TiO_2及硅掺杂TiO_2纳米结构膜电极的制备及其光电催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO_2光催化氧化技术是一种有效的环境污染控制技术,近年来受到广泛的关注。负载型的TiO_2纳米膜可以解决粉体光催化剂的分离和回收困难等问题,但是较低的比表面积使其光催化活性降低,从而限制了它的实际应用。本论文以提高TiO_2纳米膜光催化效率为目的,制备了锐钛矿纳米颗粒膜和纳米线膜,研究了不同结构材料的可控性制备条件及其光催化性能;通过对TiO_2纳米管阵列膜进行元素硅的掺杂改性,提高TiO_2的紫外光催化效率;同时,采用光电催化氧化技术阻止光生电子和空穴的简单复合,有效提高了TiO_2纳米结构膜的光催化量子产率。本论文围绕以上内容,主要开展了以下几个方面的工作:
     (1)采用两步水热处理在钛基底上直接制备了锐钛矿TiO_2纳米结构(纳米颗粒或纳米线)膜电极。较低的水热温度下,制备得到由平均粒径小于15 nm的立方体和菱形体组成的锐钛矿纳米颗粒膜;较高的水热温度下,制备得到由单分散的锐钛矿纳米晶体和锐钛矿纳米晶体团聚体的集合体所组成的锐钛矿纳米线膜。X射线衍射(XRD)分析显示两种锐钛矿纳米结构膜均具有较高的锐钛矿结晶度;锐钛矿纳米结构膜所展现的显著的表面光电压响应和光电流密度表明它们具有很好的光电化学能力;紫外光照下,用锐钛矿纳米颗粒膜和纳米线膜对苯酚光电催化降解的动力学常数分别是致密TiO_2膜的2.2倍和3.4倍,并且苯酚的光催化和电化学过程之间存在着显著的协同效应。
     (2)采用液相进样的化学气相沉积(CVD)法在钛基底上制备了硅掺杂TiO_2纳米膜电极。这种液相进样的气相沉积过程所制备膜的平均沉积速率至少是由其它气相沉积过程所制备TiO_2膜沉积速率的10倍,而且元素硅在TiO_2膜中的掺杂量可以通过调配前驱体溶液中硅源的量而得以控制。实验分析表明元素硅掺杂到TiO_2纳米膜中,形成Si-O-Ti键,提高了TiO_2纳米膜的热稳定性,使得TiO_2在高温煅烧下仍具有较小的锐钛矿晶粒、更好的结晶度和提高的紫外光响应。与未掺杂的TiO_2纳米膜相比,硅掺杂量为5 at.%的TiO_2纳米膜在紫外光下降解苯酚的过程中展现了更高的光催化和光电催化活性,其降解苯酚的动力学常数分别是未掺杂TiO_2纳米膜的1.3和1.8倍。
     (3)以电化学阳极氧化制备的TiO_2纳米管阵列为基底,应用化学气相沉积法制备了硅掺杂TiO_2纳米管阵列膜电极。该电极具有高度有序的纳米管阵列结构,平均管长约为1μm;X射线光电子能谱(XPS)分析表明硅原子掺杂到TiO_2晶格中,形成Si-O-Ti键;XRD分析表明,硅掺杂能够抑制TiO_2的锐钛矿向金红石相的转换,并减小TiO_2纳米管的粒径;硅掺杂TiO_2纳米管的吸收边带相对于TiO_2纳米管蓝移了13 nm,且在紫外光区的吸收也明显增强;紫外光照下,硅掺杂纳米管阵列膜表面显示了超亲水性能。光电催化实验表明,硅掺杂TiO_2纳米管阵列电极对五氯酚的光电催化降解效率比未掺杂的TiO_2电极提高了84.8%。此外,应用直接电化学阳极氧化法制备了不同硅掺杂量的TiO_2纳米管阵列电极。该法既可实现元素硅掺杂,又可同时形成纳米管阵列,简化了实验过程。硅原子掺杂到TiO_2晶格中,形成Si-O-Ti键,并保持了纳米管阵列的形貌;硅掺杂可提高TiO_2的热稳定性,促使TiO_2在高温煅烧下仍以锐钛矿相为主,提高了锐钛矿相结晶度并形成小尺寸的锐钛矿微晶;硅掺杂也提高了TiO_2纳米管在紫外区的光吸收能力。相同实验条件下,所有硅掺杂电极的紫外光电流密度均高于未掺杂的TiO_2电极,其中硅掺杂量为4.2 at.%的电极性能最好,对五氯酚的光电催化降解率也最高。
     以上结果表明,制备具有独特构造的TiO_2纳米结构膜及对TiO_2纳米膜进行元素硅的掺杂改性可有效提高TiO_2的紫外光催化活性。同时,本文研究了纳米结构膜的形貌和元素硅掺杂量对TiO_2光催化能力的影响,为优化TiO_2光催化剂提供了可行的手段,有助于促进TiO_2光催化剂在环境污染控制领域中的应用与发展。
Photocatalytic oxidation used TiO_2, one of the most attractive techniques for environmental pollution control, has been widely investigated. The immobilized TiO_2 nanofilm could solve the separation and recovery problems of powdery photocatalyst, but decreasing the photocatalytic (PC) activity due to its lower surface area, which hampers its practical application. In the present work, anatase nanoparticles film and nanowires film were prepared in order to improve the PC activity of TiO_2 nanofilm. The shape-tunable properties of synthesizable nanomaterials and their PC capabilities were investigated. The silicon modification could improve the ultraviolet PC activity of TiO_2 nanotube arrays film. Meanwhile, photoelectrocatalytic (PEC) oxidation can prevent the simple combination of photogenerated electrons and holes, consequently improving the PC efficiency of TiO_2. In this dissertation, some works were carried out as follows:
     (1) The nanostructured anatase film (NAF), consisted of nanoparticles or nanowires, was fabricated directly on Ti substrate by a two-step hydrothermal approach. At lower hydrothermal temperature, a uniform film of anatase nanoparticles mainly consisted of nanoscale cubes and rhombohedra was fabricated. The average size of these nanoparticles was smaller than 15 nm. At higher hydrothermal temperature, anatase nanowires film which consisted of combination of monodispersed anatase nanocrystals and aggregates of anatase nanocrystals formed on Ti substrate. X-ray diffraction (XRD) analysis indicated that both NAFs possessed higher anatase crystallinity. The distinguished surface photovoltage responses and photocurrent densities of NAFs suggested that they had promising photoelectrochemical ability. The kinetic constants of PEC degradation towards phenol under UV light irradiation with NAF-nanoparticles and NAF-nanowires were 2.2 and 3.4 times as great as the values with CTF, respectively. A significant PEC synergetic effect between the photocatalytic and electrochemical processes was also observed.
     (2) The Si-doped TiO_2 nanofilm on Ti substrate was successfully prepared by chemical vapor deposition (CVD) with liquid injection. This method can control the Si-doping amount well by adjusting the precursor solution and obtain the rapid deposition rate of film. The average deposition rate of film prepared by this process was at least 10 times higher than that of TiO_2 film by other CVD processes. The analysis revealed that the introduced silicon might be incorporated into titania matrix and formed Si-O-Ti bonds. This incorporation helped to increase the thermal stability of titania, which was in favor of obtaining smaller anatase crystallites, higher crystallinity and enhanced UV absorption at high calcination temperature. The Si-doped sample with 5 at.% of silicon exhibited the best photoelectrochemical property, and its kinetic constants towards phenol degradation in PC and PEC processes under UV light irradiation were 1.3 and 1.8 times as great as the values for the undoped TiO_2 nanofilm.
     (3) The Si-doped titania nanotube arrays were fabricated by anodization, followed by CVD treatment. The obtained nanotube arrays show highly ordered and vertically oriented morphology, and the average length was about 1μm. Analysis by X-ray photoelectron spectroscopy (XPS) indicated that the introduced silicon might be incorporated into titania matrix and formed Si-O-Ti bonds. This incorporation helped to increase the thermal stability of titania, which suppressed the phase transformation of anatase and also inhibited the growth of anatase crystallite at high temperature. The Si-doped TiO_2 nanotube arrays showed an enhanced photoresponse in UV region and its absorption edge shifted 13 run to a higher energy. The surface of Si-doped sample showed a super-hydrophilic behavior under UV illumination. The Si-doped TiO_2 showed better PEC capability, its degradation rate for pentachlorophenol (PCP) under UV irradiation was 84.8% higher than that of undoped electrode. In addition, the Si-doped TiO_2 nanotube arrays with different Si-doping amounts were also fabricated by electrochemical anodization. This method provides a one-step way to implement the formation of nanotubes and Si-doping, which simplifies the preparation process. The results indicated the Si-doped nanotubes were highly ordered and vertically oriented on substrate. The introduced silicon might be incorporated into TiO_2 matrix and formed Si-O-Ti bonds, which was significant to improve thermal stability of TiO_2. Silicon doping facilitated in obtaining higher anatase crystallinity and small-sized anatase crystallite under high calcination temperature, and also enhanced absorption response in UV region. All the Si-doped electrodes showed the improved photoelectrochemical ability compared to the undoped one under UV illumination. The Si-doped sample with 4.2 at.% of silicon exhibited the best photoelectrochemical response and PEC degradation efficiency for PCP.
     The above results illuminated that the TiO_2 nanostructured films with unique architecture and modification of TiO_2 nanofilms with silicon can effectively enhance PC activity of TiO_2. The effects of morphologies of nanostructured films and silicon-doping amount on PC ability were also investigated, which was hoped to help optimize the PC capability of TiO_2 and develop TiO_2 photocatalyst in environmental pollution controlling.
引文
[1]张金龙,陈锋,何斌,等.光催化[M].上海:华东理工大学出版社,2004.
    [2]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.
    [3]Ma G H,He J,Tang S H.Femtosecond nonlinear birefringence and nonlinear dichroism in Au:TiO_2composite films[J].Phys.Lett.A,2003,306:348-352.
    [4]周武艺,唐绍裘,万隆,等.纳米TiO_2光催化降解有机物的机理及其影响因素的研究[J].中国陶瓷工业,2003,10(5):26-29.
    [5]沈伟韧,赵文宽,贺飞,等.TiO_2光催化反应及其在废水处理中的应用[J].化学进展,1998,10(4):349-361.
    [6]Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238(5358):37-38.
    [7]Carcy J H,Lawrence J,Tosine H M.Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J].Bull.Environ.Contam.Toxicol.,1976,16(6):697-701.
    [8]Wu T X,Liu G M,Zhao J C.Photoassisted degradation of dye pollutants.V.Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO_2 dispersions[J].J.Phys.Chem.B,1998,102:5845-5851.
    [9]Zhao J C,Wu T X,Wu K Q.Photoassisted degradation of dye pollutants.3.Degradation of the cationic dye Rhodamine B in aqueous anionic surfactant/TiO_2 dispersions under visible light irradiation:evidence for the need of substrate adsorption on TiO_2 particles[J].Environ.Sci.Technol.,1998,32:2394-2400.
    [10]Mehrotra K,Yablonsky G S,Ray A K.Kinetic studies of photocatalytic degradation in a TiO_2 slurry system:distinguishing working regimes and determining rote dependences[J].In.Eng.Chem.Res.,2003,42:2273-2281.
    [11]Fujishima A,Rao T N,Tryk D A.Titanium dioxide photocatalysi[J].J.Photochem.Photobio.C:Photochem.Rev.,2000,1:1-21.
    [12]Ding Z,Lu G Q,Greenfield P F.A kinetic study on photocatalytic oxidation of phenol in water by silica-dispersed titania nanoparticles[J].J.Colloid Interf.Sci,2000,232:1-9.
    [13]Stengl V,Bakardjieva S,Subrt J,et al.Sodium titanate nanorods:preparation,microstructure characterization and photocatalytic activity[J].Appl.Catal.B,2006,63:20-30.
    [14]Yin S,Sato T.Synthesis and photocatalytic properties of fibrous titania prepared from protonic layered tetratitanate precursor in supercritical alcohols[J].Ind.Eng.Chem.Res.,2000,39:4526-4530.
    [15]樊玉川,李芬芳,龙海云,等.纳米二氧化钛的水热法制备及其应用研究进展[J].湖南有色金属,2006,22:42-45.
    [16]蒋展鹏,王海燕,杨宏伟.电助光催化技术研究进展[J].化学进展,2005,17(4):622-630.
    [17]Vinodgopal K,Satfford U,Gray U K,et al.Electrochemically assisted photocatalysis 2.The role of oxygen and reaction intermediates in the degradation of 4-chlorophenol[J].J.Phys.Chem.,1994,98(27):6797-6803.
    [18]Vinodgopal K,Bedja I,Kamat P V.Nanostructured semiconductor films for photocatalysis.Photoelectrochemical behavior of SnO_2/TiO_2 composite systems and its role in photocatalytic degradation of a textile azo dye[J].Chem.Mater.,1996,8(8):2180-2187.
    [19]Kim D H,Anderson M A.Photoelectrocatalytic degradation of formic acid using a porous titanium dioxide thin-film electrode[J].Environ.Sci.Technol.,1994,28(3):479-483.
    [20]Kesselman J M,Lewis N S,Hoffmann M R.Photoelectrochemical degradation of 4-chlorocatechol at TiO_2 electrodes:comparison between sorption and photoreactivity[J].Environ.Sci.Technol.,1997,31(8):2298-2302.
    [21]Avellanedaa C O,Bulhoesa L S,Pawlickab A.The CeO_2-TiO_2-ZrO_2 sol-gel film:a counter-electrode for electrochromic devices[J].Thin Solid Films,2005,471:100-104.
    [22]Selcuk H,Sene J J,Zanoni M V,et al.Behavior of bromide in the photoelectrocatalytic process and bromine generation using nanoporous titanium dioxide thin-film electrodes[J].Chemosphere,2004,54:969-974.
    [23]Selcuk H,Anderson M A.Effect of pH,charge separation and oxygen concentration in photo-electrocatalytic systems:active chlorine production and chlorate formation[J].Desalination,2005,176:219-227.
    [24]Vinodgopal K,Hotechandani S,Kamat P.Electrochemically assisted photocatalsis.TiO_2 particulate film electrodes for photocatalytic degradation of 4-chlorophenol[J].J.Phys.Chem.,1993,97(35):9040-9044.
    [25]Calvo M E,Candal R J,Bilmes S A.Photooxidation of organic mixtures on biased TiO_2 films[J].Environ.Sci.Technol,2001,35(20):4132-4138.
    [26]Hidaka H,Kazuhiko T S,Zhao J,et al.Photoelectrochemical decomposition of amino acids on a TiO_2/OTE particulate film electrode[J].J.Photoch.Photobio.A:Chem.,1997,109(21):165-170.
    [27]Candal R J,Zeltner W A,Anderson M A.TiO_2-mediated photoelectrocatalytic purification of water[J].J.Adv.Oxid.Technol.,1998,3(3):270-276.
    [28]Yang S G,Quan X,Li X Y,et al.Photoelectrocatalytic treatment of pentachlorophenol in aqueous solution using a rutile nanotube-like TiO_2/Ti electrode[J].Photochem.Photobio.Sci.,2006,5(9):808-814.
    [29]Yang S G,Liu Y Z,Sun C.Preparation of anatase TiO_2/Ti nanotube-like electrodes and their high photoelectrocatalytic activity for the degradation of PCP in aqueous solution[J].Appl.Catal.A:Gen.,2006,301(2):284-291.
    [30]孙彦平,樊彩梅.三维半导体薄膜光电极制备和应用:中国,ZL99111723.9[P].2002,03.
    [31]Li X Z,Liu H L,Yue P T,et al.Photoelectrocatalytic oxidation of rose bengal in aqueous solution using a Ti/TiO_2 mesh electrode[J].Environ.Sci.Technol.,2000,34(20):4401-4406.
    [32]Mandelbaun P A,Regezzoni A E,Blesa M A,et al.Photo-electro-oxidation of alcohols on titanium dioxide thin film electrodes[J].J.Phys.Chem.B,1999,103(26):5505-5511.
    [33]Zheng J W,Lu T H,Cotton T M,et al.Photoinduced electrochemical reduction of nitrite at an electrochemically roughened silver surface[J].J.Phys.Chem.B,1999,103(31):6567-6572.
    [34]李明玉,熊林,陈芸芸,等.光/电/化学催化降解水中酸性大红3R染料的研究[J].中国科学B 辑,化学,2005,35(2):144-150.
    [35]Tanaka K,Capule M F V,Hisanage T,et al.Effect of crystallinity of TiO_2 on its photocatalytic action [J].Chem.Phys.Lett.,1991,187(1-2):73-76.
    [36]范崇政,肖建平,丁延伟.纳米TiO_2的制备及光催化反应研究进展[J].科学通报,2001,46(4):265-273.
    [37]Bickley I B,Gonzalez-carreno T,Lees J S,et al.A structural investigation of titanium oxide photo-catalyst[J].J.Solid State Chem.,1991,92:178-190.
    [38]陶跃武,赵梦月,陈士夫,等.空气中有害物质的光催化去除[J].催化学报,1997,18(4):345-347.
    [39]Agrios G A,Pichat P.State of the art and perspectives on materials and applications of photocatalysis over TiO_2[J].J.Appl.Electrochem.,2005,35,655-663.
    [40]Anpo M,Shima T,Kubodawa Y.ESR and photoluminescence evidence for the photocatalytic formation of hydroxyl radicals on small TiO_2 particles[J].Chem.Lett.,1985,1799-1802.
    [41]Anpo M,Kawamura T,Kodama S,et al.Photocatalysis on titanium-aluminum binary metal oxides:enhancement of the photocatalytic activity of titania species[J].J.Phys.Chem.,1988,92:438-440.
    [42]Anpo M,Nakaya H,Kodama S,et al.Photocatalysis over binary metal oxides.Enhancement of the photocatalytic activity of titanium dioxide in titanium-silicon oxides[J].J.Phys.Chem.,1986,90:1633-1636.
    [43]Wang H,Wu Y,Xu B Q.Preparation and characterization of nanosized anatase TiO_2 cuboids for photocatalysis[J].Appl.Catal.B,2005,59:139-146.
    [44]Salvador P,Gonzalez M L,Munoz F.Catalytic role of lattice defects in the photoassisted oxidation of water at(001) n-TiO_2 rutile[J].J.Phys.Chem.,1992,96(25):10349-10353.
    [45]Aspnes D E,Heller A.Photoelectrochemical hydrogen evolution and water-photolyzing semiconductor suspensions:properties of platinum group metal catalyst-semiconductor contacts in air and in hydrogen[J].J.Phys.Chem.,1983,87(24):4919-4929.
    [46]Youn H J,Ha P S,Jung H S,et al.Alcohol rinsing and crystallization behavior of precipitated titanium oxide[J].J.Colloid INterf.Sci.,1999,211:321-325.
    [47]Hoffmann M R,Martin S T,Wonyong C,et al.Environmental applications of semiconductor photocatalysis[J].Chem.Rev.1995,95:69-96.
    [48]孙奉玉,吴鸣,李文钊.二氧化钛表面光学特性与光催化活性的关系[J].催化学报,1998,19(2):121-124.
    [49]蒋玉龙,王智宇,唐培松,等.量子尺寸纳米TiO_2的水热制备及光催化性能[J].浙江大学学报(工学版),2005,39(3):440-444.
    [50]菅盘铭,夏亚穆,李德宏,等.掺杂TiO_2纳米粉的合成、表征及催化性能研究[J].催化学报,2001,22(2):161-164.
    [51]Martra G Lewis acid and base sites at the surface of microcrystalline TiO_2 anatase:relationships between surface morphology and chemical behaviour[J].Appl.Catal.A:Gen.,2000,200(1-2):275-285.
    [52]Serpone N,Texier I,Emeline A V,et al.Post-irradiation effect and reductive dechlorination of chlorophenols at oxygen-free TiO_2/water interfaces in the presence of prominent hole scavengers[J].J.Photochem.Photobio.A:Chem.,2000,136(3):145-155.
    [53]Moonsiri M,Raugsunvigit P,Chavadej S.Effects of Pt and Ag on the photocatalytic degradation of 4-chlorophenol and its by-products[J].Chem.Eng.J.,2004,97(2-3):241-248.
    [54]Sun B,Vorontsov A V,Smirniotis P G Role of Platinum deposited on TiO_2 in phenol photocatalytic oxidation[J].Langmuir,2003,19(8):3151-3156.
    [55]Liu Y C,Juang L C.Electrochemical methods for the preparation of gold-coated TiO_2 nanoparticles with variable coverages[J].Langmuir,2004,20(16):6951-6955.
    [56]辛柏福,井立强,任志宇,等.多价态共存的Ag-TiO_2光催化剂的制备及光催化活性[J].化学学报,2004,62(12):1110-1114.
    [57]Shan Z,Lian G Synthesis and characterization of Pt,Au or Pd clusters deposited titania-modified mesoporous silicate MCM-41[J].Mater.Chem.Phys.,2002,78(2):512-517.
    [58]Yin J,Zou Z G,Ye J H.Photophysical and photocatalytic properties of MIn_(0.5)Nb_(0.5)O_3(M=Ca,Sr,and Ba)[J].J.Phys.Chem.B,2003,107:61-65.
    [59]Herrmann J M.Photoassisted platinum deposition on TiO_2 power using various platinum complexes [J].J.Phys.Chem.,1986,90:6028.
    [60]Mardare D,Tasea M,Delibas M,et al.On the structural properties and optical transmittance of TiO_2 r.f.sputtered thin films[J].Appl.Surf.Sci.,2000,156:200-206.
    [61]Rahman M M,Krishna K M,Soga T,et al.Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO_2 thin films[J].J.Phys.Chem.solids,1999,60:201-210.
    [62]Krishna K M,Mosaddeq-ur-Rahman M,Miki T,et al.Optical properties of Pb doped TiO_2nanocrystalline thin films:A photoluminescence spectroscopic study[J].Appl.Surf.Sci.,1997,113:149-154.
    [63]Han X X,Zhou R X,Lai G H,et al.Effect of transition metal(Cr,Mn,Fe,Co,Ni and Cu) on the hydrogenation properties of chloronitrobenzene over Pt/TiO_2 catalysts[J].J.Mole.Catal.A:Chem.,2004,209(1-2):83-87.
    [64]Kapoor P N,Uma S,Rodriguez S,et al.Aerogel processing of MTi_2O_5(M=Mg,Mn,Fe,Co,Zn,Sn)compositions using single source precursors:synthesis,characterization and photocatalytic behavior [J].J.Mole.Catal.A:Chem.,2005,229(1-2):145-150.
    [65]Wang Y M,Liu S W,L(u|¨) M K,et al.Preparation and photocatalytic properties of Zr~(4+)-doped TiO_2nanocrystals[J].J.Mole.Catal.A:Chem.,2004,215(1-2):137-142.
    [66]Yanagisawa M,Uchida S,Sato T.Synthesis and photochemical properties of Cu~(2+) doped layered hydrogen titanate[J].Inter.J.Inorg.Mater.,2000,2(4):339-346.
    [67]Choi W,Termin A,Hoffmann M R.The role of metal ion dopants in quantum-sized TiO_2:correlation between photoreactivity and charge carrier recombination dynamics[J].J.Phys.Chem.,1994,98(51):13669-13679.
    [68]徐悦华,古国榜,陈小泉,等.复合纳米Fe_2O_3/TiO_2的制备、表征及光催化活性.华南理工大学学报(自然科学版),2001,29(11):76-80.
    [69]Nicole J,Tsiplakides D,Pliangos C,et al.Electrochemical promotion and metal-support interactions [J].J.Catal.,2001,204(1):23-34.
    [70]岳林海,水淼,徐铸德,等.稀土掺杂二氧化钛的相变和光催化活性[J].浙江大学学报,2000,27:69-74.
    [71]Li F B,Li X Z,Hou M F.Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La~(3+)-TiO_2 suspension for odor control[J].Appl.Catal.B:Environ.,2004,48:185-194.
    [72]Li F B,Li X Z,Hou M F,et al.Enhanced photocatalytic activity of Ce~(3+)-TiO_2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control[J].Appl.Catal.A:Gen.,2005,285:181-189.
    [73]Hou M F,Li F B,Li R F,et al.Mechanisms of enhancement of photo-catalytic properties and activity of Nd~(3+)-doped TiO_2 for methyl orange degradation[J].J.Rare Earths,2004,4(22):542-546.
    [74]杨秋景,徐自力,谢超,等.铕掺杂对纳米TiO_2的光催化活性的影响[J].高等学校化学学报,2004,25:1711-1714.
    [75]Bessekhouad Y,Robert D,Weber J V.Bi_2S_3/TiO_2 and CdS/TiO_2 heterojunctions as an available configuration for photocatalytic degradtion of organic pollutant[J].J.Photochem.Photobio.A:Chem.,2004,163(3):569-580.
    [76]Kumar A,Jain A K.Photophysics and photochemistry of colloidal CdS-TiO_2 coupled semiconductors-photocatalytic oxidation of indole[J].J.Mole.Catal.A:Chem..2001,165(1-2):265-273.
    [77]Lo S C,Lin C F,Wu C H,et al.Capability of coupled CdSe/TiO_2 for photocatalytic degradation of 4-chlorophenol[J].J.Hazard Mater.,2004,114(1-3):183-190.
    [78]Pilkenton S,Raftery D.Solid-state NMR studies of the adsorption and photooxidation of ethanol on mixed TiO_2-SnO_2 photocatalysts[J].Solid Stat.Nucl.Magn.Reson.,2003,24(4):236-253.
    [79]Li X Z,Li F B,Yang C L,et al.Photocatalytic activity of WO_x-TiO_2 under visible light irradiation[J].J.Photochem.Photobio.A:Chem.,2001,141:209-217.
    [80]Gopidas K R,Bohorquez M,Kamat P V.Photophysical and photochemical aspects of coupled semiconductors:charge-transfer processes in colloidal CdS-TiO_2 and CdS-AgI systems[J].J.Chem.Phys,1990,94:6435-6439.
    [81]Chen S,Paulose M,Ruan C,et al.Electrochemically synthesized CdS nanoparticle-modified TiO_2nanotube-array photoelectrodes:preparation,characterization and application to photoelectrochemical cell[J].J.Photochem.Photobio.A:Chem.,2006,177(2-3):177-184.
    [82]Tristao J C,Magalhaes F,Corio P,et al.Electronic characterization and photocatalytic properties of CdS-TiO_2 semiconductor composite[J].J.Photochem.Photobio.A:Chem.,2006,181:152-157.
    [83]Kazuhiro H,Eiji S,Aldo I,et al.Sensitization of TiO_2 particles by dyes to achieve H_2 evolution by visible light.J.Photochem.Photobio.A:Chem.,2000,136(2):157-161.
    [84]Dhanalakshmi K B,Latha S,Anadan S,et al.Dye sensitized hydrogen evolution from water[J].Int.J.Hydrogen Energ.,2001,26(7):669-674.
    [85]Wu S Z,Zeng F,Zhu H P,et al.Energy and electron transfers in photosensitive chitosan[J].J.Am.Chem.Soc.,2005,127(7):2048-2049.
    [86]Ding H,Sun H,Shan Y K,et al.Preparation and characterization of mesoporous SBA-15 supported dye-sensitized TiO_2 photocatalyst[J].J.Photochem.Photobio.A:Chem.,2005,169(1):101-107.
    [87]姚巧红,单璐,李富友,等.纳米晶TiO_2电极上半菁衍生物光敏染料[J].物理化学学报,2003,19(7):635-640.
    [88]宋琳,仇荣亮,莫越奇,等.芴和噻吩共聚物敏化二氧化钛在可见光下的光催化活性[J].中山大学学报,2006,45(3):125-126.
    [89]Oliveros G G,Paez-mozo E A,Ortega F M,et al.Degradation of atrazine using metalloporphyrins supported on TiO_2 under visible light irradiation[J].Appl.Catal.B:Environ.,2009,89:448-454.
    [90]Kishch H,Macyk W.Visible-light photocatalysis by modified titania[J].Chem.Phys.Chem,2002,3:399-400.
    [91]Sato S.Photocatalytic activity of NO_x-doped TiO_2 in the visible light region[J].Chem.Phys.Lett.,1986,123(1-2):126-128.
    [92]Asahi R,Morikawa T,Ohwaki T,et al.Visible-light photocatalysis in nitrogen-doped titanium oxides [J].Science,2001,293(5528):269-271.
    [93]Vitiello R P,Macak J M,Ghicov A,et al.N-doping of anodic TiO_2 nanotubes using heat treatment in ammonia[J].Electrochem.Commun.,2006,8:544-548.
    [94]Fu H B,Zhang L W,Zhang S C,et al.Electron spin resonance spin-trapping detection of radical intermediates in N-doped TiO_2-assisted photodegradation of 4-chlorophenol[J].J.Phys.Chem.B,2006,110:3061-3065.
    [95]Ghicov A,Macak J M,Tsuchiya H,et al.TiO_2 nanotube layers:Dose effects during nitrogen doping by ion implantation[J].Chem.Phys.Lett.,2006,419:426-429.
    [96]Mrowetz M,Balcerski W,Colussi A J,et al.Oxidative power of nitrogen-doped TiO_2 photocatalysts under visible illumination[J].J.Phys.Chem.B,2004,108(45):17269-17274.
    [97]Khan S U M,Al-Shahry M,Ingler W B.Efficient photochemical water splitting by a chemically modified n-TiO_2[J].Science,2002,297(5590):2243-2245.
    [98]Sakthivel S,Kish H.Daylight photocatalysis by carbon-modified titanium dioxide[J].Angew.Chem.Int Edit,2003,42(40):4908-4911.
    [99]Irie H,Watanabe Y,Hashimoto K.Carbon-doped anatase TiO_2 powders as a visible-light sensitive photocatalyst[J].Chem.Lett.,2003,32(8):772-777.
    [100]Valentin C D,Pacchioni,Selloni A.Theory of carbon doping of titanium dioxide[J].Chem.Mater.,2005,17:6656-6665.
    [101]Bacsa R,Kiwi J,Ohno T,et al.Preparation,testing and characterization of doped TiO_2 active in the peroxidation of biomolecules under visible light[J].J.Phys.Chem.B 2005,109(12):5994-6003.
    [102]Ohno T,Akiyoshi M,Umebayashi T,et al.Preparation of S-doped TiO_2 photocatalysts and their photocatalytic activity under visible light[J].Appl.Catal.A,2004,265(1):115-121.
    [103]Ohno T.Preparation of visible light active S-doped TiO_2 photocatalysts and their photocatalytic activities[J].Water Sci.Technol.,2004,49(4):159-163.
    [104]Yu J C,Ho W,Yu J G,et al.Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania[J].Environ.Sci.Technol.,2005,39:1175-1179.
    [105]Takeshita K,Yamakata A,Ishibashi T,et al.Transient IR absorption study of charge carriers photogenerated in sulfur-doped TiO_2[J].J.Photochem.Photobio.A:Chem.,2006,177:269-275.
    [106]Umebayashi T,Yamaki T,Itoh H,et al.Band gap narrowing of titanium dioxide by sulfur doping.Appl.Phys.Lett.,2002,81(3):454-456.
    [107]Umebayashi T,Yamaki T,Tanala S,et al.Visible light induced degradation of methylene blue on S-doped TiO_2[J].Chem.Lett.,2003,32(4):330-331.
    [108]Umebayashi T,Yamaki T,Yamamoto S,et al.J.Sulfur-doping of rutile-titanium dioxide by ion implantation:Photocurrent spectroscopy and first-principles band calculation studies[J].Appl.Phys., 2003,93:5156-5160.
    [109]Yu J C,Yu J G,Ho W K,et al.Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO_2 powders[J].Chem.Mater.,2002,14:3808-3816.
    [110]Zhang J C,Li Q,Cao W L.Preparation of TiO_2-MoO_3 nano-composite photocatalyst by supercritical fluid dry method[J].J Environ Sci-China,2005,17(2):350-352.
    [111]Luo H M,Takata T,Lee Y G,et al.Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine[J].Chem.Mater.,2004,16(5):846-849.
    [112]Mnero C,Mariella G,Maurno V,et al.Photocatalytic transformation of organic compounds in the presence of inorganic anions.1.Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide fluoride system[J].Langmuir,2000,16:2632-2641.
    [113]Li D,Haneda H,Hishita S,et al.Fluorine-doped TiO_2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde[J].J.Fluoring Chem.,2005,126(1):69-77.
    [114]Li D,Haneda H,Hishita S,et al.Visible-light-driven N-F-codoped TiO_2 photocatalysts.1.Synthesis by spay pyrolysis and surface characterization[J].Chem.Mater.,2005,17:2588-2595.
    [115]余家国,赵修建,陈文梅,等.TiO_2/SiO_2纳米薄膜的光催化活性与亲水性[J].物理化学学报,2001,17(3):261-264.
    [116]Ismail A A,Ibrahin I A,Ahmed M S,et al.Sol-gel synthesis of titania-silia photocatalyst for cyanide photodegradation[J].J.Photochem.Photobio.A:Chem.,2004,163:445-451.
    [117]包南,张锋,马志会,等.Si掺杂TiO_2纤维的溶胶-凝胶法制备及其光催化活性[J].化学学报,2007,65(23):2786-2792.
    [118]Jung K Y,Park S B.Enhanced photoactivity of silica-embedded titania particles prepared by sol-gel process for the decomposition of trichloroethylene[J].Appl.Catal.B:Environ.,2000,25:249-256.
    [119]黄妙良,伴隆幸,大矢丰,等.溶胶-凝胶法制备金属铂高分散的二氧化钛薄膜[J].催化学报,2001,22(1):74-76.
    [120]Carp O,Huisman C L,Reller A.Photoinduced reactivity of titanium dioxide[J].Progress in Solid Stat.Chem.,2004,32:33-177.
    [121]Legrand B C,Malibert C,Bach S.Elaboration and characterization of thin films of TiO_2 prepared by sol-gel process[J].Thin Solid Films,2002,418(2):79-84.
    [122]张玉红,吴鸣,熊国兴,等.溶胶-凝胶法制备TiO_2复合光催化膜制备前驱物对膜性能的影响[J].功能材料,2000,31(5):536-538.
    [123]Kafizas A,Kellici Suela,Darr J A,et al.Titanium dioxide and composite metal/metal oxide titania thin films on glass:A comparative study of photocatalytic activity[J].J.Photochem.Photobio.A:Chem.,2009,204(2-3):183-190.
    [124]Yu J C,Yu J G.Zhao J C.Enhanced photocatalytic activity of mesoporous and ordinary TiO_2 thin films by sulfuric acid treatment[J].Appl.Catal.B,2002,36(1):31-43.
    [125]Yu J G,Yu H G,Chen G B,et al.The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO_2 thin films prepared by liquid phase depositon[J].J.Phys.Chem.B,2003,107(50):13871-13879.
    [126]张云怀,胡夫,肖鹏.TiO_2纳米管的制备及应用研究[J].材料导报.2007,5(21):91-94.
    [127]王秀丽,曾永飞,卜显和.模板法合成纳米结构材料[J].化学通报,2005,10:723-730.
    [128]Lakshimi B B,Partrissi C J,Martin C R.Sol-gel template synthesis of semiconductor oxide micro-and nanostructures[J].Chem.Mater.,1997,9:2544-2550.
    [129]Lei Y,zhang L D,Meng G W,et al.Preparation and photoluminescence of highly ordered TiO_2nanowire arrays[J].Appl.Phys.Lett.,2001,78:1125-1127.
    [130]Hoyer P.Semiconductor nanotube formation by a two-step template process[J].Adv.Mater.,1996,8(10):857-859.
    [131]Lin Y,Wu G S,Yuan X Y,et al.Fabrication and optical properties of TiO_2 nanowire arrays made by sol-gel electrophoresis deposition into anodic alumina membranes[J].J.Phys.Condens.Mater.,2003,15(17):2917-2922.
    [132]Sander M S,Matthew J,Gu W,et al.Template-assisted fabrication of dense,aligned arrays of titania nanotubes with well-controlled dimensions on substrates[J].Adv.Mater.,2004,16(22):2052-2057.
    [133]杨绍贵.纳米TiO_2及其复合膜电极的制备与光电催化性能研究[D].大连:大连理工大学,2004.
    [134]Khan S U,Sultana T.Photoresponse of n-TiO_2 thin film and nanowire electrodes[J].Sol.Mater.Sol.Cell,2003,76:211-221.
    [135]Peng T Y,Yang H P,Chang G,et al.Synthesis of bambooshaped TiO_2 nanotubes in nanochannels of porous aluminum oxide membrane[J].Chem.Lett.,2004,33(3):336-337.
    [136]Imai H,Taki Y,Shimizu K,et al.Direct preparation of anatase TiO_2 nanotubes in porous alumina membranes[J].J.Mater.Chem.,1999,9(12):2971-2972.
    [137]Hoyer P.Formation of a titanium dioxide nanotube array[J].Langmuir,1996,12(6):1411-1413.
    [138]Butterfield I M.Applied studies on immobilized titanium dioxide films as catalysts for the photoelectrochemical detoxification of water[J].J.Appl.Electrochem.,1997,27:385-395.
    [139]王国宏.多孔二氧化钛光催化材料的水热制备[D].武汉:武汉理工大学,2008.
    [140]Kontos A I,Arabatzis I M,Tsouklcris D S,et al.Efficient photocatalysts by hydrothermal of TiO_2[J].Catal.Today,2005,(101):275-281.
    [141]Kasuga T,Hiramatsu M,Hoson A,et al.Formation of titanium oxide nanotube[J].Langmuir,1998,14(12):3160-3163.
    [142]Jung J H,Kobayashi H,CvanBommeletal K J.Creation of novel helical ribbon and double-layered nanotube TiO_2 structures using an organogel template[J].Chem.Mater.,2002,14:1445-1447.
    [143]Yuan Z Y,Su B L.Titanium oxide nanotubes,nanofiber and nanowires[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,241(1-3):173-183.
    [144]Bavyin D V,Parmon V N,Lapkin A A,et al.The effect of hydrothermal conditions on the mesoporous structure of TiO_2 nanotubes[J].J.Mater.Chem.,2004,14(22):3370-3377.
    [145]Ma Y T,Lin Y,Xiao,et al.Sonication-hydrothermal combination technique for the synthesis of titanate nanotubcs from commercially aviable precursors[J].Mater.Res.Bull.,2006,41(2):237-243.
    [146]Kasuga T.Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties[J].Thin Solid Films,2006,496(1):141-145.
    [147]Armstrong A R,Armstrong G,Canales J,et al.TiO_2-B Nanowires[J].Angew.Chem.Int.Ed.,2004,43:2286-2288.
    [148]Chen Q,Zhou W,Du G,et al.Trititanate nanotubes made via a single alkali treatment[J].Adv. Mater.,2002,24(17):1208-1211.
    [149]Zhang S,Peng L M,Chen Q,et al.Formation mechanism of H_2Ti_3O_7 nanotubes[J].Phys.Rev.Lett.,2003,256103:1-4.
    [150]Mao Y B,Wong S S.Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures[J].J.Am.Chem.Soc.,2006,128:8217-8226.
    [151]Zhu H Y,Lan Y,Gao X P,et al.Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions[J].J.Am.Chem.Soc.,2005,127:6730-6736.
    [152]Nian J N,Teng H S.Hydrothermal synthesis of single-crystalline anatase TiO_2 nanorods with nanotubes as the precursor[J].J.Phys.Chem.B,2006,110:4193-4198.
    [153]张东社,刘尧,王维波,等.纳晶多孔TiO_2薄膜电极的化学处理[J].科学通报,2000,9(45):929-932.
    [154]Matsuda A,Kotani Y,Kogure T,et al.Photocatalytic decomposition of acetaldehyde with anatase nanocrystals-dispersed silica films prepared by the sol-gel process with hot water treatment[J].J.Sol-Gel Sci.Technol.,2001,22(1-2):41-46.
    [155]Tian Z R,Voigt J A,Liu J,et al.Large oriented arrays and continuous films of TiO_2-based nanotubes [J].J.Am.Chem.Soc.,2003,125:12384-12385.
    [156]郭玉.二氧化钛薄膜的掺杂、复合及其性能研究[D].杭州:浙江大学,2007.
    [157]成晓玲,胡社军,匡同春,等.纳米二氧化钛薄膜制备研究进展[J].表面技术,2005,34(4):1-6.
    [158]崔丽萍,张建明.用MOCVD法制备TiO_2薄膜[J].太原理工大学学报,2003,34(2):222-225.
    [159]Wu J J,Yu C C.Aligned TiO_2 nanorods and nanowalls[J].J.Phys.Chem.B,2004,108(11):3377-3379.
    [160]曹亚安,沈东方,张听彤,等.Sn~(4+)掺杂对TiO_2纳米颗粒膜光催化降解苯酚活性的影响[J].高等学校化学学报,2001,22(11):1910-1912.
    [161]Karches M,Morstein M,Rohr P R,et al.Plasma-CVD-coated glass beads as photocatalyst for water decontamination[J].Catal.Today,2002,72:267-279.
    [162]Yates H M,Nolan M G,Shed D W,et al.The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO_2 films grown on glass by chemical vapour deposition [J].J.Photochem.Photobio.A:Chem.,2006,179:213-223.
    [163]Zwilling V,Aucouurier M,Darque-Ceretti E.Anodic oxidation of titanium and TA6V alloy in chromic media by an electrochemical approach[J].Electrochim.Acta,1999,45:921-929.
    [164]Gong D,Grimes C A,Varghese O K et al.Titanium oxide nanotube arrays prepared by anodic oxidation[J].J.Mater.Res.,2001,16(12):3331-3334.
    [165]Ruan C M,Paulose M,Varghese O K,et al.Enhanced photoelectrochemical-response in highly ordered TiO_2 nanotube-arrays anodized in boric acid containing electrolyte[J].Sol.Energ.Mater.Sol.Cells,2006,90:1283-1295.
    [166]Cai Q Y,Paulose M,Varghese O K,et al.The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation[J].J.Mater.Res.,2005,20(1):230-236.
    [167]Varghese O K,Gong D W,Paulose M,et al.Hydrogen sensing using titania nanotubes[J].Sensor.Actuat.B,2003,93:338-344.
    [168]Mor G K,Shankar K,Paulose M,et al.Enhanced photocleavage of water using titania nanotube arrays[J].Nano Lett.,2005,5(1):191-195.
    [169]Beranek R,Hildebrand H,Schmuki P.Self-organized porous titanium oxide prepared in H_2SO_4/HF electrolytes[J].Electrochem.Solid-Stat.Lett.,2003,6(3):B12-B14.
    [170]Zhao J,Wang X,Li L.Electrochemical fabrication of well-ordered titania nanotubes in H_3PO_4/HF electrolyte[J].Electronics Lett.,2005,41(13):771-772.
    [171]Bauer S,Kleber S,Schmuki P.TiO_2 nanotubes:tailoring the geometry in H_3PO_4/HF electrolyte[J].Electrochem.Commun.,2006,8(8):1321-1325.
    [172]Mor G K,Carvalho M A,Varghese O K,et al.A room temperature TiO_2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination[J].J.Mater.Res.,2004,19(2):628-634.
    [173]Mor G K,Varghese O K,Paulose M,et al.Fabrication of tapered,conical-shaped titania nanotubes [J].J.Mater.Res.,2003,18(11):2588-2593.
    [174]Macak J M,Tsuchiya H,Ghicov A,et al.Dye-sensitized anodic TiO_2 nanotubes.Electrochem.Commun.,2005,7:1138-1142.
    [175]Paulose M,Mor G K,Varghses O K,et al.Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays[J].J.Photochem.Photobio.A:Chem.,2006,178:8-15.
    [176]孙岚,李静,庄惠芳,等.TiO_2纳米管阵列的制备、改性及其应用研究进展[J].无机化学学报,2007,23(11):1841-1850.
    [177]Paulose M,Shankar K,Grimes C A,et al.Anodic growth of highly ordered TiO_2 nanotube arrays to 134 μm in Length[J].J.Phys.Chem.B:Lett.,2006,110(33):16179-16184.
    [178]Shankar K,Mor G K,Fitzgerald A,et al.Cation effect on the electrochemical formation of very high aspect ratio TiO_2 nanotube arrays in formamide-water mixtures[J].J.Phys.Chem.C,2007,111:21-26.
    [179]Yoriya S,Prakasam H E,Varghese O K,et al.Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO_2 nanotube-arrays 20 μm to 222 μm in length[J].Sens.Lett.2006,4:334-339.
    [180]Ruan C,Paulose M,Varghese O K,et al.Fabrication of highly ordered TiO_2 nanotube arrays using an organic electrolyte[J].J.Phys.Chem.B,2005,109(33):15754-15759.
    [181]Tsuchiya H,Macak J M,Taveira L,et al.Self-organized TiO_2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes[J].Electrochem.Commun.,2005,7(6):576-580.
    [182]Macak J M,Schmuki P.Anodic growth of self-organized andic TiO_2 nanotubes in viscous electrolytes [J].Electrochim.Acta,2006,52:1258-1264.
    [183]Prakasam H E,Shankar K,Paulose M.A new benchmark for TiO_2 nanotube array growth by anodization[J].J.Phys.Chem.C,2007,111(20):7235-7241.
    [184]Albu S P,Ghicov A,Macak J M,et al.250μm long anodic TiO_2 nanotubes with hexagonal self-ordering[J].Phys.Stat.Sol.,2007,1(2):R65-R67.
    [185]Patermarakis G,Karayannis H S.The mechanism of growth of porous anodic Al_2O_3 films on aluminium at high film thicknesses[J].Electrochim.Acta.,1995,40:2647-2656.
    [186]Li A P,M(u|¨)ller F,Birner A,et al.Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina[J].J.Appl.Phys.1998,84,6023-6026.
    [187]郑青,周保学,白晶等.TiO_2纳米管阵列及其应用[J].化学进展,2007,19(1):117-122.
    [188]陶杰,陶海军.TiO_2纳米管阵列的制备及应用研究进展[J].机械制造与自动化,2008,37(1):1-4.
    [189]Muhr H J,Krumeich F,Schonholzer U P.Vanadium oxide nanotubes-a new flexible vanadate nanophase[J].Adv.Mater.,2000,12:231-234.
    [190]Deng L,Shang L,Wang Y Z,et al.Multilayer structured carbon nanotubes/poly-l-lysine/laccase composite cathode for glucose/O_2 biofuel cell[J].Electrochem.Commun.,2008,10:1012-1015.
    [191]Hochbaum A I,Fan R,He R,et al.Controlled growth of Si nanowire arrays for device integration[J].Nano.Lett.,2005,5:457-460.
    [192]Puntes V F,Krishnan K M,Alivisatos A P.Colloidal nanocrystal shape and size control:the case of cobalt[J].Science,2001,291:2115-2117.
    [193]Lin C H,Chao J H,Liu C H,et al.Effect of calcination temperature on the structure ofa Pt/TiO_2(B)nanofiber and its photocatalytic activity in generating H_2[J].Langmuir,2008,24:9907-9915.
    [194]Zhang M,Bando Y,Wada K.Sol-gel template preparation of TiO_2 nanotubes and nanorods[J].J.Mater.Sci.Lett,2001,20:167-170.
    [195]Quan X,Yang S G,Ruan X L,et al.Preparation of titania nanotubes and their environmental applications as electrode[J].Environ.Sci.Technol.,2005,39:3770-3775.
    [196]Caruso R A,Schattka J H,Greiner A.Titanium dioxide tubes from sol-gel coating of electrospun polymer fibers[J].Adv.Mater.,2001,13:1577-1579.
    [197]Kukoveca A,Hodos M,Horvath E,et al.Oriented crystal growth model explains the formation of titania nanotubes[J].J.Phys.Chem.B.,2005,109(38):17781-17783.
    [198]Tsai C C,Teng H.Structural features of nanotubes synthesized from NaOH treatment on TiO_2 with different post-treatment[J].Chem.Mater.,2006,18:367-373.
    [199]Linsebigler A L,Lu G,Yates J T.Photocatalysis on TiO_2 surfaces:principles,mechanisms,and selected results[J].Chem.Rev.,1995,95:735-758.
    [200]Ovenstone J,Yanagisawa K.Effect of hydrothermal treatment of amorphous titania on the phase change from anatase to rutile during calcinations[J].Chem.Mater.,1999,11:2770-2774.
    [201]Feist T P,Davies P K.The soft chemical synthesis of TiO_2(B) from layered titanates[J].J.Solid Stat.Chem.,1992,101:275-295.
    [202]Mor G K,Varghese O K,Paulose M,et al.A review on highly ordered,vertically oriented TiO_2nanotube arrays:fabrication,material properties,and solar energy applications[J].Sol.Energ.Mat.Sol.C.,2006,90:2011-2075.
    [203]Sasaki T,Nakano S,Yamauchi S,et al.Fabrication of titanium dioxide thin flakes and their porous aggregate[J].Chem.Mater.,1997,9:602-608.
    [204]Suzuki Y,Yoshikawa S.Synthesis and thermal analyses of TiO_2-derived nanotubes prepared by the hydrothermal method[J].J.Mater.Res.,2004,19(4):982-985.
    [205]Li G,Li L,Goates J B,et al.High purity anatase TiO_2 nanocrystals:Near room-temperature synthesis,grain growth kinetics,and surface hydration chemistry[J].J.Am.Chem.Soc.,2005,127:8659-8666.
    [206]Zhang H,Finnegan M,Banfield J F.Preparing single-phase nanocrystalline anatase from amorphous titania with particle sizes tailored by temperature[J].Nano Lett.,2001,1:81-85.
    [207]Lan Y,Gao X P,Zhu H Y,et al.Titanate nanotubes and nanorods prepared from rutile power[J].Adv.Funct.Mater.,2005,15(8):1310-1318.
    [208]Ma R Z,Fukuda K,Sasaki T,et al.Structural features of titanate nanotubes/nanobelts revealed by Raman,X-ray absorption fine structure and electron diffraction characterizations[J].J.Phys.Chem.B.,2005,109(13):6210-6214.
    [209]Kronik L,Shapira Y.Surface photovoltage phenomena:theory,experiment,and applications[J].Surf.Sci.Rep.,1999,37:1-206.
    [210]Xu Z L,Shang J,Liu C M,et al.The preparation and characterization of TiO_2 ultrafine particles[J].Mater.Sci.Eng.B,1999,56:211-214.
    [211]Jing L Q,Xin B F,Yuan FL,et al.Deactivation and regeneration of ZnO and TiO_2 nanoparticles in the gas phase photocatalytic oxidation of n-C_7H_(16) or SO_2[J].Appl.Catal.A,2004,275:49-54.
    [212]Cao L X,Huang A M,Spiess F J,et al.Gas-phase oxidation of 1-butene using nanoscale TiO_2photocatalysts[J].J.Catal.,1999,188:48-57.
    [213]Vorontsov A V,Altynnikov A A,Savinov E N,et al.Correlation of TiO_2 photocatalytic activity and diffuse reflectance spectra[J].J.Photochem.Photobio.A,2001,144:193-196.
    [214]Zanoni M V B,Sene J J,Selcuk H,et al.Photoelectrocatalytic production of active chlorine on nanocrystalline titanium dioxide thin-film electrodes[J].Environ.Sci.Technol.,2004,38:3203-3208.
    [215]Menael R,Peiro A M,Durrant J R et al.Impact of hydrothermal processing conditions on high aspect ratio titanate nanostructures[J].Chem.Mater.,2006,18(25):6059-6068.
    [216]Yao B D,Chan Y F,Zhang X Y et al.Formation mechanism of TiO_2 nanotubes[J].Appl.Phys.Lett.,2003,82(2):281-283.
    [217]Kasuga T,Hiramatsu M,Hoson A et al.Titania nanotube prepared by chemical processing[J].Adv.Mater.,1999,11(15):1307-1311.
    [218]张海民.功能性TiO_2纳米结构分离膜及电极的制备、表征和环境应用[D].大连:大连理工大学,2008.
    [219]Zhu H Y,Gao X P,Lan Y,et al.Hydrothermal titanate nanofibers covered with anatase nanocrystals:a delicate structure achieved by the wet chemistry reaction of the titanate nanofibers[J].J.Am.Chem.Soc.,2004,126:8380-8381.
    [220]Kitana M,Kikuchi H,Hosoda T,et al.Photocatalytic decompositon of water into H_2 and O_2 using the visible light responsive TiO_2 thin film photocatalysts.The 3rd Asia-pacific congress on catalysis.Dalian Institute of Chemical Physics Press,2003,574-575.
    [221]Zhang F X,Guan N J,Li Y Z,et al.Control of morphology of silver clusters coated on titanium dioxide during photocatalysis[J].Langmuir,2003,19:8230-8234.
    [222]Navio J A,Testa J J,Djedjeian P,et al.Iron-doped titania powders prepared by a sol-gel method:Part Ⅱ:Photocatalytic properties[J].Appl.Catal.A:Gen.,1999,178:191-203.
    [223]Li Y Z,Hwang D-S,Lee N H,et al.Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst[J].Chem.Phys.Lett.,2005,404:25-29.
    [224]Chen D,Yang D,Wang Q,et al.Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles[J].Ind.Eng.Chem.Res.,2006,45:4110-4116.
    [225]Fu X,Clark L A,Yang Q,et al.Enhanced photocatalytic performance of titania-based binary metal oxides:TiO_2/SiO_2 and TiO_2/ZrO_2 J].Environ.Sci.Technol.,1996,30:647-653.
    [226]Jung K Y,Park S B.Anatase-phase titania:preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene[J].J.Photochem.Photobio.A:Chem.,1999,127:117-122.
    [227]Iwamoto S J,Iwamoto S,Inoue M.XANES and XPS study of silica-modified titanias prepared by the glycothermal method[J].Chem.Mater.,2005,17:650-655.
    [228]Yanga Q,Xiea C,Xua Z et al.Effects of synthesis parameters on the physico-chemical and photoactivity properties of titania-silica mixed oxide prepared via basic hydrolyzation.J.Mole.Catal.A:Chem.,2005,239(1-2):144-150.
    [229]Baiju K V,Periyat P,Pillai P K.Enhanced photoactivity and anatase thermal stability of silica-alumina mixed oxide additives on sol-gel nanocrystalline titania[J].Pillaietal Mater.Lett.,2006,124(7):518-529.
    [230]Duminica F D,Maury F,Senocq F.Atmospheric pressure MOCVD of TiO_2 thin films using various reactive gas mixtures[J].Surf.Coat.Technol.,2004,188:255-259.
    [231]Iida T,Takamido Y,Kunii T,et al.TiO_2 thin films using organic liquid materials prepared by hot-wire CVD method[J].Thin Solid Films,2008,516:807-809.
    [232]Zhang H M,Quan X,Chen S,et al.Fabrication and characterization of silica/titania nanotubes composite membrane with photocatalytic capability[J].Environ.Sci.Technol.,2006,40:6104-6109.
    [233]Hirano M,Ota K,Iwata H.Direct formation of anatase(TiO_2)/silica(SiO_2)composite nanoparticles with high phase stability of 1300℃ from acidic solution by hydrolysis under hydrothermal condition [J].Chem.Mater.,2004,16:3725-3732.
    [234]Finklea H O.Semiconductor Electrodes.Studies in physical and theoretical chemistry,1988,56,Elsevier Science,Amsterdam.
    [235]Hu C,Wang Y Z,Tang H X.Preparation and characterization of surface bond-conjugated TiO_2/SiO_2and photocatalysis for azo dyes[J].Appl.Catal.B:Environ.,2001,30:277-285.
    [236]Zhang Y,Xiong G X,Yao N,et al.Preparation of titania-based catalysts for formaldehyde photocatalytic oxidation from TiCl_4 by the sol-gel method[J].Catal.Today,2001,68:89-95.
    [237]Akhtar M K,Pratsinis S E,Mastrangelo S V R.Dopants in vapor-phase synthesis of titania powders [J].J.Am.Ceram.Soc.,1992,75:3408-3416.
    [238]Aronson B J,Blanford C F,Stein A.Solution-phase grafting of titanium dioxide onto the pore surface of mesoporous silicates:synthesis and structural characterization[J].Chem.Mater.,1997,9:2842-2851.
    [239]Yah X L,He J,Evans D G,et al.Preparation,characterization and photocatalytic activity of Si-doped and rare earth-doped TiO_2 from mesoporous precursors[J].Appl.Catal.B:Environ.,2005,55:243-252.
    [240]Sene J J,Zeltner W A,Anderson M A.Fundamental photoelectrocatalytic and electrophoretic mobility studies of TiO_2 and V-Doped TiO_2 thin-film electrode materials[J].J.Phys.Chem.B,2003,107:1597-1603.
    [241]殷好勇,金振声,张顺利,等.在玻璃的TiO_2涂膜上有机物分子的吸附及光催化分解对水接触角的影响[J].感光科学与光化学.2001,19(2):81-87.
    [242]Schwarz P F,Turro N J,Bossmann S H,ct al.A new method to determine the generation of hydroxyl radicals in illuminated TiO_2 suspensions[J].J.Phys.Chem.B,1997,101:7127-7134.
    [243]Shazpovalov V,Stefanovich E V,Truog T N.Nature of the excited states of the rutile TiO_2(110)surface with adsorbed water[J].Surf.Sci.,2002,498:103-108.
    [244]Ollis D F,Pelizzetti E,Serpone N.Photocatalyzed destruction of water contaminants[J].Environ.Sci.Technol.,1991,25:1522-1529.
    [245]Anheden,Goswami D Y,Svedberg G.Photocatalytic treatment of wastewater from 5-fluorouracil manufacturing[J].J.Solar Energy Eng.,1996,118:2-8.
    [246]Oliva F Y,Avalle L B,Santos E,et al.Photoelectrochemical characterization of nanocrystalline TiO_2films on titanium substrates[J].J.Photochem.Photobio.A:Chem.,2002,146:175-188.
    [247]Sankur H,Gunning W.Crystallization and diffusion in composite TiO_2-SiO_2 thin films[J].J.Appl.Phys.,1989,66:4747-4751.
    [248]Henry C H,Kazarinov R F,Lee H J,et al.Low loss Si_3N_4-SiO_2 optical waveguides on Si[J].Appl.Opt.,1987,26:2621-2624.
    [249]Kawachi M,Yasu M,Edahiro T.Fabrication of SiO_2-TiO_2 glass planar optical wavegnides by flame hydrolysis deposition[J].Electron.Lett.,1983,19(15):583-584.
    [250]Syms R R A,Holmes A S.Deposition of thick silica-titania sol-gel films on Si substrates[J].J.Non-Cryst.Solids.,1994,170:223-233.
    [251]Kumar S R,Suresh C,Vasudevan A K,et al.Phase transformation in sol-gel titania containing silica [J].Mater.Lett.,1999,38:161-166.
    [252]Gao X,Wachs I E.Titania-silica as catalysts:molecular structural characteristics and physico-chemical properties[J].Catal.Today,1999,51:233-254.
    [253]Iwamoto S,Tanakulrungsank W,Inoue M,et al.Synthesis of large-surface area silica-modified titania ultrafine particles by the glycothermal method[J].J.Mater.Sci.Lett.,2000,19:1439-1443.
    [254]Leprince-Wang Y.Study of the initial stages of TiO_2 growth on Si wafers by XPS[J].Surf.Coat.Technol.,2002,150:257-262.
    [255]Yang Y,Ferreira J M F.Inhibitory effect of the Al_2O_3-SiO_2 mixed additives on the anatase-rutile phase transformation[J].Mater.Lett.,1998,36:320-324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700