脊髓冲击伤动物模型的建立及凋亡相关基因表达的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:①研制一种小型冲击波发生装置,模拟爆炸冲击波的致伤作用。②建立实验条件下的兔不同程度脊髓冲击伤动物模型。③探讨兔脊髓冲击伤后脊髓组织中Bcl-2、Bax蛋白早期表达的变化规律,为进一步阐明脊髓冲击伤的发生机制和指导临床治疗提供实验依据。
     方法:①根据气体动力学原理,采用破膜技术及传感器检测技术,研制出一种由储气设备、发射系统、冲击波测试分析系统所组成的小型冲击波发生装置。检测气源压力分别为400kPa、500kPa、600kPa、700kPa、800kPa时该装置所产生的冲击波的超压峰值、持续时间及传播速度,不同的气源压力分别重复5次。②将24只新西兰大白兔随机分为4组,每组6只。A组:对照组;B组:气源压力为0.4MPa损伤组;C组:气源压力为0.6MPa损伤组;D组:气源压力为0.8MPa损伤组。采用小型冲击波发生装置,将兔T9和T10全椎板切除显露硬膜,按分组预设气源压力实施单次冲击波致伤,对照组仅行椎板全切除,不设施冲击波致伤。48h后观察各组兔后肢运动、感觉功能变化以及脊髓病理学变化,综合评价脊髓损伤程度。③设定小型冲击波发生装置的气源压力为0.6MPa,单次冲击波致兔脊髓中度损伤,致伤后在不同时间点(4~72h),光镜观察脊髓组织形态学变化,免疫组织化学方法观察Bcl-2和Bax蛋白在脊髓组织的表达情况。
     结果:①小型冲击波发生装置能模拟产生冲击波,其检测到的波形类似于Friedlander波形,即典型空气冲击波波形。随着气源压力的增大,冲击波超压峰值及速度同时增大,正压持续时间基本不变。各组数据重复性好。②各组随着气源压力的增大,兔后肢运动、感觉功能损害明显加重。兔脊髓冲击伤后48小时,各组动物运动及感觉功能评分差异显著。伤后48h发现受损节段脊髓水肿、变性坏死,脊髓灰质的病理损害严重。③兔脊髓中度冲击伤后4~72h,光镜下观察脊髓组织细胞肿胀、坏死改变增多,脊髓灰质的病理损害严重。冲击伤后脊髓灰、白质均有Bcl-2和Bax蛋白表达,但在时间分布上呈不均一性。Bcl-2在伤后12h呈阳性表达,表达高峰持续在伤后24h~48h,而Bax在伤后4h呈阳性表达,表达高峰也持续在伤后24h~48h,但表达程度始终强于Bcl-2。
     结论:①小型冲击波发生装置能模拟产生冲击波,且性能稳定、安全,可重复性强。②小型冲击波发生装置建立的动物脊髓冲击伤模型安全、稳定、有效,能较好的模拟轻、中、重不同程度脊髓冲击伤,适用于实验条件下的脊髓冲击伤研究。③兔脊髓冲击伤后损伤早期局部促进凋亡的因子表达占主导优势,而保护性因子的表达不足,最终使脊髓神经细胞向凋亡的方向发展。
Objective:①To develop a small size device which generate shockwave and simulate blast injuries caused by the shock of explosion.②To establish a laboratory efficient wound model in rabbits for the study on spinal cord shockwave injury at different extents.③To observe potential changes in the Bcl-2 and Bax proteins expression in rabbit spinal cord after the blast injury, so as to provide the experimental basis for further clarifying the mechanism of spinal cord blast injury and for clinical therapy.
     Methods:①The device composed of the gas storage facilities, launch systems and shock wave analysis system was developed based on gas-dynamical principles, rupture of membrane and sensor detection technology. Positive pressure peak, duration and propagation velocity were detected by oscilloscope at the different pressure of gas source. Each of the gas pressure 400kPa、500kPa、600kPa、700kPa、800kPa was repeated five times.②24 New Zealand white rabbits were randomly divided into four groups of six. A group: control group; B group: gas source pressure of 0.4MPa; C group: gas source pressure of 0.6MPa; D group: gas source pressure of 0.8MPa.The rabbit’s spinal cord of T9 and T10 was injured by different pressure of gas source with the device. The degrees of spinal cord shockwave injury were evaluated by histological analysis and the extent of function changes of feel and behavior were investigated after injury 48 hours.③Moderate spinal cord blast injury in rabbits were induced by the device at the gas source pressure of 0.6MPa.Light microscopy was used to observe the morphologic changes in rabbit spinal cord and immunochemical method was used to study the expression of Bcl-2 and Bax proteins in rabbit spinal cord from 4 h to 72 h after the spinal cord blast injury.
     Results:①The waveform detected by the shock wave analysis system of the device is similar to the Friedlander waveform, a typical air-blast waveform. With the gas source pressure, positive pressure peak and propagation velocity increase at the same time, the duration of positive pressure remain basically unchanged. Data of each group keep good reproducibility.②The motor function of rabbit hind limbs was significantly worsened duo to the stronger shockwave pressure. It was found that the damaged spinal cord area edema, degeneration and necrosis, the pathological damage to the gray matter of spinal cord was serious 48h after injury. The score of rabbit hind limb sensory and motor function was significantly different and with good reproducibility.③During the post burst phase (4~72 h),the increased necrotic and swollen cell in spinal cord was observed by light microscopy and the pathological damage to the gray matter of spinal cord was serious. After the blast injury, expressions of protein Bcl-2 and protein Bax were observed all over the spinal cord, but it was not uniform in time distribution. The expressions of protein Bcl-2 were observed 12h after the spinal cord blast injury and reached peak value during 24h~48h. The expressions of protein Bax were observed 4h after the spinal cord blast injury and the degree of the expressions was stronger than protein Bcl-2.
     Conclusion:①The device we developed can simulate the shockwave generation. It was safe and functionally stable.②The device was able to better simulate light, moderate and severe spinal cord blast injury in varying degrees. The present animal model of spinal cord blast injury is safe and effective and it is highly advantageous for the study of shockwave injury in laboratory.③The spinal cord blast injury may cause apoptosis of some neurons because the expressions of protective factor are less than the expression of the apoptosis factor.
引文
1. Sviri GE,Guilburd JN,Soustiel JF,et al. Penetrating head injuries caused by a new weapon, the side dome[J]. Mil Med, 1999;164(10): 746-750.
    2. Rothschild MA,Maxeiner H. Death caused by a letter bomb[J].Int J Legal Med,2000;114(12):103-106.
    3. Cernak I, Savic J, Ignjatovic D,et al. Blast injury from explosive munitions[J] . J Trauma ,1999;47(1):96-104.
    4. Phillips YY. Primary blast injury and basic research[M] .Chapter 6:A brief history l991;114-118.
    5.赖西南,刘荫秋,贺声华.爆炸性武器在现代战争中的应用及致伤机制[J].解放军医学情报,1996;10(5) :251-253.
    6.马云青,罗卓荆,王建灵,等.一种可控性脊髓爆震伤模型的建立[J].中华实验外科杂志,2007;24(1):104-105.
    7. Guy RJ, Kirkman E,Watkins PE,et al.Physiologic responses to primary blast[J]. J Trauma, 1998;45(6): 983–987.
    8. Mundie TG, Dodd KT, Lagutchik MS, et al. Effects of blast exposure on exercise performance in sheep[J]. J Trauma, 2000;48(6): 1115-21.
    9. Richman DR, Clare VR, Goldizen VC, et al. Biological effects of overpressureⅡ.A shock tube utilized to produce sharp-rising overpressure of 400 milliseconds duration and employment in biomedical experiments[J]. Aerosp Med, 1961;32:997-1008.
    10. Wang ZG, Sun LY, Yang ZH, et al. Development of serial bio-shock tubes and their application[J]. Chin Med J (Engl), 1998;111(2):109-113.
    11. Crowe MJ, Bresnahan JC, Shuman SL, et al.Apoptosis and delayed generation afer spinal cord injury in rats and monkeys[J]. Natmed,1997;3:73-76.
    12. Nabil M. Toxicology of blast overpressure[J].Toxicology,1997;121(1):1-15.
    13 Richmond DR Axelsson H. Airblast and underwater blast studies with animals[J].J Trauma,1990;6(2):229.
    14.王正国,主编.冲击伤[M].北京,人民军医出版社,1983:45.
    15. Stapczynski JS . Blast injuries[J]. Ann Emerg Med, 1982;11(12): 687-694.
    16. Nabil M, Elsayed .Toxicology of blast overpressure[J]. Toxicology , 1997;121(1):1-15.
    17. Jaffin JH, McKinney L, Kinney RC, et al. A laboratory model for studying blast overpressure injury[J]. J Trauma. 1987;27(4):349-356.
    18. Wang ZG, Sun LY, Yang ZH, et al. Development of serial bio-shock tubes and their application[J]. Chin Med J (Engl), 1998;111(2):109-113.
    19.张均奎,王正国,冷华光,等.冲击波负压发生装置及其应用[J].第三军医大学学报, 1992;14(6):551-554.
    20.陈海斌,王正国,杨志焕,等.冲击波传播的三个时段模拟实验中动物肺的损伤[J].爆炸与冲击,2000;20(3):264-269.
    21.梁朝革,陈长青,贾连顺.脊柱脊髓火器伤[J].中国脊柱脊髓杂志,2005;15 (5):313-315.
    22 Cheng H,Cao Y, Olson L. Spinal cord repair in adult paraplegic rat partial restoration of hind limb function [J]. Science,1996;273(4):510-513.
    23. Moon LD, Leasure JL, Gage FH,et al.Motor enrichment sustains hindlimb movement recovered after spinal cord injury and glial trans-plantation[J].Restor Neurol Neurosc, 2006;24 (3): 147~161.
    24. Nabil M, Elsayed. Toxicology of blast overpressure [J]. Toxicology,1997;121(1):1-15.
    25. Guy RJ, Kirkman E, Watkins PE, et al. Physiologic responses to primary blast [J]. J Trauma, 1998;45(6): 983-987.
    26. Estera AL, Aucar JA, Wall MJ, et al.Hydroblast in juries to the small bowel and inferior venacava [J].J Trauma, 1999;47(5):979-81.
    27. Ilic N, Petricevic A , Mimica Z, et al . War injuries to the thoracic esophagus [J]. Eur J Cardiothorac Surg,1998;14(6):572-574.
    28. Irwin RJ , Lerner MR , Bealer JF, et al . Cardiopulmonary physiology of primary blast injury [J]. J Trauma, 1997;43(4):650-655.
    29.赖西南,刘荫秋,贺声华.面向21世纪的我军野战外科[J].解放军医学情报,1996;10(4):202-5.
    30.李兵仓.现代火器伤研究概览[J].临床外科杂志,2007;15(11):792-793.
    31.浣石,黄风雷,汪保和.冲击波致伤作用实验研究进展[J].医用生物力学,2006;21(2):163-168.
    32.卢旻鹏,权正学,刘渤.实验动物脊髓的损伤模型[J].中国骨与关节损伤杂志,2008;23(2):471-473.
    33.王保金,刘长江.脊髓损伤模型的建立与应用[J].中国组织工程研究与临床康复,2009;13(2):380-383.
    34. WiseYoung.Spinal cord contusion models [J].Progress in Brain Research. 2002; 137: 231-255.
    35.肖桂芳,陈发荣,胡卓玉.头面部严重爆炸伤的急救[J].医药产业资讯,2005;2(18):15-16.
    36.陈旭.脑水肿的实验研究[J].临床神经病学杂志,2000;13(3):187-188.
    37.段维勋,易定华.爆炸性武器致胸部损伤的致伤机制[J].中国急救医学,2002;22(6):362-364.
    38. Cooper GJ. Protection of the lung from blastoverpressure by thoracic stress wave decoupiers[J].Trauma, 1996;40(3 Suppl): 105-117.
    39 Guy RJ, Kirkman E, Watkins PE, et al . Physiologic responses to primary blast[J]. J Trauma, 1998; 45(6):983-987.
    40 Vink R,Young A,Bennett CJ,et al. Neuropep tide release influences brain edema formation after diffuse traumatic brain injury[J]. Acta Neurochir Supp l,2003; 86(2):257-260
    41. Mulligan SJ, Knapp E,Thompson B,et al. A method for assessing balance control in rodents[J]. Biomed Sci Instrum,2002;38(1) 77一82.
    42. Lu K, Liang CL, Chen HJ, et al. Injury severity and cell death mechanisms effects of concomitant hypovolemic hypotension on spinal cord ischemia reperfusion in rats[J].Exp Neurol, 2004, 185 (1): 120-132.
    43.郝勇,周跃.脊髓损伤与bcl-2基因[J].中国临床康复,2004;8(8):1533-1535.
    44. Tsukaharas S, Yamamoto S, Shew TT, et al. Inhalation of low level formal dehyde increases the bcl-2 /bax expression ratio in the hippocampus of immunologically sensitized mice[J]. Neuroimmunomodulati on, 2006;13(2):63-8.
    45. Jacobs WB, Fehlings MG.The molecular basis of neural regeneration[J]. Neurosurgery 2003;53,943-949.
    46. Dodson HC. Loss and survical of spiral ganglion neurons in the guinea pig after intracochlear perfusion with aminoglycosides[J]. J Neurocytol,1997;26:541-556.
    47. Yong C.Arnold PM,Zoubine MN,et al.Apoptosis in cellular compart-ments of rat spinal cord after severe contusion injury[J].J Neurotrauma,1998;15(7):459-472.
    48. Yune TY,Chang MJ,Kim SJ,et a1.Incresed production of tumor necrosis factor-alpha induces apoptosis after traumatic spinal cord injury in rats.[J]Neurotrauma.2003;20:207-2l9.
    49. Kramer BC,iVlytilineou C.Alterations in the cellular distribution of bcl一2,bax and bax in the adult rat substantia nigra following striatal 6-hydroxydopamine lesions[J].Journal Neurocytol,2004;33(2):213-215.
    50. Nesic-Taylor O,Cittelly D,Ye Z,et al.Exogenous Bcl-xL fusion protein spares neurons after spinal cord injury[J].J Neuro sci Res.2005;79(5):628-637.
    51. Tsujimoto Y,Finger LR,Yunis J,et al.Cloning of the chromosomes breakpoint of neoplastic B cells with the t(14:18) chromosome translocation[J].Science 1984;226:1097-1099.
    52. Gross A, McDonnell JM,Korsmeyer SJ.BCL-2 family members and themitochondria in apoptosis[J].Genes Dev,1999;13(15):1899-1911.
    53. Jacob T,Ascher E, HingoraniA et al . Glycine prevents the induction of apoptosis attributed to mesenteric ischemia/reperfusion injury in a rat model[J].Surgery,2003;134: 457- 466.
    54张强,邹德威,廖维宏,等.早期手术减压对损伤脊髓caspase-3表达的影响[J].颈腰痛杂志,2008;29(4):296-299.
    55 Genovese T, Mazzon E, Crisafulli C, et al. Effects of combination of melatonin and dexamethasone on secondary injury in an experimental mice model of spinal cord trauma[J].J Pineal Res,2007;43(2): 140-153.
    56马利杰,王红,王相利,等.大鼠急性脊髓损伤后神经细胞Bcl-2与Bax比值及细胞凋亡的关系[J].第四军医大学学报,2005;26(22):2042-2045.
    57 Hou Q,Cymbalyuk E,Hsu SC,et al. Apoptosis modulatory activities of transiently expressed Bcl-2: Roles in cytochrome C release and Bax regulation [J]. Apoptosis,2003;8(6):617-629.
    1. Allen AR. Surgery of experimental lesion of spinal cord crush injury of fracture dislocation of spinal colum [J]. AMA,1911,57(10):878-880.
    2. Stokes BT.Experimental spinal cord injury:a dynamic and verifiable injury device[J].J Neurotrauma,1992,9(2):129-134.
    3. Gruner JA.A monitored contusion model of spinal cord injury in the rat[J].J Neurotrauma,1992,9(2):123-126.
    4. Jakeman LB,Guan Z,Wei P,et al.Traumatic spinal cord injury produced by controlled contusion in mouse[J].J Neurotrauma,2000,17(4):299-319.
    5. Falconer JC, Narayana PA, Bhattacharjee M, et al.Characterization of an experimental spinal cord injury model using waveform and morphometric analysis[J]. Spine, 1996, 21(2): 104-112.
    6. Khan T, Havey RM, Sayers ST, et al. Animal models of spinal cord contusion injuries [J].Lab Anim Sci, 1999, 49(2): 161- 172.
    7. Bilegn M.A new device for experlmenat1 modeling of central nervous system injuries[J].Neurorehabil Neural epair,2005,Sep;19(3):219-226.
    8.张秋林,赵定麟,年广义,等.大鼠脊髓腹侧压迫损伤模型的制备[J].第二军医大学学报,2000,21(4):396-397.
    9. Bavetta S,Hamlyn PJ,Bumstock G.et al.The effects of FK506 on dorsal column axons following spinal cord in adult rats: neuroprotection and local regeneration[J].Exp Neurol,1999,158(2):382-393.
    10. Taylor SJ,Rosenzweig ES, McDonald JW3rd,et al. Delivery of neurotrophin-3from fibrin enhances neuronal fiber sprouting after spinal cord injury[J].J Control Release,2006,113(3):226-235.
    11. Tralov IM. Spinal cord compression studies[J]. Arch Neurol Psychiary. 1953, 70:813-819.
    12. Fukuda S,Nakamura T,Kishigami Y,et al.New canine spinal cord injury model free from laminectomy[J]. Brain Res Protoc,2005,14(3):171-180.
    13. Hukuda S,Witson CB. Experimental cervical myelopathy:effects ofcompression and ischemia on the canine cervical cord[J].J Neurosurg,1972,37(6):631~652.
    14. Kim P, Haisa T, Kawamoto T, et al. Delayed myelopathy induced by chronic compression in the rat spinal cord[J].Ann Neurol,2004,55(4):503~511.
    15.梁益建,孙善全,汪克建,等.大鼠脊髓慢性压迫性损伤实验模型的建立[J].中国临床解剖学杂志,2006,24(3):320-324.
    16. Lim JH,Jung CS,Byeon YE,et al.Establishment of a canine spinal cord injury model induced by epidural balloon compression[J].J Vet Sci,2007,8(1):89-94.
    17. Von Euler M , Seiger A , Sundstrom E. Clip compression injury in the spinal cord : a correlative study of neurological and morphological alterations[J].Exp Neurol,1997,14(5):502-510.
    18. Joshi M,Fehlings MG.Development and characterization of a novel , graded model of clip compressive spinal cord injury in the mouse[J].J Neurotrauma,2002,19(2):175-190.
    19. Maiman OJ, et al. Experimental spinal cord injury produce by axial tension[J].J Spinal Disord,1989,232(1):6-13.
    20. Mackey ME,Wu Y,Hu R,et al.Cell death suggestive of apoptosis after spinal cord ischemia in rabbits[J].Stroke,1997,28(10):2012~2017.
    21. Sufianova GZ,Usov LA,Sufianov AA,et al.New minimally invasive model of spinal cord ischemia in rats[J].Bull Exp Biol Med,2002,133(1):98-101.
    22. Schreiberova A, Lackova M, Kolesar D,et al.Neuronal nitric oxide synthaseimmunopositivity in motoneurons of the rabbit's spinal cord after transient ischemia/reperfusion injury[M].Cell Mol Neurobiol,2006: 26.
    23.胥少汀.实验性脊髓枪伤的损伤机理及分型[J].中华外科杂志,1990,28 (10):58-61.
    24.陈长青,练克俭,贾连顺,等.神经丝蛋白在猪胸腰段脊髓火器贯通伤后的早期表达[J].中国临床康复,2006,10(32):105-107.
    25.马云青,罗卓荆,王建灵,等.一种可控性脊髓爆震伤模型的建立[J].中华实验外科杂志,2007,24(1):104-105.
    26. Garcia AG, Verdu E, Fores J, et al. Functional and electrophysiological characterization of photochemical graded spinal cord injury in the rat[J]. J Neurotrauma, 2003, 20( 5):501-510.
    27. David AM, Robert JF. The electrolytic lesion as a model of spinal cord damage and repair in the adult rat [J]. J Neurosci Meth,1991, 38: 15- 23.
    28. Saklayen MG,Goldstein DL,Park YS,et al.Animal model of spinal cord infarction induced by cholesterol embolization. Am J Med Sci, 1995, 309(1): 49-52.
    1. Stevens RD,Bhardwaj A,Kirsh JR,et al.Critical care and perioperative management in traumatic spinal cord injury[J]. Neurosurg Anesthesiol,2003,15(3):215-229.
    2 . Saunders MR, Fry EJ, Lane M.Spinal cord injuries:making the re-connection[J].Biologist,2002,49(3):107-112.
    3 . GomesF C,Paulin D, Moura NV,et al. Glial fibrillary acidic protein (GFAP):modulation by growth factors and its implication in astrocyte differentiation[J].Braz J Med Biol Res,1999,32: 619-631.
    4. Bigini P,Bastone A,Mennini T.Glutamate transporters in the spinal cord of the wobbler mouse[J].Neuorreoptr,2001,12(9):1815-1825.
    5.张辉,饶志仁,黄文晋.胶质原纤维酸性蛋白的研究进展[J].生理科学进展, 2001,32(4):353-355.
    6. Rutka JT,Murakami M,Dirks PB,et al.Role of glial filaments in cell and tumor of glial origin :a review [J].Neurosurg,1997,87:420-429.
    7. Cheng H,Wu JP,Zeng SF.Neuroprotection of glial cell line—derived neurotrophic factor in damaged spinal cords following contusive injury[J].J Neurosci Res,2002,69(3):397-408.
    8. Hinkle D,Baldwin S,Scheff S,et a1.GFAP and S100 gene Experssion in the cotex and hippocampusin response to mild cortical contusion[J].J Neurotrauma,1997,l4(5):729—738.
    9.田纪伟,李家顺,贾连顺,等.脊髓半切伤后胶质纤维酸性蛋白的表达及意义[J].中国脊柱脊髓杂志,2003,13(9):533-535.
    10.张卫红,王道新.脊髓损伤后胶质纤维酸性蛋白的表达及其意义[J].南京医科大学学报, 2002,22(1): 17-19.
    11.刘雷,裴福兴,唐康来,等.大鼠牵张性脊髓损伤后胶质纤维酸性蛋白的表达及意义[J].临床骨科杂志,2005,8(3): 268-270.
    12.冯旭,陈安民,孙正义,等.大鼠慢性压迫性脊髓损伤后胶质纤维酸性蛋白的表达及意义[J].中国康复医学杂志,2007,22(11):1016-1017.
    13.陈长青,丁真奇,贾连顺,等.猪胸腰段脊髓火器贯通伤后胶质纤维酸性蛋白的早期表达[J].临床骨科杂志, 2006,9(3): 267-270.
    14.李雷,吕刚,王欢,等.骨髓基质细胞移植对大鼠脊髓损伤后胶质纤维酸性蛋白和神经丝蛋白表达的影响[J].中国康复医学杂志, 2007, 22(4): 299-302.
    15.张强,廖维宏,王正国,等.胚胎脊髓移植对大鼠损伤脊髓胶质纤维酸性蛋白表达的影响[J].中华创伤杂志,2000,16(7):419-422.
    16. Ritz MF,Hausmann ON.Effect of 17beta-estradiol on functional outcome, release of cytokines, astrocyte reactivity and inflammatory spreading after spinal cord injury in male rats[J]. Brain Res,2008,12(3):177-188.
    17.陈德纯,任先军,唐勇,等.硫酸软骨素酶ABC对大鼠急性脊髓损伤后神经中丝和胶质纤维酸性蛋白的影响[J].中国脊柱脊髓杂志,2007,17(5): 380-383.
    18.焦鹰,朱悦.甲基强的松龙对大鼠脊髓损伤后GFAP、neurocan和phosphacan表达的影响[J].中国脊柱脊髓杂志,2006,16(B07): 66-69.
    19.田代实,王伟,徐运兰,等.细胞周期素依赖性激酶抑制剂olomoucine对大鼠脊髓损伤后轴突再生微环境的影响及其意义[J].中华医学杂志, 2006,86(13): 901-905.
    20.马建敏,万斌,刘德明,等.微囊化兔坐骨神经组织细胞移植对大鼠损伤脊髓胶质纤维酸性蛋白表达的作用[J].中国临床康复,2006,10(41): 47-49.
    21. Zhang S,Kluge B,Huang F et a1.Photochemical scar ablation in chronically contused spinal cord of rat[J]. J Neurotrauma, 2007,24(2):411-420.
    22. Cassina P,Pehar M,Vargas MR,et al.Astrocyte activation by fibroblast growth factor-1 and motor neuron apoptosis:implications for amyotrophic lateral sclerosis[J].J Neurochem,2005,93(1):438—465.
    23. Baldwin SA,Brdeerick R,Blade DA,et a1.Alterations in temporal/spatial distribution of GFAP and vimentin—positive astrocyte after spinal cord contusion with the New York Univesrity spinal cord injury device[J].J Neuortrauma,1998,15(12):1015-1028.
    24. Menet V,Prieto M,Privat A et a1. Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes[J].Proc Natl Acad Sci USA.2003,100(15):8999-9004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700