影响铌酸锂结晶行为的化学反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铌酸锂因具有优良的电学和光学特性引起了世界范围内科学家的广泛研究兴趣。如何有效控制铌酸锂的成核、生长,进而实现对其化学组成、微观形貌、晶格结构乃至物理性质的调控,对于深入研究结构与物性的关联,并最终实现按照人们的意愿设计合成功能材料具有重要意义。本论文对于铌酸锂的一维和三维微纳米结构的设计合成、形成机制以及近化学计量比铌酸锂的液相、固相合成新方法等方面进行了有益的探索。
     论文设计了有机配体调控微观形貌的液相合成策略,并成功地应用到铌酸锂一维微米棒和三维微米空心球的合成中。通过探讨有机配体的几何构型与产物微观形貌的关联,发现通过选择不同种类的有机配体能够实现对铌酸锂微观结构的有效剪裁,为调控其他铌酸盐的微观形貌提供了有益参考。另外,本论文还对铌酸锂的光学性质进行了初步研究,结果表明不同形貌的铌酸锂具有不同的禁带宽度;通过对微观形貌的剪裁能实现对其光学性能的有效调控。
     论文采用固相燃烧法制备铌酸锂微晶。在反应过程中,尿素既作为燃烧剂又作为高活性配体与原料络合,从而大幅度降低了反应活化能,实现了在较低温度下铌酸锂的合成。通过对实验参数的系统考察,给出了铌酸锂的最佳合成条件:反应温度为500-600℃,尿素与原料(铌源和锂源)的质量比为3:1-4:1,反应时间为2.5-4 h。
     论文开发了自牺牲模板法制备五氧化二铌空心球和铌酸锂空心球的工艺路线。首先设计具有中空结构的铌前驱物H_2(H_2O)Nb_2O_6,而后分别通过脱水过程和固相燃烧过程实现了五氧化二铌空心球以及铌酸锂空心球的制备。紫外光谱结果表明,与体块铌酸锂以及溶剂热法合成的铌酸锂空心球相比,采用前驱物法合成的铌酸锂空心球缺陷较少。基于对空心球生长机制的分析,发现前驱物比较活泼,容易与其他金属离子发生反应,因而自牺牲模板法也同样适用于合成其他中空结构的铌酸盐。
     论文深入研究了化学合成方法在制备近化学计量比组分铌酸锂中的应用。详细探讨了在固相燃烧合成反应中加热速率对产物组分的影响,发现随着加热速率的降低,铌酸锂中的锂缺陷减少。在5-10℃/min的加热速率条件下能够获得高品质的铌酸锂。另外,由于有机配体与金属离子络合能够有效抑制锂组分的挥发,因而溶胶凝胶法也被证明是合成近化学计量比铌酸锂的有效途径。
Lithium niobate has drawn continuous research attention due to its excellent electric and optical properties. The main challenge in this area is how to precisely control morphologies, compositions, and crystal structures, and thus effectively tailor its physical and chemical properties in a controllable way. In this PhD dissertation, some experimental work has been carried out on the synthetic methods including both solution and solid-state reaction routes, to prepare near-stoichiometric lithium niobate and to design one- and three-dimensional lithium niobate micro/nano-structures. The formation mechanisms of various lithium niobate products were also proposed. The main results are summarized herein:
     One-dimensional rods and three-dimensional hollow spheres of lithium niobate have been fabricated in a versatile amine-assisted hydrothermal system. Various morphologies could be achieved by selecting ligands with different geometrical structures. Additionally, the optical properties of lithium niobate with different morphologies have also been investigated. It has been found that the optical property can be well tuned by adjusting the morphology.
     Solid-state combustion method has been developed to prepare lithium niobate. In the reaction, urea plays two roles: one is as a combustion reagent, and the other is to coordinate with raw materials, which abruptly reduces the reaction active energy. The operation parameters were comprehensively studied, and the optimal operation parameter has been proposed: reaction temperature about 500-600°C; quantity ratio of urea to raw materials (niobium source and lithium source) about 3:1-4:1; reaction time about 2.5-4 h.
     A sacrificial template method has been developed in the current work to fabricate niobium oxide and lithium niobate with hollow structure. First, a novel niobium-based precursor H_2(H_2O)Nb_2O_6 with hollow architecture has been designed, and then niobium oxide and lithium niobate hollow spheres were obtained through a dehydration process and a combustion treatment, respectively. The optical analysis results demonstrate that the hollow spheres obtained by this combustion process show high quality, compared with those lithium niobate bulk and lithium niobate hollow spheres fabricated through a solvothermal system. Furthermore, this method can be extended into the fabrication of other niobates with hollow structure due to the high reactivity of precursor.
     Chemical synthesis methods have been studied on the preparation of near-stoichiometric lithium niobate powders. The effect of heating rate on the composition of products has been studied in detail and the conclusion is that the lithium defect decreases with reducing the heating rate, and under the heating rate of 5-10℃/min, the high quality lithium niobate can be obtained. In addition, the sol-gel method has also been confirmed to be an effective route for fabricating high quality lithium niobate considering that the ligand well coordinates with metal ions, thus effectively protect the lithium lattice.
引文
[1]徐如人,庞文琴,无机合成与制备化学[M].北京:高等教育出版社,2001.
    [2]薛冬峰.晶体的化学键和非线性光学效应[D].长春:中国科学院长春应用化学研究所,1998.
    [3]宁青菊,谈国强,史永胜,无机材料物理性能[M].北京:化学出版社,2006.
    [4]钱逸泰,结晶化学导论[M].合肥:中国科技大学出版社,2002.
    [5]HOCHBAUM A I,CHEN R K,DELGADO R D,et al.Enhanced thermoelectric performance of rough silicon nanowires[J].Nature,2008,451(7175):163-167.
    [6]YANG H G,SUN C H,QIAO S Z,et al.Anatase TiO_2 single crystals with a large percentage of reactive facets[J].Nature,2008,453(7195):638-641.
    [7]TIAN N,ZHOU Z Y,SUN S G,et al.Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J].Science,2007,316(5825):732-735.
    [8]IM S H,LEE Y T,WILEY B,XIA Y N.Large-scale synthesis of silver nanocubes:the role of HCl in promoting cube perfection and monodispersity[J].Angewandte Chemie International Edition,2005,44(14):2154-2157.
    [9]WANG C,HU Y J,LIEBER C M,SUN S H.Ultrathin Au nanowires and their transport properties[J].Journal of the American Chemical Society,2008,130(28):8902-8903.
    [10]SHIRATORI Y,MAGREZ A,DORNSEIFFER J,et al.Polymorphism in micro-,submicro-,and nanocrystalline NaNbO_3[J].Journal of Physical Chemistry B,2005,109(43):20122-20130.
    [11]YIN Y D,RIOUX R M,ERDONMEZ C K,et al.Formation of hollow nanocrystals through the nanoscale Kirkendall Effect[J].Science,2004,304(5671):711-714.
    [12]OURASHI A,TABET N,FAIZ M,et al.Ultra-fast Microwave Synthesis ofZnO Nanowires and their Dynamic Response Toward Hydrogen Gas[J].Nanoscale Research Letters,2009,4(8):948-954.
    [13]UMAR A.Growth of Comb-like ZnO Nanostructures for Dye-sensitized Solar Cells Applications[J].Nanoscale Research Letters,2009,4(9):1004-1008.
    [14]NAKAMURA M,TAKEKAWA S,LIU Y,et al.Photovoltaic effect and photoconductivity in Sc-doped near-stoichiometric LiNbO_3 crystals[J].Optical Materials,2008,31(2):280-283.
    [15]TAKAHASHI H,IGAWA K,ARⅡ K,et al.Superconductivity at 43 K in an iron-based layered compound LaO_(1-x)F_xFeAs[J].Nature,2008,453(7193):376-378.
    [16]HUNTE F,JAROSZYNSKI J,GUREVICH A,et al.Two-band superconductivity in LaFeAsO_(0.89)F_(0.11)at very high magnetic fields[J].Nature,2008,453(7197):903-905.
    [17]CHEN X H,WU T,WU G,et al.Superconductivity at 43 K in SmFeAsO_(1-x)F_x[J].Nature,2008,453(7196):761-762.
    [18]DE LA CRUZ C,HUANG Q,LYNN J W,et al.Magnetic order close to superconductivity in the iron-based layered LaO_(1-x)F_xFeAs systems[J].Nature,2008,453(7197):899-902.
    [19]GONG K P,DU F,XIA Z H,et al.Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J].Science,2009,323(5915):760-764.
    [20] LIU J, XIA H, XUE D F, LU L. Double-shelled nanocapsules of V_2O_5-based composites as high-performance anode and cathode materials for Li ion batteries [J]. Journal of the American Chemical Society, 2009, 131 (34): 12086-12087.
    
    [21] SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries [J]. Nature Materials, 2009, 8 (4): 320-324.
    
    [22] GEORGE P P, POL V G, GEDANKEN A. Synthesis and characterization of Nb_2O_5@C core-shell nanorods and Nb_2O_5 nanorods by reacting Nb(OEt)_5 via RAPET (reaction under autogenic pressure at elevated temperatures) technique [J]. Nanoscale Research Letters, 2007,2 (1): 17-23.
    
    [23] NIEDERBERGER M, PINNA N, POLLEUX J, ANTONIETTI M. A general soft-chemistry route to perovskites and related materials: synthesis of BaTiO_3, BaZrO_3, and LiNbO_3 nanoparticles [J]. Angewandte Chemie International Edition, 2004,43 (17): 2270-2273.
    
    [24] LUO C, XUE D. Mild, quasireverse emulsion route to submicrometer lithium niobate hollow spheres [J]. Langmuir, 2006, 22 (24): 9914-9918.
    
    [25] ZHANG X, XUE D. Bond energy prediction of curie temperature of lithium niobate crystals [J]. Journal of Physical Chemistry B, 2007,111 (10): 2587-2590.
    
    [26] XUE D, HE X. Dopant occupancy and structural stability of doped lithium niobate crystals [J]. Physical Review B, 2006,73 (6): 64113.
    
    [27] GAO C Y, XIA H R, XU J Q, et al. Thermal properties of calcium doped strontium barium niobate crystal [J]. Applied Physics Letters, 2008, 92 (23): 231905.
    
    [28] MORO R, XU X S, YIN S Y, DE HEER W A. Ferroelectricity in free niobium clusters [J]. Science, 2003, 300 (5623): 1265-1269.
    
    [29] NOWAK I, ZIOLEK M. Niobium compounds: preparation, characterization, and application in heterogeneous catalysis [J]. Chemical Reviews, 1999,99 (12): 3603-3624.
    
    [30] LIU M, XUE D, LUO C. Facile synthesis of lithium niobate squares by a combustion route [J]. Journal of the American Ceramic Society, 2006, 89 (5): 1551-1556.
    
    [31] YAN C L, LIU J, LIU F, et al. Tube Formation in Nanoscale Materials [J]. Nanoscale Research Letters, 2008, 3 (12): 473-480.
    
    [32] ZHANG S G, YAO J H, SHI Q, et al. Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses [J]. Applied Physics Letters, 2008, 92 (23): 231106.
    
    [33] GRILLI S, FERRARO P. Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals [J]. Applied Physics Letters, 2008, 92: 232902.
    
    [34] IDA S, OGATA C, EGUCHI M, et al. Photoluminescence of perovskite nanosheets prepared by exfoliation of layered oxides, K_2Ln_2Ti_3O_(10), KLnNb_2O_7, and RbLnTa_2O_7 (Ln: lanthanide ion) [J]. Journal of the American Chemical Society, 2008, 130 (22): 7052-7059.
    
    [35] FENG Z, REN X. Striking similarity of ferroelectric aging effect in tetragonal, orthorhombic and rhombohedral crystal structures [J]. Physical Review B, 2008, 77 (13): 134115.
    
    [36] BRUSTLEIN S, DEL RIO L, TONELLO A, et al. Laboratory demonstration of an infrared-to-visible up-conversion interferometer for spatial coherence analysis [J]. Physical Review Letters, 2008, 100 (15): 153903.
    [37]LIU M,XUE D.Amine-assisted route to fabricate LiNbO_3 particles with a tunable shape[J].Journal of Physical Chemistry C,2008,112(16):6346-6351.
    [38]HU Y M,GU H S,HU Z L,et al.Controllable hydrothermal synthesis of KTa_(1-x)Nb_xO3 nanostructures with various morphologies and their growth mechanisms[J].Crystal Growth & Design,2008,8(3):832-837.
    [39]ZHAO L L,LU T Z,ZACHARIAS M,et al.Integration of erbium-dooped lithium niobate microtubes into ordered macroporous silicon[J].Advanced Materials,2006,18(3):363-366.
    [40]XU C Y,ZHEN L,YANG R,WANG Z L.Synthesis of single-crystalline niobate nanorods via ion-exchange based on molten-salt reaction[J].Journal of the American Chemical Society,2007,129(50):15444-15445.
    [41]COMPTON O C,MULLET C H,CHIANG S,OSTERLOH F E.A building block approach to photochemical water-splitting catalysts based on layered niobate nanosheets[J].Journal of Physical Chemistry C,2008,112(15):6202-6208.
    [42]DIAS A,MATINAGA F M,MOREIRA R L.Raman spectroscopy of(Ba_(1-x)Sr_x)(Mg_(1/3)Nb_(2/3))O_3 solid solutions from microwave-hydrothermal powders[J].Chemistry of Materials,2007,19(9):2335-2341.
    [43]ZHANG L Z,DJERDJ I,CAO M H,et al.Nonaqueous sol-gel synthesis of a nanocrystalline InNbO_4visible-light photocatalyst[J].Advanced Materials,2007,19(16):2083-2086.
    [44]莱因斯M E,格拉斯A M,铁电体及有关材料的原理和应用[M].北京:科学出版社,1989.
    [45]孔勇发,许京军,张光寅,多功能光电材料:铌酸锂晶体[M].北京:科学出版社,2005.
    [46]SAITO Y,TAKAO H,TANI T,et al.Lead-free piezoceramics[J].Nature,2004,432(7013):84-87.
    [47]LINGWAL V,PANWAR N S.Morphotropic phase transitions in mixed sodium-potassium niobate system[J].Ferroelectrics,2004,300:3-14.
    [48]RAEVSKI I P,REZNITCHENKO L A,MALITSKAYA M A,et al.NaNbO_3-based relaxor[J].Ferroelectrics,2004,299:95-101.
    [49]ZHANG X,XUE D,LIU M,et al.Microscopically structural studies of lithium niobate powders[J].Journal of Molecular Structure,2005,754(1-3):25-30.
    [50]XUE D,KITAMURA K.Crystal structure and ferroelectricity of lithium niobate crystals[J].Ferroetectrics,2003,297:19-27.
    [51]XUE D,KITAMURA K.Effects of Li~+ and Nb~(5+) cationic sites on macroscopic properties of lithium niobate crystals[J].Journal of Physics and Chemistry of Solids,2005,66(2-4):589-592.
    [52]HE X,LI K,LIU M,et al.An optical spectroscopy study of defects in lithium tantalate single crystal [J].Optics Communications,2008,281(9):2531-2534.
    [53]XUE D,KITAMURA K,WANG J.Atomic packing and octahedral linking model of lithium niobate single crystals[J].Optical Materials,2003,23(1-2):399-402.
    [54]NAVROTSKY A.Energetics and crystal chemical systematics among ilmenite,lithium niobate,and perovskite structures[J].Chemistry of Materials,1998,10(10):2787-2793.
    [55]CHEN Y L,YAN W G,GUO J,et al.Effect of Mg concentration on the domain reversal of Mg-doped LiNbO_3[J].Applied Physics Letters,2005,87(21):212904.
    [56]BILC D I,SINGH D J.Frustration of tilts and A-site driven ferroelectricity in KNbO_3-LiNbO_3 alloys [J].Physical Review Letters,2006,96(14):147602.
    [57] HIRANO S, TAKEICHI Y, SAKAMOTO W, YOGO T. Growth of highly oriented LiNbO_3 thin films through structure controlled metal alkoxide precursor solution [J]. Journal of Crystal Growth, 2002, 237: 2091-2097.
    
    [58] PITCHER M W, HE Y N, BIANCONI P A. Facile in situ synthesis of oriented LiNbO_3 single crystals in a polymer matrix [J]. Materials Chemistry and Physics, 2005, 90 (1): 57-61.
    
    [59] WANG D Y, CARUSO F. Lithium niobate inverse opals prepared by templating colloidal crystals of polyelectrolyte-coated spheres [J]. Advanced Materials, 2003,15 (3): 205-209.
    
    [60] ZHAO L, STEINHART M, YOSEF M, et al. Lithium niobate microtubes within ordered macroporous silicon by templated thermolysis of a single source precursor [J]. Chemistry of Materials, 2005, 17(1): 3-5.
    
    [61] ZHAO L, STEINHART M, YOSEF M, et al. Large-scale template-assisted growth of LiNbO_3 one-dimensional nanostructures for nano-sensors [J]. Sensors and Actuators B, 2005, 109 (1): 86-90.
    
    [62] NIEDERBERGER M, GARNWEITNER G. Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles [J]. Chemistry A European Journal, 2006, 12 (28): 7282-7302.
    
    [63] NAVALE S C, SAMUEL V, RAVI V. A coprecipitation technique to prepare LiNbO_3 powders [J]. Ceramics International, 2006, 32 (7): 847-848.
    
    [64] NAVALE S C, SAMUEL V, RAVI V. Preparation of nanocrystalline LiNbO_3 by citrate gel method [J]. Materials Letters, 2005, 59 (19-20): 2476-2478.
    
    [65] WEBER I T, AUDEBRAND N, BOUQUET V, et al. KTaO_3 powders and thin films prepared by polymeric precursor method [J]. Solid State Sciences, 2006, 8 (6): 606-612.
    
    [66] AGUAS M D, PARKIN I P. Combined combustion sol-gel synthesis of LiNbO_3, LiTaO_3, NaNbO_3 and NaTaO_3 [J]. Journal of Materials Science Letters, 2001, 20 (1): 57-58.
    
    [67] ZENG H C, TUNG S K. Synthesis of lithium niobate gels using a metal alkoxide metal nitrate precursor [J]. Chemistry of Materials, 1996, 8 (11): 2667-2672.
    
    [68] NOBRE M A L, LONGO E, LEITE E R, VARELA J A. Synthesis and sintering of ultra fine NaNbO_3 powder by use of polymeric precursors [J]. Materials Letters, 1996,28 (1-3): 215-220.
    
    [69] CAMARGO E R, KAKIHANA M. Chemical synthesis of lithium niobate powders (LiNbO_3) prepared from water-soluble (DL)-malic acid complexes [J]. Chemistry of Materials, 2001,13 (5): 1905-1909.
    
    [70] POPA M, KAKIHANA M. Ultrafine niobate ceramic powders in the system RE_xLi_(1-x)NbO_3 (RE: La, Pr, Sm, Er) synthesized by polymerizable complex method [J]. Catalysis Today, 2003, 78 (1-4): 519-527.
    
    [71] CALDERON-MORENO J M, CAMARGO E R. Electron microscopy studies on the formation and evolution of sodium niobate nanoparticles from a polymeric precursor [J]. Catalysis Today, 2003, 78 (1-4): 539-542.
    
    [72] FRANCO R C R, CAMARGO E R, NOBRE M A L, et al. Dielectric properties of Na_(1-x)Li_xNbO_3 ceramics from powders obtained by chemical synthesis [J]. Ceramics International, 1999, 25 (5): 455-460.
    
    [73] LANFREDI S, DESSEMOND L, RODRIGUES A C M. Dense ceramics of NaNbO_3 produced from powders prepared by a new chemical route [J]. Journal of the European Ceramic Society, 2000, 20 (7): 983-990.
    
    [74] AFANASIEV P. Synthesis of microcrystalline LiNbO_3 in molten nitrate [J]. Materials Letters, 1998, 34 (3-6): 253-256.
    [75] LIU M, XUE D. A solvothermal route to crystalline lithium niobate [J]. Materials Letters, 2005, 59 (23): 2908-2910.
    
    [76] BLUMEL J, BORN E, METZGER T. Solid-state NMR-study supporting the lithium vacancy defect model in conguent lithium niobate [J]. Journal of Physics and Chemistry of Solids, 1994, 55 (7): 589-593.
    
    [77] CHEN D, YE J H. Selective-synthesis of high-performance single-crystalline Sr_2Nb_2O_7 nanoribbon and SrNb_2O_6 nanorod photocatalysts [J]. Chemistry of Materials, 2009, 21 (11): 2327-2333.
    
    [78] DING Q P, YUAN Y P, XIONG X, et al. Enhanced photocatalytic water splitting properties of KNbO_3 nanowires synthesized through hydrothermal method [J]. Journal of Physical Chemistry C, 2008, 112(48): 18846-18848.
    
    [79] WUSY, CHEN X M, LIU X Q. Hydrothermal derived barium niobate ultra-fine powders and nanowires [J]. Journal of Alloys and Compounds, 2008, 453 (1-2): 463-469.
    
    [80] NYMAN M, ANDERSON T M, PROVENCIO P P. Comparison of aqueous and non-aqueous soft-chemical syntheses of lithium niobate and lithium tantalate powders [J]. Crystal Growth & Design, 2009,9(2): 1036-1040.
    
    [81] ZHONG W, ZHANG P, ZHAO H. Low-temperature phase-tansition of a crystal in the lithium sodium niobate system [J]. Physical Review B, 1992, 46 (17): 10583.
    
    [82] CARRUTHE J R, PETERSON G E, GRASSO M. Nonstoichiometry and crystal growth of lithium niobate [J]. Journal of Applied Physics, 1971, 42 (5): 1846.
    
    [83] MASSEY M J, KATTYAR R S, JIN B M. High pressure raman spectroscopy of stoichiometric ferroelectric potassium lithium niobate [J]. Ferroelectrics, 1996, 189 (1-4): 189-197.
    
    [84] KORKISHKO Y N, FEDOROV V A. Structural phase diagram of proton-exchange H_xLi__(1-x)NbO_3 waveguides in lithium niobate crystals [J]. Crystallography Reports, 1999, 44 (2): 237-246.
    
    [85] 张祥麟,配合物化学[M].北京:高等教育出版社,1991.
    
    [86] CAMARGO E R, KAKIHANA M. Low temperature synthesis of lithium niobate powders based on water-soluble niobium malato complexes [J]. Solid State Ionics, 2002, 151 (1-4): 413-418.
    
    [87] WOOD B D, MOCANU V, GATES B D. Solution-phase synthesis of crystalline lithium niobate nanostructures [J]. Advanced Materials, 2008, 20 (23): 4552-4556.
    
    [88] TOMITA K, PETRYKIN V, KOBAYASHI M, et al. A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method [J]. Angewandte Chemie International Edition, 2006, 45 (15): 2378-2381.
    
    [89] DEY D, KAKIHANA M. Peroxide route towards low temperature synthesis of LiNbO_3: an environmentally benign approach [J]. Journal of the Ceramic Society of Japan, 2004, 112 (1307): 368-372.
    
    [90] DEY D, PETRYKIN V, SASAKI S, KAKIHANA M. Water soluble Na[Nb(O2)3]-2H2O as a new molecular precursor for synthesis of sodium niobate [J]. Journal of the Ceramic Society of Japan, 2007, 115 (1348): 808-812.
    
    [91] CAMARGO E R, POPA M, KAKIHANA M. Sodium niobate (NaNbO_3) powders synthesized by a wet-chemical method using a water-soluble malic acid complex [J]. Chemistry of Materials, 2002, 14 (5): 2365-2368.
    [92] CAMARGO E R, KAKIHANA M, LONGO E, LEITE E R. Pyrochlore-free Pb(Mg_(1/3)Nb_2/3)O_3 prepared by a combination of the partial oxalate and the polymerized complex methods [J]. Journal of Alloys and Compounds, 2001, 314 (1-2): 140-146.
    
    [93] ASAI T, CAMARGO E R, KAKIHANA M, OSADA M. A novel aqueous solution route to the low-temperature synthesis of SrBi_2Nb_2O_9 by use of water-soluble Bi and Nb complexes [J]. Journal of Alloys and Compounds, 2000, 309 (1-2): 113-117.
    
    [94] KOBAYASHI M, PETRYKIN V V, KAKIHANA M. One-step synthesis of TiO_2 (B) nanoparticles from a water-soluble titanium complex [J]. Chemistry of Materials, 2007, 19: 5373-5376.
    
    [95] XU J, XUE D. Five branching growth patterns in the cubic crystal system: a direct observation of cuprous oxide microcrystals [J]. Acta Materialia, 2007, 55 (7): 2397-2406.
    
    [96] CHEN C Y, SUN X D, JIANG X C, et al. A Two-Step Hydrothermal Synthesis Approach to Monodispersed Colloidal Carbon Spheres [J]. Nanoscale Research Letters, 2009,4 (9): 971-976.
    
    [97] LIU X G. Zinc oxide nano- and microfabrication from coordination-polymer templates [J]. Angewandte Chemie International Edition, 2009,48 (17): 3018-3021.
    
    [98] CHEN S T, ZHANG X L, ZHANG O H, et al. Trioctylphosphine as Both Solvent and Stabilizer to Synthesize CdS Nanorods [J]. Nanoscale Research Letters, 2009,4 (10): 1159-1165.
    
    [99] LI Y D, SUI M, DING Y, et al. Preparation of Mg(OH)_2 nanorods [J]. Advanced Materials, 2000, 12 (11): 818-821.
    
    [100] SATHISH M, MIYAZAWA K, HILL J P, ARIGA K. Solvent engineering for shape-shifter pure fullerene (C_(60)) [J]. Journal of the American Chemical Society, 2009, 131 (18): 6372-6373.
    
    [101] YUAN N, CHENG G, AN Y Q, et al. Ordered Mesostructured CdS Nanowire Arrays with Rectifying Properties [J]. Nanoscale Research Letters, 2009, 4 (5): 414-419.
    
    [102] HU P, BAI L Y, YU L J, et al. Shape-Controlled Synthesis of ZnS Nanostructures: A Simple and Rapid Method for One-Dimensional Materials by Plasma [J]. Nanoscale Research Letters, 2009, 4 (9): 1047-1053.
    
    [103] ZHU Y, BANDO Y, XUE D, GOLBERG D. Oriented assemblies of ZnS one-dimensional nanostructures [J]. Advanced Materials, 2004, 16 (9-10): 831-832.
    
    [104] VOLK J, NAGATA T, ERDELYI R, et al. Highly Uniform Epitaxial ZnO Nanorod Arrays for Nanopiezotronics [J]. Nanoscale Research Letters, 2009, 4 (7): 699-704.
    
    [105] KODAMBAKA S, TERSOFF J, REUTER M C, ROSS F M. Germanium nanowire growth below the eutectic temperature [J]. Science, 2007, 316 (5825): 729-732.
    
    [106] YAN C, XUE D. Formation of Mb_2O_5 nanotube Arrays through phase transformation [J]. Advanced Materials, 2008,20 (5): 1055-1058.
    
    [107] PAN Z W, DAI Z R, WANG Z L. Nanobelts of semiconducting oxides [J]. Science, 2001, 291 (5510): 1947-1949.
    
    [108] XIA Y N, YANG P D. Chemistry and physics of nanowires [J]. Advanced Materials, 2003, 15 (5): 351-389.
    
    [109] GUARINO A, POBERAJ G, REZZONICO D, et al. Electro-optically tunable microring resonators in lithium niobate [J]. Nature Photonics, 2007, 1 (7): 407-410.
    [110] HE Y, XUE D. Bond-energy study of photorefractive properties of doped lithium niobate crystals [J]. Journal of Physical Chemistry C, 2007, 111 (35): 13238-13243.
    
    [111] LIU M, XUE D. An efficient approach for the direct synthesis of lithium niobate powders [J]. Solid State Ionics, 2006, 177 (3-4): 275-280.
    
    [112] YU J, LIU X. Hydrothermal synthesis and characterization of LiNbO_3 crystal [J]. Materials Letters, 2007, 61 (2): 355-358.
    
    [113] CHENG Z X, OZAWA K, MIYAZAKI A, KIMURA H. Formation of niobates from aqueous peroxide solution [J]. Chemistry Letters, 2004, 33 (12): 1620-1621.
    
    [114] KUMAR S, NANN T. Shape control of II-VI semiconductor nanomateriats [J]. Small, 2006, 2 (3): 316-329.
    
    [115] DENG Z X, LI L B, LI Y D. Novel inorganic-organic-layered structures: crystallographic understanding of both phase and morphology formations of one-dimensional CdE (E = S, Se, Te) nanorods in ethylenediamine [J]. Inorganic Chemistry, 2003, 42 (7): 2331-2341.
    
    [116] SUN T, YING J Y. Synthesis of microporous transition-metal-oxide molecular sieves by a supramolecular templating mechanism [J]. Nature, 1997, 389 (6652): 704-706.
    
    [117] DESHPANDE K, MUKASYAN A, VARMA A. Direct synthesis of iron oxide nanopowders by the combustion approach: reaction mechanism and properties [J]. Chemistry of Materials, 2004, 16 (24): 4896-4904.
    
    [118] ZHONG Z M, GALLAGHER P K. Combustion synthesis and characterization of BaTiO_3 [J]. Journal of Materials Research, 1995, 10 (4): 945-952.
    
    [119] MOKKELBOST T, KAUS I, GRANDE T, EINARSRUD M A. Combustion synthesis and characterization of nanocrystalline CeO_2-based powders [J]. Chemistry of Materials, 2004, 16 (25): 5489-5494.
    
    [120] GALLINI S, JURADO J R, COLOMER M T. Combustion synthesis of nanometric powders of LaPO_4 and Sr-substituted LaPO_4 [J]. Chemistry of Materials, 2005, 17 (16): 4154-4161.
    
    [121] AN C H, TANG K B, WANG C R, et al. Characterization of LiNbO_3 nanocrystals prepared via a convenient hydrothermal route [J]. Materials Research Bulletin, 2002, 37 (11): 1791-1796.
    
    [122] TAKAGAKI A, LU D L, KONDO J N, et al. Exfoliated HNb_3O_8 nanosheets as a strong protonic solid acid [J]. Chemistry of Materials, 2005, 17(10): 2487-2489.
    
    [123] PAULING L. The principles determining the structure of complex ionic crystals [J]. Journal of the American Chemical Society, 1929,51 (4): 1010-1026.
    
    [124] MULLIN J W, Crystallization [M]. London: Butterworth-Heinemann, 1992.
    
    [125] XUE D, KITAMURA K. Crystallographic modifications of physical properties of lithium niobate crystals by the cation location [J]. Journal of Crystal Growth, 2003, 249 (3-4): 507-513.
    
    [126] NIWA K, FURUKAWA Y, TAKEKAWA S, KITAMURA K. Growth and characterization of MgO doped near stoichiometric LiNbO_3 crystals as a new nonlinear optical material [J]. Journal of Crystal Growth, 2000, 208 (1-4): 493-500.
    
    [127] BURDA C, CHEN X B, NARAYANAN R, EL-SAYED M A. Chemistry and properties of nanocrystals of different shapes [J]. Chemical Reviews, 2005, 105 (4): 1025-1102.
    [128] KAZUO N, Infrared and raman spectra of inorganic and coordination compounds [M]. New York: John Wiley & Sons, 1986.
    
    [129] BELLAMY L J, The infra-red spectra of complex molecules [M]. New York: John Wiley, 1958.
    
    [130] CARUSO F, CARUSO R A, MOHWALD H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J]. Science, 1998,282 (5391): 1111-1114.
    
    [131] MAJI T K, MATSUDA R, KITAGAWA S. A flexible interpenetrating coordination framework with a bimodal porous functionality [J]. Nature Materials, 2007,6 (2): 142-148.
    
    [132] ZOLDESI C I, IMHOF A. Synthesis of monodisperse colloidal spheres, capsules, and microballoons by emulsion templating [J]. Advanced Materials, 2005,17 (7): 924-928.
    
    [133] LOU X W, YUAN C L, ARCHER L A. Double-walled SnO_2 nano-cocoons with movable magnetic cores [J]. Advanced Materials, 2007, 19 (20): 3328-3332.
    
    [134] FAN H J, KNEZ M, SCHOLZ R, et al. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect [J]. Nature Materials, 2006, 5 (8): 627-631.
    
    [135] LIU J, LIU F, GAO K, et al. Recent developments in the chemical synthesis of inorganic porous capsules [J]. Journal of Materials Chemistry, 2009, 19 (34): 6073-6084.
    
    [136] SCOTT J F. Applications of modern ferroelectrics [J]. Science, 2007, 315 (5814): 954-959.
    
    [137] HER VIEU M, MICHEL C, RAVEAU B. Proprietes d'echanges d'ions de quelques oxydes ternaires de type pyrochlore: les pyrochlores H_(1+x)(H_2O)Ta_(1+x)W_(1-x)O_6·NH_4TaWO_6 [J]. Bulletin de la Societe Chimique de France, 1971, 11: 3939-3943.
    
    [138] GROULT D, PANNETIER J, RAVEAU B. Neutron diffraction study of the defect pyrochlores TaWO_(5.5), HTaWO_6, H_2Ta_2O_6, and HTaWO_6H_2O [J]. Journal of Solid State Chemistry, 1982,41: 277-285.
    
    [139] AEGERTER M A. Sol-gel niobium pentoxide: a promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis [J]. Solar Energy Materials and Solar Cells, 2001, 68 (3-4): 401-422.
    
    [140] BRAYNER R, BOZON-VERDURAZ F. Niobium pentoxide prepared by soft chemical routes: morphology, structure, defects and quantum size effect [J]. Physical Chemistry Chemical Physics, 2003, 5 (7): 1457-1466.
    
    [141] BAYOT D, TINANT B, DEVILLERS M. Water-soluble niobium peroxo complexes as precursors for the preparation of Nb-based oxide catalysts [J]. Catalysis Today, 2003, 78 (1-4): 439-447.
    
    [142] WUCZ, XIE Y, LEI L Y, et al. Synthesis of new-phased VOOH hollow "dandelions" and their application in lithium-ion batteries [J]. Advanced Materials, 2006,18 (13): 1727-1732.
    
    [143] PINNA N, ANTONIETTI M, NIEDERBERGER M. A novel nonaqueous route to V_2O_3 and Nb_2O_5 nanocrystals [J]. Colloids and Surfaces, 2004,250 (1-3): 211-213.
    
    [144] BUENO P R, A VELLANEDA C O, FARIA R C, BULHOES L O S. Electrochromic properties of undoped and lithium doped Nb_2O_5 films prepared by the sol-gel method [J]. Electrochimica Acta, 2001, 46 (13-14): 2113-2118.
    
    [145] LEE C H, KIM M, KIM T, et al. Ambient pressure syntheses of size-controlled corundum-type In_2O_3 nanocubes [J]. Journal of the American Chemical Society, 2006, 128 (29): 9326-9327.
    [146] ZHU H Y, ZHENG Z F, GAO X P, et al. Structural evolution in a hydrothermal reaction between Nb_2O_5 and NaOH solution: from Nb_2O_5 grains to microporous Na_2Nb_2O_6·2/3H_2O fibers and NaNbO_3 cubes [J]. Journal of the American Chemical Society, 2006, 128 (7): 2373-2384.
    
    [147] BOUQUET V, VASCONCELOS N, AGUIAR R, et al. Ferroelectric materials with photoluminescent properties [J]. Ferroelectrics, 2003, 288: 315-326.
    
    [148] IY1 N, KITAMURA K, IZUMI F. Comparative study of defect structures in lithium niobate with different compositions [J]. Journal of Solid State Chemistry, 1992, 101 (2): 340-352.
    
    [149] HESSELINK L, ORLOV S S, LIU A, et al. Photorefractive materials for nonvolatile volume holographic data storage [J]. Science, 1998, 282 (5391): 1089-1094.
    
    [150] DUNN M H, EBRAHIMZADEH M. Parametric generation of tunable light from continuous-wave to femtosecond pulses [J]. Science, 1999, 286 (5444): 1513-1517.
    
    [151] BUSE K, ADIBI A, PSALTIS D. Non-volatile holographic storage in doubly doped lithium niobate crystals [J]. Nature, 1998, 393 (6686): 665-668.
    
    [152] HU Z H, THOMAS P A, SNIGIREV A, et al. Phase-mapping of periodically domain-inverted LiNbO_3 with coherent X-rays [J]. Nature, 1998, 392 (6677): 690-693.
    
    [153] GAYER O, SACKS Z, GALUN E, ARIE A. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO_3 [J]. Applied Physics B-Lasers and Optics, 2008, 91 (2): 343-348.
    
    [154] BREUNIG I, FALK M, KNABE B, et al. Second harmonic generation of 2.6 W green light with thermoelectrically oxidized undoped congruent lithium niobate crystals below 100℃ [J]. Applied Physics Letters, 2007,91 (22): 221110.
    
    [155] ZHANG D L, HUA P R, PUN E Y B. Er~(3+) diffusion in congruent LiNbO_3 crystal doped with 4.5 mol% MgO [J]. Journal of Applied Physics, 2007, 101 (11): 113513.
    
    [156] YEVDOKIMOV S V, SHOSTAK R I, YATSENKO A V. Anomalies in the pyroelectric properties of LiNbO_3 crystals of the congruent composition [J]. Physics of the Solid State, 2007, 49: 1957-1962.
    
    [157] ZHANG D L, ZHANG W J, ZHUANG Y R, PUN E Y B. Dynamic simulation of vapor transport equilibration in congruent LiNbO_3 crystal [J]. Crystal Growth & Design, 2007, 7: 1541-1546.
    
    [158] SEN P, SISODIA N, BARTWAL K S. Influence of MgO doping on spontaneous polarization and second-order susceptibility in LiNbO_3 crystals [J]. Optical Materials, 2006, 29 (2-3): 206-210.
    
    [159] HE X, XUE D. Doping mechanism of optical-damage-resistant ions in lithium niobate crystals [J]. Optics Communications, 2006, 265 (2): 537-541.
    
    [160] PENG L H, ZHANG Y C, LIN Y C. Zinc oxide doping effects in polarization switching of lithium niobate [J]. Applied Physics Letters, 2001, 78 (1): 4-6.
    
    [161] SADA C, BORSELLA E, CACCAVALE F, et al. Erbium doping of LiNbO_3 by the ion exchange process [J]. Applied Physics Letters, 1998, 72 (26): 3431-3433.
    
    [162] XU Z P. Growth and photorefractive properties of Mg: Ce: Fe: LiNbO_3 crystals [J]. Optical Materials, 2008, 30 (6): 920-923.
    
    [163] CHIANG C H, CHEN J C, HUANG T M, HU C. Properties of Ru-doped near-stoichiometric lithium niobate crystals produced by vapor transport equilibration [J]. Journal of Crystal Growth, 2008, 310 (10): 2678-2682.
    [164]KITASHIMA T,LIU L J,KITAMURA K,KAKIMOTO K.Effects of shape of an inner crucible on convection of lithium niobate melt in a double-crucible czochralski process using the accelerated crucible rotation technique[J].Journal of Crystal Growth,2004,267(3-4):574-582.
    [165]ZHENG Y,KONG H,CHEN H,et al.Growth and ferroelectric domain control of homogeneous MgO-doped near-stoichiometric lithium niobate single crystals by melt-supplying technique[J].Journal of Crystal Growth,2008,310:1966-1970.
    [166]WAN Y,YANG Z,WU Y,et al.The influence of composition on optical properties of ferroelectric potassium lithium niobate single crystals[J].Optical Materials,2007,29(12):1746-1750.
    [167]YEVDOKIMOV S V,YATSENKO A V.Specific features of the dark conductivity in lithium niobate crystals of congruent composition[J].Physics of the Solid State,2006,48(2):336-339.
    [168]CHIA C T,LEE C C,CHANG P J,HU L J.Substitution mechanism of ZnO-doped lithium niobate crystal determined by powder x-ray diffraction and coercive field[J].Applied Physics Letters,2005,86(18):182901.
    [169]XUE D,KITAMURA K.Dielectric characterization of the defect concentration in lithium niobate single crystals[J].Solid State Communications,2002,122(10):537-541.
    [170]NASSAU K,LINES M E.Stacking-fault model for stoichiometry deviations in LiNbO_3 and LiTaO_3and the effect on the curie temperature[J].Journal of Applied Physics,1970,41(2):533-537.
    [171]WOHLECKE M,CORRADI G,BETZLER K.Optical methods to characterise the composition and homogeneity of lithium niobate single crystals[J].Applied Physics B-Lasers and Optics,1996,63(4):323-330.
    [172]黄剑锋,溶胶-凝胶原理与技术[M].北京:化学工业出版社,2005.
    [173]HENCH L L,WEST J K.The sol-gel process[J].Chemical Reviews,1990,90(1):33-72.
    [174]戴金辉,葛兆明,无机非金属材料概论[M].哈尔滨:哈尔滨工业大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700