施肥对土壤养分转化及利用规律的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,粮食生产采用粗放式耕作,施肥缺乏科学性和合理性。本文采用室内盆栽培养和田间试验相结合的研究方法,以玉米、小麦为供试作物,研究了不同施肥处理对土壤氮磷养分转化的影响及其高产土壤的供肥潜力、合理施肥量、作物养分利用规律等,这对揭示土壤养分转化机理、探索提高肥料利用率和作物产量的施肥技术提供重要理论支撑。得到的主要结论如下:
     1、磷对不同玉米幼苗生长及根际磷转化的影响结果表明,与高磷相比,低磷降低玉米的株高、总绿叶面积、地上部干重和磷含量、根干重和磷含量,增加了根冠比,降低土壤pH值,促进土壤磷酸酶活性,减少细菌数量和速效磷含量。与非根际土比,根际土的pH和速效磷含量均降低,细菌和放线菌数量均增加,与供磷水平无关。玉米的生物量和磷含量均与根长、根表面积、根际土的pH、细菌数量间呈显著正相关,而与根干重无关,说明根系形态、土壤pH、细菌数量是影响土壤磷素转化和植株高效吸收的重要因素。与冀单28比,蠡玉16具有优势株高、总绿叶面积、植株干重和磷含量,较大的根长、根表面积、根冠比和较多的细菌数量。
     2、氮素形态对玉米根际氮磷转化的影响结果表明,与缺氮比,尿素和铵氮处理增加玉米绿叶面积、植株干重,降低根干重、根冠比、根长、根表面积,提高玉米氮磷钾吸收量。同一氮素形态,与非根际比,根际土的pH降低、磷酸酶和脲酶活性提高,土壤速效磷减少,铵氮和硝氮含量增加;细菌和放线菌数量增加。不同氮素形态中,铵氮处理的玉米总绿叶面积、植株和根干重、根长、根表面积较大,氮磷钾吸收较高,根际pH较低,磷酸酶和脲酶活性较强,土壤速效磷、铵氮和硝氮含量较大。田间试验结果也表明,铵氮处理的玉米产量较其它处理显著增加,尿素次之,硝氮略有降低。说明铵氮有利于玉米生长、促进根系氮磷养分的活化、吸收和利用。
     3、在土壤有机质19.2 g/kg,碱解氮40.4 mg/kg,速效磷37.3 mg/kg,速效钾141.7 mg/kg条件下,土壤中的磷可以满足玉米—小麦一个轮作周期的需要,土壤氮、钾则要按作物需要每季合理施用。玉米—小麦—玉米3茬作物总产量表现出CK、PK、NK、NP处理较NPK处理产量分别降低29.8%、16.4%、11.0%、18.5%。
     NPK(1)对玉米产量及其构成因素的优化效应明显大于NPK(2)和NPK(3)处理,产量达10783.2 kg/hm~2。三茬作物总产量表现为NPK(1)处理较NPK(2)、NPK(3)处理分别提高9.0%、23.2%。
     4、随着玉米生长,不同施肥处理的各土层土壤NH_4~+-N、NO_3~--N、速效磷和钾含量呈“波浪型”变化。随着土壤深度的加深,0~60cm土层的NH_4~+-N和NO_3~--N含量逐渐下降,由于氮的淋失,在90cm处有回升趋势;土壤速效磷钾养分随着土壤深度的增加逐渐减少。
     综上所述,从土壤养分供应种类和形态、作物遗传特性、合理施肥技术等方面进行调控均可以增加作物产量,提高作物的养分利用效率,这对实现资源持续利用有重要指导意义。
In resent years, coarse tillage methods were extensively adopted, the phenomenon of unreasonable and unscientific fertilizer application was frequently happened. In the thesis, methods of field experiments and pot culture were used to study effects of different fertilizer treatments on the soil N, P and K nutrient inversion, soil supply fertilization potential, reasonable fertilization amount and crops nutrient utilization rules in the high yield soil. These were very important to provide scientific theory support for soil nutrient coversion mechanism, and explore the fertilization technology of improving fertilizer utilization efficiency and crop’s production. The main results were as followed:
     1. The results about the effects of phosphorus on the seedling growth and P conversion in the rhziosphere soil showed that compared with the high-P level, the height, total green leaf areas, shoot and root dry weight of two maize in low P level were reduced, while the ratio of root to shoot in dry weight increased. Moreover, soil pH was reduced, the phosphatase activity increased, numbers of bacteria and available P content lessened. Compared with non-rhziosphere, pH and available P content in rhziosphere were reduced while numbers of bacteria and actinomycete increased,but no related with P levels. Plant biomass and P content were positively related with root length,root surface area and bacteria number,while had no correlation with dry weight of root. Therefore, root morphology, pH and bacteria number in rhziosphere were the main factors affected plant growth. Compared with Jidan28 cultivar,Liyu 16 had higher height, total green leaf areas, dry weight and P content. Larger root length, root surface area, ratio of root to shoot, and more bacteria number.
     2. The results about the effects of different N forms on the N and P conversion in the rhziosphere soil showed that compared with the N deficiency treatment, total green leaf areas, plant dry weight in the urea and NH_4~+-N treatments were increased, while root dry weight, the ratio of root to shoot in dry weight, root length and surface area were reduced. Moreover, N, P and K content of maize were enhanced. Compared with non-rhziosphere in the same N form of soil, pH was decreased, phosphatase and urease activities were improved, but available P were reduced, contents of NH_4~+-N and NO3—N, numbers of bacteria and actinomycete were increased. Compared with other N forms, NH_4~+-N treatment had the highest total green leaf areas, larger dry weight and NPK nutrient content in plant and root, greater root length and surface area, lessener soil pH, stronger phosphatase and urease activity and more available nutrient content of N, P and K in soil. The field experiment also proved the similar results were as bellow. NH_4~+-N treatment was better, urea treatment was lesser and NO_3~--N treatment was the worst. It showed that NH_4~+-N was propitious to maize growth, nutrient activation of root, absorption and utilization of nutrient of N, P and K.
     3、P in soil could meet the needs of maize-wheat as a rotation cycle, N、K was needed for every season with rational fertilization under the soil conditions of organic matter 19.2 g/kg, available N 40.4 mg/kg, available P 37.3 mg/kg, available K 141.7 mg/kg. Three crop productions of maize-wheat-maize indicated that compared with NPK treatment, the treatments of CK, PK, NK and NP decreased 29.8%, 14.9%, 11.0%, 18.5%, resepectively. Yield and it’s constitute factors of NPK (1) treatment was positively better than that of NPK (2) and NPK (3) treatments. Yield of NPK (1) reached 10783.2 kg/hm~2. Three crop productions of maize-wheat-maize indicated that compared with NPK (2) and NPK (3) treatments, the yield of NPK (1) treatment was increased 9.0% and 23.2%, resepectively.
     4、With the grow of maize of different fertilization treatments, NH_4~+-N, NO_3~--N, available P and K content were waved in each soil layer. Among the 0~60 cm soil depth, NH_4~+-N and NO_3~--N content gradually decreased,while appeared rising at the depth of 60-90 cm because of N leaching losses. Available P, K content of soil straightly reduced with the soil depth in the vertical distribution.
     To sum up, the control technologies, such as the soil nutrient kinds and forms, crop genetic characteristics and rational fertilization, can regulate to increase crop production and nutrient using efficiency. It is also significantly important for the realization of resource sustainable.
引文
[1]杨伟光.吉林省玉米高产育种模式与技术的研究[D].吉林:吉林农业大学. 2006.
    [2]佟屏亚.玉米高产是一个永恒的话题[J].作物杂志, 2004, 1: 10~12.
    [3]张福锁,张卫峰,马文奇,等.中国化肥产业技术与展望[J].化学工业出版社, 2007, (7): 1~3.
    [4]马文奇,张福锁,张卫锋.关乎我国资源、环境、粮食安全和可持续发展的化肥产业[J].资源科学, 2005, 27(3): 33~40.
    [5]彭正萍,李迎春,薛世川,等.土壤磷钾供应能力研究[J].中国农业科技导报, 2007, 9(2): 57~60.
    [6]李秋梅,陈新平,张福锁,等.冬小麦-夏玉米轮作体系中磷钾平衡的研究[J].植物营养与肥料学报, 2002, 8(2): 152~156.
    [7]国家统计局.中国统计年鉴[M].北京:中国统计出版社, 2003: 4~19.
    [8]李云,张宁,邢文英,等.一年两熟地区小麦的磷肥累积利用率研究[J].土壤肥料, 2002(4): 26~29.
    [9]王艳群,彭正萍,薛世川,等.过量施肥对设施农田土壤生态环境的影响[J].农业环境科学学报, 2005, 24(增刊): 81~84.
    [10]李生秀,付会芳,袁虎林等.几种反映旱地土壤供氮能力方法的比较[J].土壤学报, 1990, 22(4): 194~197.
    [11]汪李平,向长萍,王运华.武汉地区夏季蔬菜硝酸盐含量状况及其防治[J].华中农业大学学报, 2000, 19(5): 497~499.
    [12]许后效,毛文永.硝酸盐、亚硝酸盐于人类环境[J].环境科学, 1982, (4): 59~63.
    [13]李先珍,王耀林,张志彬,等.设施蔬菜大棚土壤盐离子积累状况.研究初报[J].中国蔬菜, 1993, (4): 15~17.
    [14]冯绍远,郑耀泉.农田氮素的转化与损失及其对水环境的影响[J].农业环境保护, 1996, 15(6): 277~279.
    [15]于克伟,陈冠雄,杨思河.几种旱地农作物在农田N2O释放中的作用及环境因素的影响[J].应用生态学报, 1995, 3(4): 387~391.
    [16] Rodhe H. A comparison of the contribution of various gases to the greenhouse effect [J]. Science, 1990, 248(4960): 1217~1219.
    [17]程宪国,王维敏.麦秸翻压对土壤磷组分的影响[J].土壤通报, 1991, 22(6): 254~256.
    [18] Runge M A. Closing the cycle: Obstacles to efficient P management for improved global security. Phosphorus in the Global Environment: Transfers, Cycles, and Management[M]. New York: John Wiley and Sons. 1995, 27~42.
    [19]寇长林,王秋杰,任丽轩,等.小麦和花生利用磷形态差异的研究[J].土壤通报, 1999, 30(4): 34~39.
    [20] Barber S A, Walker J M, Vasey E H. Mechanism for the movement of plant nutrients from the soil and fertilizer to the plant root[J]. J Agric Food Chem, 1963, 11(3): 204~207.
    [21] Wissuwa M. How do plants achieve tolerance to phosphorus deficiency? Small causes with bigeffects [J]. Plant Physiol, 2003, 133(4): 1947~1958.
    [22]彭正萍,王艳群,刘淑桥,等.不同施肥处理对冬小麦干物质积累及土壤养分垂直分布的影响[J].中国农业科技导报, 2007, 9(6): 95~99.
    [23] Liu Z H, Peng H Y. Removal characteristics of Phosphorus element in soil horizon underwater-dry cultivation of waste waterland treatment [J]. Environmental Science, 2000, 21 (3) : 48~51.
    [24]李学平.紫色土稻田磷素迁移流失及环境影响研究[D].西南大学, 2008.
    [25]徐晓燕,马毅杰,张瑞平.土壤中钾的转化及其与外源钾的相互关系的研究进展[J].土壤通报, 2003, 34(5): 489~492.
    [26]黄绍文,金继运.土壤钾素形态及其植物有效性研究进展[J].土壤肥料, 1995, 5: 23~29.
    [27]崔玉亭.化肥与生态环境保护[M].北京:化学工业出版社, 1999, 17~26.
    [28]彭琳.中国化肥施用与粮食生产的进程、前景与布局[J].农业现代化研究, 2000, 21(1): 14~18.
    [29]胡冰川,吴强.粮食生产的投入产出影响因素分析[J].长江流域资源与环境, 2006(1): 71~75.
    [30]周俊,朱江,储国正,等.钾资源的地球化学背景及其开发利用[J].矿产综合利用, 1999(4): 36~40.
    [31]张福锁,曹一平.根际动态过程与植物营养[J].土壤学报, 1992, 29(3): 239~250.
    [32]陈子英.水稻根系微生物的主要特性[J].微生物学报, 1963, 9(2): 186~192.
    [33]张福锁,申建波,冯固.根际生态学[M].北京:中国农业大学出版社, 2008.
    [34]郭朝晖,张杨珠,黄子蔚.根际微域营养研究进展[J].土壤通报, 1999, 30(2) : 85~88.
    [35] Marschner H. Mineral Nutrition of Higher Plants[M]. 2nd edn. London: Academic Press. 1995.
    [36] Fredeen A L, Rao I M, Terry N. Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max[J]. Plant Physiol, 1989, 89(1) : 225~230.
    [37] Ericsson T, Ingestad T. Nutrition and growth of birth seedlings at varied relative phosphorus addition rates[J]. Physiol Plant, 1988, 72(2): 227~235.
    [38] Lima J D, DaMatta F M, Mosquim P R. Growth attributes, xylem sap composition, and photosynthesis in common bean as affected by nitrogen and phosphorus deficiency[J]. Plant Nutrition, 2000, 23(7): 937~947.
    [39]张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报, 2008, 45(5): 915~924.
    [40]于振文.作物栽培学各论[M].北京中国农业出版社(北方本), 2003.
    [41]王国扣,王海.我国玉米加工业的现状与产业发展特点[J].农产品加工, 2005(3): 20~21.
    [42]武际,郭熙盛,王文军,等.磷钾肥配合施用对玉米产量及养分吸收的影响[J].玉米科学, 2006, 14(3): 147~150.
    [43]袁硕,彭正萍,史建霞,等.磷对不同基因型玉米生长及氮磷钾吸收的影响[J].中国土壤与肥料, 2010, (1): 25~28.
    [44]杨利华,张全国,张丽华,等.冀中南夏玉米进一步高产核心技术研究[J].华北农学报, 2009, 24(增刊): 205~210.
    [45]赖庆旺,李茶苟,黄庆海.红壤性水稻土无机肥连施与土壤结构特性的研究[J].土壤学报, 1992, 29 (2): 168~185.
    [46]黄绍文,孙桂芳,金继运,等.氮、磷和钾营养对优质玉米子粒产量和营养品质的影响[J].植物营养与肥料学报, 2004, 10 (3): 225~230.
    [47]宋永林,姚造华,袁锋明.不同肥料配施对土壤主要养分含量及作物氮、磷、钾表观利用率的影响[J].土壤肥料, 2002(3)23~25
    [48]褚清河,潘根兴,廖宗文等.土壤养分类型与玉米氮磷最适施肥比例[J].土壤通报, 2004, 35(6): 750~752
    [49]张桂兰,宝德俊,王英,等.长期施用化肥对作物产量和土壤性质的影响[J].土壤通报, 1999, 30(2): 64~67.
    [50]刘恩科,赵秉强,胡昌浩,等.长期施氮、磷、钾化肥对玉米产量及土壤肥力的影响[J].植物营养与肥料学报, 2007, 13(5): 789~794.
    [51]严云,廖成松,张福锁,等.密植条件下玉米冠根生长抑制的因果关系[J].植物营养与肥料学报, 2010, 16(2): 257~265.
    [52]袁丽金,巨晓棠,刘新宇,等.耕层施磷对土壤剖面深层累积NO3--N运移及后效的影响[J].中国农业科学, 2009, 42(11): 3940~3946.
    [53]鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2002: 270.
    [54]严昶升.土壤肥力研究方法[M].北京:农业出版社, 1988.
    [55]袁硕,彭正萍,沙晓晴,等.玉米杂交种对缺磷反应的生理机制及基因型差异[J].中国农业科学, 2010, 43(1): 51~58.
    [56] Kamh M, Wiesler F, Ulas A, et al. Root growth and N-uptake activity of oilseed rape (Brassica napus L. ) cultivars differing in nitrogen efficiency[J]. J Plant Nutr Soil Sci, 2005, 168(1): 130~137.
    [57]李潮海,王小星,王群,等.不同质地土壤玉米根际生物活性研究[J].中国农业科学, 2007, 40(2): 412~418.
    [58]李奕林,黄启为,王兴祥,等.不同氮效率水稻生育后期根表和根际土壤硝化特征[J].生态学报, 2009, 29(2): 824~831.
    [59]沈建凯,黄璜,傅志强,等.稻鸭生态种养系统直播水稻根表和根际土壤营养特性研究[J].中国生态农业学报, 2010, 18(2): 1151~1156.
    [60]樊军,郝明德,党廷辉.旱地长期定位施肥对土壤剖面硝态氮分布与累积的影响[J].土壤与环境, 2000, 9(1): 23~26.
    [61]宋海星,李生秀.玉米生长量、养分吸收量及氮肥利用率的动态变化[J].中国农业科学, 2003, 36(1): 71~76.
    [62]赵营,同延安,赵护兵.不同施氮量对夏玉米产量、氮肥利用率及氮平衡的影响[J].土壤肥料, 2006(2): 30~33.
    [63]王西娜,王朝辉,李生秀.施氮量对夏玉米产量及土壤水氮动态的影响[J].生态学报, 2007, 27(1): 197~204.
    [64]妙颖,杨胜科,黄瑞华.氮素在土壤—作物中迁移转化的试验研究[J].环境保护科学, 2009, 35(4): 89~91.
    [65] Lynch J. Root architecture and plant productivity[J]. Plant Physiol, 1995, 109(1): 7~13.
    [66]米国华,邢建平,陈范骏,等.玉米苗期根系生长与耐低磷的关系[J].植物营养与肥料学报, 2004, 10(5): 468~472.
    [67]李绍长,胡昌浩,龚江,等.供磷水平对不同磷效率玉米氮、钾素吸收和分配的影响[J].植物营养与肥料学报, 2004, 10(3): 237~240.
    [68] Khamis S, Chaillou S, Lamaze T. CO2 assimilation and partitioning of carbon in maize plants deprived of orthophosphate[J]. J Exp Bot, 1990, 41(12): 1619~1625.
    [69] Hajabbasi M A, Schumacher T E. Phosphorus effects on root growth and development in two maize genotypes[J]. Plant Soil, 1994, 158(1): 39~46.
    [70] Assuero S G, Mollier A, Pellerin S. The decrease in growth of phosphorus-deficient maize leaves is related to a lower cell production[J]. Plant Cell Environ, 2004, 27(7): 887~895.
    [71] Jeschke W D, Kirekby E A, Peuke A D, et al. Effects of P deficiency on assimilation and transport of nitrate and phosphate in intact plants of castor bean(Ricinus communis L.)[J]. J Exp Bot, 1997, 48(1): 75~91.
    [72] Liu Y, Mi G H, Chen F J, et al. Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability[J]. Plant Science, 2004, 167: 217~223.
    [73]易镇邪,王璞,申丽霞,等.不同类型氮肥对夏玉米氮素累积、转运与氮肥利用的影响[J].作物学报, 2006, 32(5): 772~778.
    [74]邹春琴,李春俭,张福锁,等.铁和不同形态氮素对玉米植株吸收矿质元素及其在体内分布的影响[J].植物营养与肥料学报, 1996, 2 (1): 68~731.
    [75] Ruan J Y, Zhang F S, Wong M H. Effect of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of Camellia sinensis L[J]. Plant and Soil, 2000, 223: 65~73.
    [76]戴静,康宇.氮磷钾配施对玉米主要性状和产量的影响及其施肥规律[J].山西农业科学, 2007, 35(10): 62~64.
    [77]张凤荣.土壤地理学[M].北京:中国农业出版社, 2007, 183-184.
    [78]刘建安,米国华,陈范骏,等.玉米杂交种氮效率基因型差异[J].植物营养与肥料学报, 2002, 8(3): 276~281.
    [79]岳寿松,于振文.磷对冬小麦后期生长季产量的影响[J].山东农业科学, 1994, 1: 13~15.
    [80]江丽华,刘兆辉,张文君.高钾土壤冬小麦、夏玉米钾肥适宜用量研究[J].山东农业科学, 2004, 2: 51~53.
    [81]熊淑萍,姬兴杰,李春明,等.不同施肥处理对土壤铵态氮时空变化影响的研究[J].农业环境科学学报, 2008, 27(3): 978~983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700