CO_2浓度倍增与介质施氮对冬小麦物质生产及氮素利用的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气CO2浓度升高对植物生长影响是当前国内外研究的热点问题之一,该研究在国外开展较早,而我国主要研究开始于20世纪90年代末,主要集中在大气CO2浓度增加对作物生物学指标、生理指标以及产量性状影响方面的研究,将几种因素综合考虑的较少,资料相对贫乏,而且一些结果仍需进一步验证。本研究采用开顶式气室(Open Top Chambers,OTCs),以冬小麦(Triticum aestivum L.)为供试作物,通过土培实验,研究大气CO2浓度倍增对生长在不同介质施氮水平(不施氮(N0)、每千克土施氮0.15g(N1)和0.30g(N2))下冬小麦品种光合荧光特性、生长发育、冬小麦产量构成及氮素分配利用的影响。研究获得以下主要进展:
     1.实验表明,与背景CO2浓度相比,大气CO2浓度升高对不同生育时期冬小麦叶片的叶绿素含量、各荧光参数值和净光合速率均有影响,不施氮条件下随大气CO2浓度增加各主要生育期叶片叶绿素含量均显著降低,Fo值有不同程度升高,Fm、Fv、Fv/Fm和Fv/Fo值及净光合速率有不同程度地下降,这表明大气CO2浓度升高使低氮营养下作物PSⅡ受到的光损伤增加,对其电子传递、电子受体QA氧化还原、最大光化学效率和潜在活性有一定的抑制作用,光合系统的光能转换和碳固定能力降低。同时,不同介质施氮水平对冬小麦各主要生育期叶片叶绿素含量、荧光参数值和净光合速率也有不同程度的影响,在高浓度CO2下,施氮可使两个基因型冬小麦叶绿素含量和Fm、Fv、Fv/Fm和Fv/Fo明显增加,N1、N2水平显著高于N0水平,但两个施氮处理(N1和N2)间差异大都不显著。
     2.大气CO2浓度倍增对两基因型冬小麦叶面积、株高、成熟期茎长、穗下第一节间长、穗长有均有一定影响,但影响程度与介质施氮有关,N0处理时,大气CO2浓度倍增对冬小麦生长状况影响均不显著,基因型间差异也不明显;N1、N2处理下,大气CO2浓度倍增后,除叶面积外,显著增加了其它各个生长指标值。介质不施氮时,大气CO2浓度升高对小偃22号和小偃6号产量的影响不明显,介质施氮后大气CO2浓度升高使得两基因型冬小麦的产量显著增加,对小偃22号产量的影响大于小偃6号,穗数和穗粒数增加是提高产量的主要原因。另外,大气CO2浓度倍增后株高的变化与穗下第一节间长增加相关,而且均受施氮水平调节。同时,增加施氮水平有利于大气CO2浓度升高后叶片保持较高光合面积,接受更多光能。
     3.大气CO2浓度倍增后对两基因型冬小麦的氮素含量有一定影响,但影响大小取决于介质施氮水平、器官部位和生长时期。CO2浓度倍增升高不利于增加冬小麦各器官氮素含量,在生育后期表现的尤为明显,其中,对根部的影响较小,对其它部位影响较为显著。供氮介质不足时,大气CO2浓度倍增对两基因型冬小麦成熟期氮素累积量有负面效应,小偃6号和小偃22号氮收获指数也明显下降,增施氮肥后,当大气CO2浓度升高时作物体氮素累积量显著增加,氮收获指数均随施氮量增加而增加,以高产高氮效品种小偃22号表现尤为明显。
     以上结果初步证明,在本实验条件下,当介质氮素供应不足时,大气CO2浓度倍增对作物代谢及生长发育等指标总体上表现为抑制作用或者效应不显著,但介质施氮肥后可以明显改善这种由大气CO2浓度升高给作物带来的不利影响,可明显促进作物生长发育,说明大气CO2浓度升高与介质施氮对冬小麦生长发育具有明显正交互效应。研究结果虽然充分证明了基本假设“大气CO2浓度倍增和介质施氮水平对作物物质生产及氮素利用存在正交互作用”,但对“不同品种影响程度与施氮水平有关”尚未完全证明,且对大气CO2浓度对作物的影响机理尚未研究清楚,在今后的实验中仍需进一步研究证明。
The studies on the effect of CO2 concentration elevation on plants have been one of the hot issues. This research begun with1990s in China, and later than abroad. The research mostly focus on biological, physiological and yield characters of crops.There still need some experiments to proof the effects of all factors on crops because most of the study only took into account of CO2 concentration or combined it with nutrient and water, respectively. Our study used Open Top Chambers equipment to study the effect of elevated CO2 on photosynthetic fluorescence characteristics, growth, nutrient distribution and yield components of winter wheat (Triticum aestivum L.) which growing under three levles of nitrogen application (N0, N1 and N2, representing 0, 0.15 and 0.30 g nitrogen per kilogram soil, respectively). Major conclusions are as follow:
     1. The results showed that, compared with the background CO2 concentration, elevated CO2 had effect on chlorophyll content, fluorescence parameters and net photosynthetic rates of wheat leaf at different growth stages. Under no nitrogen application, CO2 concentration elevation significantly reduced chlorophyll concent at major growth stages, increased inordinately Fo , and decreased inordinately Fm, Fv, Fv / Fm, Fv / Fo and net photosynthetic rate,too.This indicated that under low nitrogen nutrition, elevated CO2 could increase light damage of PS II, inhibited the electron transfer, electron acceptor QA redox, photochemical efficiency and the potential reactivity of PS II and light energy conversion system and photosynthetic carbon fixation capacity. Meanwhile, different nitrogen levels also influcenced chlorophyll content, fluorescence and net photosynthetic rate of winter wheat leaf which at the different growth stages. Under elevated CO2 concentrations, chlorophyll content, Fm, Fv, Fv / Fm and Fv / Fo of two winter wheat varieties significantly higher in nitrogen application treatments(N1, N2) than these in no nitrogen applicationment treatment(N0), while there was no significant difference between two nitrogen application treatments
     2. CO2 concentration elevation affected leaf area, plant height, mature stem length, ear length of two wheat varieties. The influences were associated with nitrogen level. Under N0, Elevated CO2 did not change the growth of wheat, While under N1 trestment and N2 treatment, elevated CO2 increased all the growth indexs except leaf area. Similarly, the yield of wheat in CO2 concentration treatments was increased only under nitrogen application. The production change of Xiaoyan22 was much bigger than that of Xiaoyan6 for CO2 concentration elevation. The production increase was primarily due to the enhancement of spike number and grain number per spike. In addition, the change of wheat height and its composition after CO2 concentration increase were associated with the increaseing of stem frist node length and ear length. Both of them were controled by nitrogen application level. Meanwhile, it was good for the leaf maintaining a high photosynthetic area to receive more light through using more nitrogen.
     3. Elevated CO2 also influenced the nitrogen content of two wheat genotypes, and the infucenced degree depended on nitrogen application levels, organs and growth stages. It was not so conducive to nitrogen content in different organs of winter wheat, especially at late growth stage. The effect of elevated CO2 on the root was smaller than that on other parts. Elevated CO2 concentration would have negative effect on nitrogen accumulation at maturity stage because of nitrogen deficiency. The harvest index of nitrogen decreased significantly both in Xiaoyan6 and Xiaoyan22. After nitrogen application, Nitrogen accumulation increased significantly in elevated CO2 concentration and higher than that in the background concentration. Nitrogen harvest index increased along with the increase of nitrogen application level, especially in Xiaoyan 22 which was the high yield, high nitrogen efficiency variety
     4. In total, CO2 concentration elevation had inhibition or no significant effect on growth and metabolism of wheat under nitrogen deficiency, but it obviously stimulated crop growth under nitrogen application, which showed that a interaction between CO2 concentration elevation and nitrogen application was positive on winter wheat. Although the basic assumption that“CO2 concentration increased and nitrogen application on crop production and nitrogen utilization of material there is a positive interaction.”was proved,“the level of N has something to do with effect on different varieties”lacked enough evidence. It would need further research on the impact mechanism of the CO2 concentration on wheat in the future.
引文
白莉萍,周广胜.2004.小麦对大气CO2浓度及温度升高的响应与适应研究进展[J].中国生态农业学报,12 (4):23-26.
    曹翠玲,李生秀.2003.供氮水平对小麦生殖生长时期叶片光合速率、NR活性和核酸含量及产量的影响[J].植物学通报,20 (3):319-324.
    陈小莉,李世清,任小龙,强虹,吉春容,闫登明.2008.大气NH3浓度升高对不同氮效率玉米生理指标及生物量的影响[J].植物生态学报,32 (1):204-211.
    党廷辉,郭胜利,樊军,郝明德. 2003.长期施肥条件下黄土旱塬土壤NO3 --N的淋溶分布规律[J] .应用生态学报,14 (8):1265-1268.
    樊丽莉,蒋跃林.2008.不同氮素处理水平下CO2浓度对小麦生产力的影响[J].安徽农学通报,14 (7):59-60,45.
    高俊凤.2006.植物生理学实验指导[M].北京:高等教育出版社,74-77.
    郭建平,高素华,白月明,温民,王春乙.1999. CO2浓度倍增对春小麦不同品系影响的试验研究[J].资源科学,21(6):25-28.
    郭天财,贺德先,王志和.1995.小麦穗粒重研究进展[A].小麦穗粒重研究[M].北京:中国农业出版社,1-15.
    华才宇,李启.1992.氮磷配施对冬小麦籽粒品质的影响[J].西北农业学报,1(1):77-80.
    蒋跃林,张庆国,张仕定,岳伟,陈庭甫. 2006.大气CO2浓度升高对小麦旗叶衰老和产量的影响[J].种子,25 (5):1-3.
    李翎,曹翠玲.2007.氮素水平对小麦幼苗叶绿体色素蛋白复合体含量的影响[J].西北植物学报,27 (3):0554-0559.
    李伏生,康绍忠,张富仓.2003.CO2浓度、氮和水分对春小麦光合、蒸散及水分利用效率的影响[J].应用生态学报,14 (3):387-393.
    李伏生,康绍忠.2004.CO2浓度、氮素和水分对春小麦碳素固定的影响[J].土壤通报,25(5): 546-549.
    廖轶,陈根云,张道允,许大全,朱建国,肖元珍.2003.冬小麦光合作用对开放式空气CO2
    浓度增高( FACE)的非气孔适应[J].植物生理与分子生物学学报,29(6):494-500.
    李静,李世清,陈小莉,郭莹莹.2009.大气NH_3升高对不同供氮水平下小麦叶片光合生理特征的影响[J].西北植物学报,29 (7):1373-1379.
    林世青,许春辉,张其德,徐黎,毛大璋,匡廷云.1992.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用[J].植物学通报,9(1):1-16.
    林伟宏.1998.植物光合作用对大气CO2浓度升高的反应[J].生态学报,18 (5):529-53.
    刘学军,赵紫娟,巨晓棠,张福锁.2002.基施氮肥对冬小麦产量、氮肥利用率及氮平衡的影响[J].生态学报,22 (7):1122-1128.
    吕金印,高俊凤,山仑.2002.水分亏缺对小麦碳同化物的动员与分配[J].核农学报,16 (4): 228-231.
    寇太记,朱建国,谢祖彬,刘刚,曾青.2008. CO2浓度增加和不同氮肥水平对冬小麦根系呼吸及生物量的影响[J].植物生态学报, 32 (4):922-931.
    马红亮,朱建国,谢祖彬,
    "http://www.cqvip.com/asp/vipsearch.asp?Query=%C1%F5%B8%D6&Type=A"刘钢HYPERLINK
    "http://www.cqvip.com/asp/vipsearch.asp?Query=%C1%F5%B8%D6&Type=A"
    张雅丽,曾青.2005.开放式空气co:浓度升高对冬小麦生长和N吸收的影响[J].作物学报,31门2、’1614一1619
    门中华,李生秀.2005.CO2浓度对冬小麦氮代谢的影响中国农业科学[J],38 (2):320-326.
    牟会荣.2008.遮荫对小麦旗叶光合及叶绿素荧光特性的影响[J].中国农业科学,41 (2):599-606.
    上官周平.1997.氮素营养对旱作小麦光合特性的调控[J].植物营养与肥料学报,3 (2):105-110.
    孙曦.1997.植物营养原理[M].北京:中国农业出版社,1997.
    同延安,赵营,赵护兵,樊红柱.2007.施氮量对冬小麦氮素吸收、转运及产量的影响[J] .植物营养与肥料学报,13 (1):64-49.
    王晨阳.1998.氮肥后移对超高产小麦产量及生理特性的影响[J].作物学报,24 (1):978 - 983.
    王维,蔡一霞,张建华,杨建昌,朱庆森.2005.适度土壤干旱对贪青小麦茎贮藏碳水化合物向籽粒运转的调节[J].作物学报,31 (3):289-296.
    王修兰,徐师华,李佑祥.1996.CO2浓度倍增对小麦生育性状和产量构成的影响[J].生态学报,16(3):328-332.
    王月福,姜东,于振文,曹卫星.2003.氮素水平对小麦籽粒产量和蛋白质含量的影响及其生理基础[J].中国农业科学,36 (5):513-520.
    王月福,于振文,李尚霞,余松烈.2003.土壤肥力和施氮量对小麦氮素吸收运转及籽粒产量和蛋白质含量的影响[J].应用生态学报,14 (11):1868-1872.
    魏小平,王根轩,吴冬秀.2005.干旱和CO2浓度升高对不同春小麦光合作用和气孔阻力及水分蒸腾效率的影响[J].兰州大学学报(自然科学版),41 (6):42-46.
    徐玲,赵天宏,胡莹莹,曹莹,史奕. 2008.CO2浓度升高对春小麦光合作用和籽粒产量的影响[J].麦类作物学报,28 (5):867-872.
    许大全.1994.光合作用及有关过程对长期高CO2浓度的响应[J].植物生理学通讯30 (2):81-87
    杨连新,李世峰,王余龙,黄建晔,杨洪建,董桂春.2007.开放式空气二氧化碳浓度增高对小麦产量形成的影响[J].应用生态学报,18 (1):75-80.
    杨连新,王余龙,李世峰,黄建晔,董桂春,朱建国,刘钢,韩勇.2007.开放式空气二氧化碳浓度增高对小麦物质生产与分配的影响[J].应用生态学报,18 (2):339-346.
    杨铁钢,戴廷波,曹卫星.2008.施氮水平对不同品质类型小麦花后碳氮同化和转运的影响[J].南京农业大学学报,31(2):6-10.
    于振文,潘庆民,姜东,张永丽,王东.2003.9000 kg/公顷小麦施氮量与生理特征分析[J].作物学报,29(1):37-43.
    袁新民,杨学云,同延安,李晓林,张福锁.2001.不同施氮量对土壤NO3-N积累的影响[J].干旱地区农业研究,9(1):8-13.
    赵天宏,王美玉,张巍巍,张鑫.2006.大气CO2浓度升高对植物光合作用的影响[J].生态环境,15 (5):1096-1100.
    张雷明,上官周平,毛明策,于贵端. 2003.长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响[J].应用生态学报,14(5):695-698.
    张其德,蒋高明,朱新广,王强,卢从明,白克智,匡廷云,魏其克,李振声.2001.12个不同基因型冬小麦的光合能力[J].植物生态学报,25 (5):532-536.
    张守仁.1999.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,16 (4):444-448.
    张续成,上官周平.2007.施氮对旱地不同抗寒性小麦叶片光合色素含量与荧光特性的影响[J].核农学报,21 (3):299-304.
    Adam NR, Wall GW, Kimball BA, Idso SB, Webber AN. 2000. Acclimation response of spring wheat in a free-air CO2 enrichment (FACE) atmosphere with variable soil nitrogen regimes. 1. Leaf position and phenology determine acclimation response[J]. Photosynthesis Research, 66 (1-2):65-77.
    Amthor JS. 2001. Effects of atmospheric CO2 concentration on wheat yield: Review of results from experiments using various approaches to control CO2 concentration[J].Field Crops Research, 73: 1-34.
    Bai L-P, Tong C-F , L in E-D. 2002. Effects of elevated CO2 on growth and yield of different winter wheat cultivars during later period[J]. Chinese Journal of Agrom eteorology 23 (2):13-16.
    Bunce J A. 1998. The temperature dependence of the stimulation of photosynthesis by elevated carbon dioxide in wheat and barley[J]. Journal of Experimental Botany, 49: 1555-1561.
    Chen G-Y. 2003. Advance in the study on response and acclimation of plants to free-air CO2 enrichment ( FACE)[J]. Journal of Plant Physiology andM olecular B iology , 29 (6):479-486.
    Claver I P , Zhou H M 2005. Enzymatic hydrolysis of defatted wheat germ byproteases and the effect on the functional properties of resulting protein hydrolysates1[J]. J Food Biochem, 29 (1): 13-26.
    Cure JD. 1985. Carbon dioxide doubling responses: A crop survey/ / Strain BR, Cure JD, eds. Direct Effects of Increasing Carbon Dioxide on Vegetation, DOE /ER-0238. United States Department of Energy, Washington DC, USA: 99-116.
    Dai T-B, Sun C-F, Jing. 2005. Regulation of nitrogen rates and dressing ratios ongrain quality in wheat[J]. Acta Agron Sin, 31 (2):248-253.
    Feng J C, Hu X L, Mao X J. 2002. Application of chlorophyll fluorescence dynamics to plant physiology in adverse circumstance[J]. Economic Forest Research, 12 (4):14-20.
    Genthon C, Baron la J M, Reynaud D. 1987. Vo stockier co re: climatic response to CO2 and orbital forcing changes over the last climatic cycle [J]. Nature, 329: 414-418.
    GUO T C, FENG W, XIA B. 2004 .Relationship between grain filling and assimilation supply in two winter wheat cultivars wit h different spike type [J ] .Acta A griculturae Boreali2S inica, 19 (2):44-48.
    Guo T C, Fang B T, Wang C Y. 2005. Effects of water regulations on the kinetic parameters of chlorophyll fluorescence in wheat flag leaves as well as wheat yield[J]. Agricultural Research in the Arid Areas, 23 (2):6-10.
    Harnos N, Tuba Z, Szente. 2002. Modelling net photosynthetic rate of winter wheat in elevated air CO2 concentrations [J].Photosynthetica, 40:293-300.
    Herppich W B, Peckmann K. 1997. Responses of gas exchange, photosynthesis, nocturnal acid accumulation and water relations of Aptenia Cordifolia to short-term drought and re-watering[J]. Journal of Plant Physiology, 150:467-474.
    Herppich W B, Peckmann K. 1997. Responses of gas exchange, photosynthesis, nocturnal acid accumulation and water relations of Aptenia Cordifolia to short-term drought and re-watering[J]. Journal of Plant Physiology, 150:467-474.
    Imai K,Murata Y. Effects of carbon dioxide concentration on growth and dry matter production of crop plants. Analysis of after-effect of carbon dioxide-treatment on apparent photosynthesis. Jap J Crop Sci,1978, 47 ,587.
    L i F-S , Kang S-Z. 2003. Influence of CO2 enrichment on growth and N and P concentrations in winter wheat under two N levels[J]. Acta Pedologica S inica, 40 (4):599-605.
    Larios B, Agüera E, Cabello P. 2004. The rate of CO2 assimilation controls the expression and activity of glutamine synthetase through sugar formation in sunflower (Helianthus annuus L.) leaves[J]. Journal of Experimental Botany, 55 (394):69-75.
    Mitchell RAC, Black CR, Burkart S. 1999. Photosynthetic responses in spring wheat grown under elevated CO2concentrations and stress conditions in the European, multiple-site experiment 'ESPACE-wheat'[J]. European journal of agronomy, 10 (3-4):205-214.
    Osborne CP, LaRoche J, Garcia RL. 1998. Does leaf position within a canopy affect acclimation of photosynthesis to elevated CO2 Analysis of a wheat crop under free-air CO2 enrichment [J]. 117 (3): 1037-1045.
    Pinter J r PJ, Kimball BA, Wall GW. 1997. Effects of elevated CO2 and soil nitrogen fertilizer on final grain [J].42 (5):137-144.
    Prentice I, Farquhar G, Fasham M. 2001.The carbon cycle and atmospheric carbon dioxide[M]// Houghton J T, Ding Y,Griggs D J. Climate Change: The Scientific Basis.
    Rhodes D I , Stone B A .2002. Proteins in walls of wheat aleurone cells[J]. J Cereal Sci , 36(1) : 83-101.
    Schreiber U, Bolger W, Neuberger G. 1994. Chlorophyll fluorescence: New instruments for special application[A]. In Schulze E D, Clad well M M eds. Eco-physiology of photosynthesis[C]. Berlin Springer-Verlag: 147-150.
    Sicher RC, Bunce JA 1998. Evidence that premature senescence affects photosynthetic decline of wheat flag leaves during growth in elevated carbon dioxide [J].159 (5):798-804.
    Smart D R, Ritchie K, Bloom A J. 1998. Nitrogen balance for wheat canopies (Triticum aestivum cv. Veery 10) grown under elevated and ambient CO2 concentrations[J].Plant Cell and Environment, 21: 753-763.
    Stitt M, Krapp A. 1999. The interaction between elevated carbon dioxide and nitrogen nutrition: The physiological and molecular background[J]. Plant, Cell and Environment, 22 (6):583-621.
    Tian, X H. 1992. Ammonia cal Nitrogen Loss from Wheat and Maize by Volatilization During Their Growth Periods. Master thesis, Plant Nutrition And Fertilizer, Northwest Sci-Tech University of Agriculture and Forestry, Yangling, Shaanxi :3-8.
    Wang H, McCaig T N, DePauw R M,et al. 2003. Physiological characteristics of recent Canada Western Red Spring wheat cultivars: components of grain nitrogen yield[J].Plant Science, 83 (4):699-707.
    Wang X-L,Xu S-H, L i Y-X,. 1996. The effects of CO2 on growing and developing characters and yield for wheat[J]. Acta Ecologica S inica, 16 (3):328-332.
    WANG Y F, YU ZH W, L I SH X. 2003. The effect of different fertilizeration level on grain protein and free amino acid comntent of organs above ground of different wheat variety [J].A cta Bot. Boreal. Accident. S in, 23 (3):417:421.
    Wen M, Wang C-Y, Gao S-H. 1994. The influences of CO2 concentration doubling on growth and development, yield formationand germination percentage of winter wheat[J].Eco-Agriculture Research, 2 (2):2-42.
    Wu D-X, Wang G-X, Bai Y-F. 2002. Response of growth and water use efficiency of sp ring wheat towhole season CO2 enrichment and drought[J]. Acta B otanica S inica, 44 (12):1477-1483.
    WU J M. 1985. Accumulation ,t ransportation and dist ribution rate of wheat grain filling matter [J ] .J ourna lof J iangsu A gricultural Sciences , (5) :14 - 17Yang L-X , Wang Y-L , Huang J-Y. 2006.
    Responses of rice growth and development to fre-air CO2 enrichment ( FACE) : A research review[J]. Chinese Journal of Applied Ecology, 17 (7): 1331-1337.
    yields of spring wheat/ / Annual Research Report. U. S.Water Conservation Laboratory, USDA,Agricultural Research Service, Phoenix,Arizona,USA: 71-74.
    YUE SH S, YU ZH W, YU S L. 1997. Effect s of nitrogen application at different growt h stages on t he senescence of flag leaves and grain yield in winter wheat (Triticum aestivum L.) [J] .Scientia A gricultura Sinica, 30 (2):42-46.
    Zhang Q D, Zhang J H, Liu H Q, et al. 2000. Effects of limited irrigation and different fertilization ways on some photosynthetic functions of flag leaves in winter wheat[J]. Plant Nutrition and Fertilizer Science, 6 (l):24-29.
    Zhang S R. 1999. A discussion on chlorophyll fluorescence kinetics parameters and their significance [J]. Chinese Bulletin of Botany, 16 (4):444-448.
    Ziska L H, Weerakoon W ,Namuco O S,et al. 1996. The influence of nitrogen on the elevated CO2 response in the field grown rice [J]. Australian Journal of Plant Physiology, 23: 45-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700