4]王立林,杜玉凤,王鸿雁.于桥水库富营养化控制对策研究[J].水科学与工程技术,2007,(6):23-25.
    [5]谢欢,童小华,仇雁翎,张明旭.黄浦江上游水源保护区水质评价与分析[J].环境科学与管理,2008,33(2):166-170.
    [6]郑丙辉,田自强,张雷,郑凡东.太湖西岸湖滨带水生生物分布特征及水质营养状况[J].生态学报,2007,27(10):4214-4223.
    [7]李如忠,洪天求.巢湖流域农业非点源污染控制对策研究[J].合肥工业大学学报,2006,20(1):105-110.
    [8]毛建忠,吴秀萍.滇池流域农村面源问题浅析[J].环境科学导刊,2007,26(4):21-24.
    [9]张水龙,庄季屏.农业非点源污染研究现状与发展趋势[J].生态学杂志,1998,17(6):51-55.
    [10]邱钰棋等.农业面源污染现状及其对策措施[J].新疆环境保护,2006,28(4):32-35
    [11]李贵宝,尹澄清,单宝庆.非点源污染控制与管理研究的概况与展望[J].农业环境保护,2001,20(3):190-191.
    [12]Mander U, Kuusemets V, Krista L, et al. Efficiency and di-mensioning of riparian buffer zones in agricultural catchments. Ecol. Eng.,1997,8:299~324
    [13]李谷雨.人工湿地法处理农业非点源污染的研究[J].长春工程学院学报,2007,8(4):50-52.
    [14]叶碎高,王帅.水源地农业面源污染防治研究进展[J].中国水利,2008,5:18-20.
    [15]苑韶峰,吕军,俞劲炎.氮、磷的农业非点源污染防治方法[J].水土保持学报,2004,18(1):122-125.
    [16]B C Braskerud. Factors affecting phosphorus retention in small constructed wetlands treating agricultural non-point source pollution[J]. Ecological Engineering,2002,19:41-61.
    [17]何少林,周琪.人工湿地控制非点源污染的应用[J].四川环境,2004,23(6):71-75.
    [18]吴启堂,高婷.减少农业对水污染的对策与措施[J].生态科学,2003,22(4):371-376.
    [19]Peterjohn W T, Correll D L. Nutrient dynamics in an agricultural watershed:Observations on the role of a riparian forest. Ecology [J],1984,65:1466-1475.
    [20]秦明周.美国土地利用的生物环境保护工程措施—缓冲带[J].水土保持学报,2001,15(1):119-121.
    [21]诸葛亦斯,刘德富,黄钰铃.生态河流缓冲带构建技术初探[J].水资源与水工程学报,2006,17(2):63-67.
    [22]Muscutt A D, Harris G L, Bailey S W, Davies D B. Buffer zones to improve water quality-a review of their potential use in UK agriculture[J].Agr Ecosyst Environ 1993,(45):59-77.
    [23]Natural Resources Conservation Service, USDA.Buffer Strip common sense conservation. Washingto,D.C,1998.
    [24]倪九派,傅涛,卢玉东,魏朝富.缓冲带在农业非点源污染防治中的应用[J].环境污染与防治,2002,24(4):229-232.
    [25]谭炳卿,孔令金,尚化庄.河流保护与管理综述[J].水资源保护,2002,(3):53-57.
    [26]杨胜天,王雪蕾,刘昌明,盛浩然,李茜.岸边带生态系统研究进展[J].环境科学学报,2007,27(6):894-905
    [27]邓红兵,王青春,王庆礼,吴文春,邵国凡.河岸植被缓冲带与河岸管理[J].应用生态学报,2001,12(6):951—954.
    [28]Natural Resources Conservation Service,USDA.Riparian forest buffer conservation practice job sheet,1997,4.
    [29]席光超.山西岚漪河河岸缓冲带恢复重建研究[M].北京林业大学,2008,6
    [30]王庆成,于红丽,姚琴,韩壮行,乔树亮.河岸带对陆地水体氮素输入的截流转化作用[J].应用生态学报,2007,18(11):2611-2617
    [31]Hill, A.R.,1996. Nitrate removal in stream riparian zones. J. Environ. Qual.25,743-755.
    [32]D.W. Rassam,D.E. Pagendam,H.M. Hunter. Conceptualisation and application of models for groundwateresurface water interactions and nitrate attenuation potential in riparian zones, Environmental Modelling & Software,2008,23,859-875
    [33]Schade, J.D., Fisher, S.G., Grimm, N.B., Seddon, J.A.,2001. The influence of a riparian shrub on nitrogen cycling in a Sonoran Desert stream. Ecology 82,3363-3376.
    [34]Mariet M. Hefting, Jean-Christophe Clement, Piotr Bienkowski, David Dowrick, Claire Guenat, Andrea Butturini, Sorana Topa, Gilles Pinay, Jos T.A. Verhoeven, The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe. Ecological Engineering 24 (2005) 465-482
    [35]Sharpley,A.N.Depth of surface soil-runoff interaction as affected by rainfall. Soil Sci.Soc.AM.J.,1985,49:1010-1015
    [36]董凤丽.上海市农业面源污染控制的滨岸缓冲带体系初步研究[M].上海师范大学,2004,5
    [37]Nash,D.,M.Hannah,D.Halliwell,et al.Factors affecting phosphorus export from a pastrure based grazing system.J.Environ.Qual,2000,140(3):59-68
    [38]Ulo Mander,Valdo Kuusemets,Krista Lohmus,Tonu Mauring.Efficiency and dimensioning of riparian buffer zones in agricultural catchments.Ecological Engineering 8(1997)299-324.
    [39]顾笑迎,黄沈发,刘宝兴,吴健,吴建强,由文辉.东风港滨岸缓冲带对水生生物群落结构的影响[J].生态科学,2006,25(6):521-525.
    [40]张建春.河岸带功能及其管理[J].水土保持学报,2001,15(6):146-143.
    [41]钱进,王超,王沛芳,侯俊.河湖滨岸缓冲带净污机理及适宜宽度研究进展[J].水科学进展,2009(20):139-144.
    [42]Hill, A.R.,1996. Nitrate removal in stream riparian zones. J. Environ. Qual.25,743-755.
    [43]赵杭美,由文辉,罗扬,王金凤,黄沈发,吴健,吴建强.滨岸缓冲带在河道生态修复中的应用研究[J].环境科学与技术,2008,31(4):116-122.
    [44]Chescheir G M,Gilliam J W,Skaggs R W,Broadhead R G.The Hydrology and Pollutant Removal Effectiveness of Wetland Buffer Areas Receiving Pumped Agricultural Drainage Water,1987,Report No.231
    [45]Rickerl D H,Janssen L L, Woodland R. Buffer wetlands in agricultural landscapes in the prairie pothole region: environmental, agronomic, and economic evaluations[J]. Soil and Water Conservation,2000,55(2):220-226.
    [46]Gilliam, J.W., Reparian Wetlands and Water Quality.[J]. Envionrmental Quality,1994, (23):896-900.
    [47]王磊,章光新.湿地缓冲带对氮磷营养元素的去除研究[J].农业环境科学学报,2006,25(增刊):649-652. [48]Schoonover J E, Williard K W J, Zaczek J J, Jean C. Nutrient attenuation in Agricultural Surface Runoff by Riparian Buffer Zones in Southern Illinois [J].Agroforestry Systems,2005,(64):169-180.
    [49]Hammock,B D, Shirley J Gee.Residues:Biotechnology based methods[J]. American Chemical Society,1995.204-213
    [50]Peterjohn W T, Correll D L. Nutrient dynamics in an agricultural watershed: Observations on the role of a riparian forest. Ecology[J],1984,65:1466-1475
    [51]Lee K H, Isenhart T M, Schultz R C and Mickelson S K.Nutrient and sediment removal by switchgrass and cool-season grass filter strips in Central Iowa, USA, Agroforestry Systems.1999,(44):121-132.
    [52]叶志敏,尹璇.滨岸缓冲带削减非点源污染试验研究[J].科技资讯,2006,(28):250-251.
    [53]Arora K,Mlckelson S K,Baker J L. Effectiveness of vegetated buffer strips in reducing pesticide transport in simulated runoff[J]. Transactions of the ASAE,2003(46):635-644.
    [54]Dillaha, T.A., J.H. Sherrard, D. Lee, S. Mostaghimi, V.O. Shanholtz. Sediment and Phosphorus Transport in Vegetative Filter Strips:Phase I, Field Studies. ASAE.1985,85-2043.
    [55]Mickelson, S. K. and J. L. Baker. Buffer strips for controlling herbicide runoff losses. ASAE.1993,93-2084.
    [56]潘瑞炽,董愚得.植物生理学.北京:高等教育出版社.1995
    [57]杨彦军,韩会玲,龚欣欣.不同植物净化富营养化水体的静态试验研究[J].中国农村水利水电,2009,4:28-30
    [58]唐浩,黄沈发,王敏,周海英,陈洪健.不同草皮缓冲带对径流污染物的去除效果试验研究[J].环境科学与技术,2009,32(2):109-112
    [59]田琦,王沛芳,欧阳萍,王超,张文明.5种沉水植物对富营养化水体的净化能力研究[J].水资源保护,2009,25(1):14-17
    [60]陈伟洲.陆生植物对富营养化水体磷净化研究[J].学术研究,2009,11:24-26
    [61]代力民,王青春,邓红兵,等.二道白河森林流域河岸带植物群落最小面积与物种丰富度[J].应用生态学报,2002,13(6):641-645
    [62]国家环境保护局编.水和废水监测分析方法(第Ⅲ版)[M].北京:中国环境科学出版社,1989.
    [63]井艳文,胡秀琳,许志兰,刘虎城.利用生物浮床技术进行水体修复研究与示范[J].北京水利,2003(6):20-22
    [64]张锡辉.水环境修复工程学原理与应用[M].化学工业出版社,2002
    [65]潘响亮,邓伟.农业流域河岸缓冲区研究综述[J].农业环境科学学报,2003,22(2):244-247
    [66]黄树辉,吕军.农田土壤中N20排放研究进展[J].土壤通报,2004,35(4):516-522
    [67]徐恒力孙自永,马瑞.植物地境及物种地境德定层.地球科学,2004,29(2)t 239-246
    [68]吴健,王敏,吴建强,杨泽生,唐浩.滨岸缓冲带植物群落优化配置试验研究[J].生态与农村环境学报,2008,24(4):42-45,52
    [69]李世锋.关于河岸缓冲带拦截泥沙和养分效果的研究[J].水土保持科技情报,2003(6):41-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700