用户名: 密码: 验证码:
铟、钇氢氧化物和氧化物以及光子晶体的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料是指特征维度尺寸在纳米数量级(1~100 nm)的固体材料。由于具有量子尺寸效应,小尺寸效应以及表面效应等特殊性质,纳米材料的光学性质表现一系列不同于块体材料的新奇性质。氢氧化铟和氧化铟是重要的半导体材料,块体的氧化铟在室温下没有任何荧光性质,但当尺寸减小到纳米级时,由于晶体有氧空穴的存在,所以具有了良好的荧光性质。氢氧化钇和氧化钇由于钇离子的电子层结构,表现出光学惰性,是优异的发光基质材料。光子晶体是一种介电常数随空间周期性变化的新型光学微结构材料,可以用于控制光的传播方向。因此,对纳米材料光学性质的研究和光子晶体的研究是一个统一的课题。
     本文主要研究了铟、钇氢氧化物和氧化物微纳米结构的合成以及蝴蝶翅膀的光子晶体结构,并对它们的光学性质进行了初步研究。
     一、以In_2O_3粉体为原料,加入一定浓度的NaOH溶液,通过简单的水热处理,得到了去角去棱状的In(OH)_3微晶。通过高温煅烧后,得到了去角去棱状的In_2O_3微晶,且尺寸大小与前驱体相当。改变反应时间对去角去棱状In(OH)_3的形成机理进行探讨,发现这种结构的形成主要有两个步骤:首先是In_2O_3和NaOH反应生成In(OH)_3立方晶体,然后是合成的In(OH)_3和剩余的NaOH发生了两性反应,由于立方晶体的顶点和晶棱能量比相应晶面的能量要高,所以In(OH)_3立方晶体的顶点和晶棱率先和NaOH反应,在适当的反应时间下,便得到了这种特殊的去角去棱状结构。荧光光谱表明,去角去棱状In(OH)_3和In_2O_3与完整的和去角状的In(OH)_3和In_2O_3立方晶体相比,具有更优异的光致发光性质。
     二、以Y(NO_3)_3?6H2O和十八胺分子(ODA)为原料,用无水乙醇作为溶剂和反应体系,经过溶剂热处理,得到了米状的Y(OH)_3粒子。通过改变反应时间,反应温度,反应体系的极性以及碱源等影响因素,对米状的Y(OH)_3粒子的形成机理进行了初步探讨。结果表明,在此实验中,无水乙醇是得到米状产物的关键因素。将米状的Y(OH)_3在500°C的空气氛围下煅烧,可以得到了立方晶型的米状Y_2O_3粒子,其形貌和大小与前驱体基本相同。
     采用相同的实验步骤合成了米状的Y(OH)_3: Eu~(3+)和Y_2O_3: Eu~(3+),并利用荧光分光光度计分别对其进行了光致发光光谱分析。
     三、以柑橘凤蝶翅膀为研究对象,对其光子晶体结构和光学性质进行了研究。然后以此翅膀为模板,采用溶胶-凝胶法和后续的煅烧处理,得到了TiO_2,SiO_2和Al_2O_3的翅膀结构复制体。测试结果表明,所得的氧化物复制体不但具有翅膀的微观结构,而且产生了一定的光谱带隙。漫反射光谱图显示,与原始蝴蝶翅膀的光谱图相比,无机氧化物复制体基本复制了蝴蝶翅膀的光子晶体特性,只是反射光波段的起始位置都发生了红移。
Nanomaterials have been defined as the material which possess the characteristic dimensional size at 1~100 nm. Due to their special properties, such as quantum size effects, small size effect and surface effect, nanomaterials show novel optical properties which are different from their bulk counterparts. Indium hydroxide (In(OH)_3) and indium oxide (In_2O_3) are important semiconductor materials. In_2O_3 nanostructures show excellent photoluminescence properties due to the oxygen cavity, however, the bulk In_2O_3 can not emit light at room temperature. Yttrium hydroxide (Y(OH)_3) and yttrium oxide (Y2O3) are outstanding luminescence carrier because of the electronic shell of Y~(3+). Photonic Crystals is a new sort of optical microstructure materials, in which their dielectric constants change with the periodic space. This structure can be applied in controlling the broadcasting direction of light due to their photonic forbidden band. From this point, research on the optical properties of nanomaterials and photonic crystals is a uniform subject.
     In this paper, the synthesis and optical properties of indium hydroxide/oxide micro/nanostructure, yttrium hydroxide/oxide micro/nanostructure have been reported, and the photonic structures and optical properties of the butterfly wings and their corresponding inorganic replica have been also investigated.
     Indium Hydroxide Truncated Polyhedral Microcrystals (IHTPM) have been synthesized by hydrothermally treating commercial In_2O_3 powders in the NaOH solution. Indium Oxide Truncated Polyhedral Microcrystals (IOTPM) have been obtained by thermal decomposition method using the IHTPM as precursor. The formation mechanism of the IHTPM has been proposed by adjusting the reaction time, which indicates the In(OH)_3 cubic crystals were formed by the reaction of In_2O_3 and NaOH initially. The reaction between In(OH)_3 cubic microcrystals and NaOH occurs subsequently. As we known, the energy of corners and edges of a cube is higher than its surfaces, so the corner and edge of In(OH)_3 cubic microcrystals will firstly react with NaOH. As a result, the truncated polyhedral structure has been formed. Photoluminescence (PL) spectra show that both the IHTPM and the IOTPM exhibit more excellent luminescence properties than the cubic microcrystals and the corner truncated microcrystals.
     Ricelike Y(OH)_3 have been successfully synthesized by hydrothermally treating Y(NO3)_3 and ODA molecular as the raw materials, ethanol as the solvent and solution system. The formation mechanism of Ricelike Y(OH)_3 has been investigated by adjusting the reaction time, reaction temperature and solution system. The results show that the ethanol plays a key role to products with ricelike morphology. The ricelike morphology of Y(OH)_3 precursor was sustained after thermal decomposition to Y2O3. Y(OH)_3: Eu~(3+) and Y2O3:Eu~(3+) with ricelike morphology have also been prepared via the same experiment procedure, and their photoluminescence properties have been investigated.
     The photonic crystals structure and optical property of butterfly (Papilio xuthus Linnaeus) wings have been studied. Later, the titania (TiO_2), silica (SiO_2) and alumina (Al_2O_3) replicas with photonic structures were prepared using butterfly wings as the templates by dip-coating processes and subsequent calcination in atmosphere. The results demonstrate that these inorganic replicas not only inherit the complex morphology of the biotemplate but also possess certain spectra banning band. Diffuse reflectance spectra reveal the inorganic replicas own similar optical properties with the original wing, only all of the starting points of the corresponding spectra are red-shifted compared to the original templates.
引文
[1]. Feynman R.在美国物理学会年会上的演说(1959年12月29日). Caltech’s Engineering and Science, 1960.
    [2].朱静等,纳米材料与器件,北京:清华大学出版社,2003,P1-8.
    [3].张志焜,崔作林,纳米技术与纳米材料,北京:国防工业出版社,2000,P48-58.
    [4]朱屯,王福明,王习东等,国外纳米材料技术的进展与应用,北京:化学工业出版社,2002,P80-82.
    [5] Siegel R W., Nanostructured Materials: Mind over Matter, Nanostruct. Mater., 1993, 3: 1-18.
    [6]李小兵,刘竞超,纳米粒子与纳米材料,塑料,1999,28(1):19-22.
    [7] Cahn J. W., Larche F., Surface stress and the chemical equilibrium of small crystals:Ⅱ. Solid particles embedded in a solid matrix, Acta Metallurgica, 1982, 30(1): 51-56.
    [8] Kreibig U., Vollmer M., Optical Properties of Metal Cluster, Berlikn: Springer–Verlag, 1995: P1-2.
    [9] Bagnall D M, Chen Y F, Zhu Z, et al. Optically pumped lasing of ZnO at room temperature., Appl. Phys. Lett., 1997, 70(17): 2230-2232.
    [10]王志,巴德纯,蔺增等,一维纳米材料的ECR-CVD方法制备,真空,2004,41(4):67-70.
    [11] Pradhan S. K., Reucroft P. J., Yang F. et al. Growth of TiO2 nanorods by metalorganic chemical vapor deposition, J. Cryst. Growth., 2003, 256(1-2): 83-88.
    [12] Juárez B. H., García P. D., Golmayo D., et al. ZnO Inverse Opals by Chemical Vapor Deposition, Adv. Mater., 2005, 17(22): 2761-2765.
    [13] Prieto A. L., Sander M. S., Martín-González M. S., et al. Electrodeposition of Ordered Bi2Te3 Nanowire Arrays, J. Am. Chem. Soc., 2001, 123(29): 7160-7161.
    [14] Malinauskas A., Chemical deposition of conducting polymers, Polymer, 2001, 42: 3957-3972.
    [15] Strohm H., L?bmann P., Liquid-Phase Deposition of TiO2 on Polystyrene Latex Particles Functionalized by the Adsorption of Polyelectrolytes, Chem. Mater., 2005, 17(26): 6772-6780.
    [16] Xie J., Cao X., Li J., et al. Application of Ultrasonic Irradiation to the Sol-gel Synthesis of Silver Vanadium Oxides, Ultrason. Sonochem., 2005, 12(1-2): 289-293.
    [17] Guiton B. S., Gu Q., Prieto A. L. et al. Single-Crystalline Vanadium Dioxide Nanowires with Rectangular Cross Sections, J. Am. Chem. Soc., 2005, 127(2): 498-499.
    [18] Kanade K. G., Hawaldar R. R., Pasricha R., et al. Novel polymer-inorganic solid-state reactionfor the synthesis of CdS nanocrystallites, Mater. Lett., 2005, 59(5): 554-559.
    [19] Shyue J. J., Guire M. R. D., Deposition of Vanadium(V) Oxide Thin Films on Nitrogen-Containing Self-Assembled Monolayers, Chem. Mater., 2005, 17(4): 787-794.
    [20] Corma A., Rey F., Rius J., et. al. Supramolecular Self-assembled Molecules as Organic Directing Agent for Synthesis of Zeolites, Nature, 2004, 43: 287-290.
    [21] Ca A. M., Hu J. S., Liang H. P., et.al Self-Assembled Vanadium Pentoxide (V2O5) Hollow Microspheres from Nanorods and Their Application in Lithium-Ion Batteries, Angew. Chem. Int. Ed., 2005, 44(28): 4391-4395.
    [22] Feng S. H., Xu R. R., New Materials in Hydrothermal Synthesis. Acc. Chem. Res., 2001, 34(3): 239-247.
    [23] Andersons D., Virginia S. T. Ciminelli, Electroceramic Materials of Tailored Phase and Morphology by Hydrothermal Technology, Chem. Mater., 2003, 15(6): 1344-1352.
    [24] Xia Y. N., Yang P. D., Sun Y. G., et. al, One-dimensional nanostructures: Synthesis, Characterization and Applications, Adv. Mater., 2003, 15(5): 353-389.
    [25]尹荔松,周歧发,唐新桂等,溶胶-凝胶法制备纳米TiO2的胶凝过程机理研究,功能材料,1999,30(4):379-381.
    [26]丁星兆,罗菊,程黎放等,纳米TiO2的结构相变和锐钛矿晶粒长大动力学,无机材料学报,1993,8(l):114-117.
    [27] Kormann C., Detlef B. W., Micheal H. R., Preparation and characterization of quantum-size titanium dioxide. J. Phys. Chem., 1998, 92(18): 5196-5201.
    [28] Haro P. E., Rodrigueez T. R., Cruz H. M., et. al, Crystallization of nanosized titania particles prepared by the sol-gel Press, J. Mater. Res., 1994, 9(8): 2102-2108.
    [30]周雪峰,钱清华,胡煜艳等.溶胶凝胶法制备平整的TiO2薄膜及表征.南京工业大学学报,2006,28(1):23-27.
    [31] Chen J. Y., Gao L., Huang J. H., et. al, Preparation of nanosized titania Powder via the controlled hydrolysis of titanium alkoxide, J. Mater. Sci., 1996, 31(13): 3497-3500.
    [32]樊栓狮,史小农,李春华等,超细孔二氧化硅膜的制备研究,无机材料学报,1995,10(1): 90-94.
    [33]张中太,张俊英,无机光致发光材料及应用,北京,化学工业出版社,2004,P128-137.
    [34]王介强,陶珍东,孙旭东.无机溶胶凝胶法制取Y2O3纳米微粒,中国稀土学报,2003,21(1):15-18.
    [35]石涛,郭兴忠,杨辉,溶胶凝胶法制备透明氧化铝薄膜及光学性能,武汉理工大学学报,2007,29(1):193-197.
    [36] Pan L., Pu L., Shi Y., et al., Synthesis of Polyaniline Nanotubes with a Reactive Template of Manganese Oxide, Adv. Mater., 2007, 19(3): 461-464.
    [37] Kijima T., Yoshimura T., Uota M., et. al, Noble-Metal Nanotubes (Pt, Pd, Ag) from Lyotropic Mixed-Surfactant Liquid-Crystal Templates, Angew. Chem. Int. Ed., 2004, 43(2): 228-232.
    [38] Ras R. H. A., Kemell M., Wit J., et. al, Hollow Inorganic Nanospheres and Nanotubes with Tunable Wall Thicknesses by Atomic Layer Deposition on Self-Assembled Polymeric Templates, Adv. Mater. 2007, 19(1): 102-106.
    [39] Pu Y. C., Hwu J. R., Su W. C., et al, Water-Dissolvable Sodium Sulfate Nanowires as a Versatile Template for the Fabrication of Polyelectrolyte- and Metal-Based Nanotubes, J. Am. Chem. Soc., 2006, 128(34): 11606-11611.
    [40] Zhu C. L., Chen C. N., Hao L. Y., et al., In-situ preparation of 1D CuO nanostructures using Cu2(OH)2CO3 nanoribbons as precursor for sacrifice-template via heat-treatment, Solid. State. Commun., 2004, 130(10): 681–686.
    [41] Tang Q., Zhou W, Shen J., et al., A template-free aqueous route to ZnO nanorod arrays with high optical property, Chem. Commun., 2004, 6: 712-713.
    [42] Obare S. O., Jana N. R., Murphy C. J., Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes, Nano Lett., 2001, 1(11): 601-603.
    [43] Ni C.Y., Hassan P. A., Kaler E. W., Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method, Langmuir, 2005, 21(8): 3334-3337.
    [44] Lutta S. T., Dong H., Zavalij P. Y., et al., Synthesis of vanadium oxide nanofibers and tubes using polylactide fibers as template, Mater. Res. Bull. 2005, 40(2): 383-393.
    [45] Chan C. S., Stasio G. D., Welch S. A., Microbial Polysaccharides Template Assembly of Nanocrystal Fibers, Science, 2004, 303: 1656-1658.
    [46] Itoh Y., Matsusaki M., Kida T., et al., Preparation of Biodegradable Hollow Nanocapsules by Silica Template Method, Chem. Lett., 2004, 33(12): 1552-1553.
    [47] Yang Z., Niu Z., Lu Y., et al., Templated Synthesis of Inorganic Hollow Spheres with a Tunable Cavity Size onto Core–Shell Gel Particles, Angew. Chem. Int. Ed., 2003, 42(17): 1943-1945.
    [48] Shchukina D. G., Caruso R. A., Template synthesis of porous gold microspheres, Chem. Commun., 2003, 13: 1478-1479.
    [49] Wu P., Zhu J., Xu Z., Template-Assisted Synthesis of Mesoporous Magnetic Nanocomposite Particles, Adv. Funct. Mater., 2004, 14(4): 345-351.
    [50] Wang Y. L., Cai L., Xia Y. N, Monodisperse Spherical Colloids of Pb and Their Use as Chemical Templates to produce Hollow Particles, Adv. Mater., 2005, 17(4): 473-477.
    [51] Hao E., Kelly K. L., Hupp J. T., et al., Synthesis of Silver Nanodisks Using Polystyrene Mesospheres as Templates, J. Am. Chem. Soc., 2002, 124(51): 15182-15183.
    [52] Nowick J. S., Cary J. M., Tsai J. H., A Triply Templated Artificial a-Sheet, J. Am. Chem. Soc., 2001, 123(22): 5176-5180.
    [53] Zhu J. J., Xu S., Wang H., et al., Sonochemical Synthesis of CdSe Hollow Spherical Assemblies Via an In-Situ Template Route, Adv. Mater., 2003, 15(2): 156-159.
    [54] Peng Q., Dong Y., Li Y., ZnSe Semiconductor Hollow Microspheres, Angew. Chem. Int. Ed., 2003, 42(26): 3027-3030.
    [55] Hu Y., Ge J., Sun Y., Zhang T., et al., A Self-Templated Approach to TiO2 Microcapsules, Nano Lett., 2007, 7(6): 1832-1836.
    [56] Liu J., Wu Q., Ding Y., Controlled Synthesis of Different Morphologies of BaWO4 Crystals through Biomembrane/Organic-Addition Supramolecule Templates, Cryst. Grow. Des., 2005, 5(2): 445-449.
    [57] Shchukin D. G., Caruso R. A., Template Synthesis and Photocatalytic Properties of Porous Metal Oxide Spheres Formed by Nanoparticle Infiltration, Chem. Mater., 2004, 16(11): 2287-2292.
    [58] Motojima S., Suzuki T., Noda Y., et. al, Preparation of helical TiO2/CMC and pure helical TiO2 microtubes, J Mater. Sci., 2004, 39(8): 2663-2674.
    [59] Hall S. R., Bolger H., Mann S., Morphosynthesis of complex inorganic forms using pollen grain templates, Chem. Commun., 2003, 22: 2784-2785.
    [60] Hall S. R., Swinerd V. M., Newby F. N., et. al, Fabrication of Porous Titania (Brookite) Microparticles with Complex Morphology by Sol-Gel Replication of Pollen Grains, Chem. Mater., 2006, 18(3), 598-600.
    [61]巴.依.费多洛夫,拉.哈.阿克楚林.铟化学手册,北京:北京大学出版社,2000,P23-28
    [62] Lei Z. B., Ma G. J., Liu M. Y., Sulfur-substituted and zinc-doped In(OH)3: A new class of catalyst for photocatalytic H2 production from water under visible light illumination, J. Catal. 2006, 237(2): 322-329.
    [63] Yang J, Lin C. K., Wang Z. L., et. al, In(OH)3 and In2O3 Nanorod Bundles and Spheres: Microemulsion-Mediated Hydrothermal Synthesis and Luminescence Properties, Inorg. Chem. 2006, 45(22): 8973-8979.
    [64] Ryuzi Katoh, Akihiro Furube, Toshitada Yoshihara, et. al, Efficiencies of Electron Injection from Excited N3 Dye into Nanocrystalline Semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) Films, J. Phys. Chem. B., 2004, 108(15): 4818-4822.
    [65] Nie W. J., Optical Nonlinearity: Phenomena, applications, and materials, Adv. Mater., 1998, 5(7-8): 520-545.
    [66] Zhou H. J., Cai W. P., Zhang L. D., Photoluminescence of indium–oxide nanoparticles dispersed within pores of mesoporous silica, Appl. Phys. Lett., 1999, 75(4): 495-497.
    [67] Yu D., Yu S. H., Zhang S., et. al, Metastable Hexagonal In2O3 Nanofibers Templated from InOOH Nanofibers under Ambient Pressure, Adv. Funct. Mater. 2003, 13(6): 497-501.
    [68] Tang Q., Zhou W. J., Zhang W., et. al., Size-Controlled Growth of Single Crystal In(OH)3 and In2O3 Nanocubes, Crys. Grow. Des., 2005, 5(1): 147-150.
    [69]李建宇,稀土发光材料及其应用,北京:化学工业出版社,2003,P11-13.
    [70] Wang X., Zhuang J., Peng Q., et. al, A general strategy for nanocrystal synthesis, Nature., 2005, 437: 121-124.
    [71] Rajasekharan V. V., Buttry D. A., Electrochemical Synthesis of Yttrium Oxide Nanotubes, Chem. Mater., 2006, 18(19): 4541-4543.
    [72] Wakedfied G., Holland E., Dobson P. J., et. al, Luminescence Properties of Nanocrystalline Y2O3: Eu, Adv. Mater., 2001, 13(20): 1557-1560.
    [73] Jiang Y. D., Wang Z. L., Zhang F., et. al, Synthesis and characterization of Y2O3: Eu3+ powder phosphor by a hydrolysis technique, J. Mater. Res., 1998, 13(10): 2950-2955.
    [74] Kang S. W., Yoo J. S., Lee J. D., Effects of SnO2 on the Phosphor Screen Behaviors under Low Energy Electron Excitation J. Electrochem. Soc. 1998, 145(2): 648-651.
    [75] Dhanaraj J., Jagannathan R., Kutty T.R.N., et. al, Photoluminescence Characteristics of Y2O3: Eu3+ Nanophosphors Prepared Using Sol?Gel Thermolysis, J. Phys. Chem. B, 2001, 105(45): 11098-11105.
    [76] Wu X. C., Tao Y. R., Gao F., et. al, Preparation and photoluminescence of yttrium hydroxide and yttriumoxide doped with europium nanowires, J. Cryst. Growth., 2005, 277(1-4): 643-649.
    [77] Tang Q., Liu Z. P., Li S., et. al, Synthesis of yttrium hydroxide and oxide nanotubes,J. Cryst. Growth., 2003, 259(1-2): 208-214.
    [78] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. lett, 1987, 58(20): 2059-2061
    [79] John S. Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. lett, 1987, 58(23): 2486-2488.
    [80] Taton T. A., Norris D. J., Device physics: Defective promise in photonics, Nature, 2002, 416: 685-686.
    [81] Yablonovitch E, Gmitte T J, Meade R D et al.. Donor and acceptor modes in photonic band structure, Phys. Rev. Lett., 1991, 67(24): 3380-3383
    [82]向安,陈鸿奎,高建平等,光子晶体的制备及应用,化学通报,2002,65(10):669-674.
    [83]温熙森等,光子/声子晶体理论与技术,北京:科学出版社,2006:P1-2,P143-145.
    [84] Kushwaha M S, Halevi P, Dobrzynsi L. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett., 1993, 71(13): 2022-2025.
    [85] Yablonovitch E, Gmitter T J. Photonic band structure: The face-centered-cubic case. Phys. Rev. lett., 1989, 63(18): 1950-1953.
    [86]茹宗玲,向安,高建平,光子晶体结构、制备技术和应用进展,电子元件与材料,2002,21(9):17-20.
    [87] Thomas F T., Abid K. L., Brian H R., Kinetics and mechanism of formation of quanium sized cadmium sulphide particles in water-aerosol-OT-oil microemulsions, J. Chem. Soc. Faraday. Trans., 1990, 86 (22): 3758-3763.
    [88] Jeremy W. G., Tsung Chia-Kuang, Galen D. S., et. al, Optimizing Sol-Gel Infiltration and Processing Methods for the Fabrication of High-Quality Planar Titania Inverse Opals, Chem. Mater., 2008, 20(15): 4925-4930.
    [89] Yang P. D., Deng T., Zhao D. Y., et al. Hierarchically Ordered Oxides, Science, 1998, 282: 2244-2246.
    [90] Holland B. T., Blanford C. F.; Stein A. Synthesis of Macroporous Minerals with Highly Ordered Three-dimensional Arrays of Spheroidal Voids, Science, 1998, 281: 538–540.
    [91] Subramanian G., Manoharan V. N., Thorne J. D., et. al, Ordered Macroporous Materials by Colloidal Assembly: A Possible Route to Photonic Bandgap Materials, Adv. Mater. 1999, 11(15): 1261-1265.
    [92] Wijnhoven J. E. G. J., Vos W. L. Preparation of Photonic Crystals Made of Air Spheres in Titania, Science 1998, 281: 802-804.
    [93] Zhou Q., Dong P., Yi G. Y., et. al, Preparation of TiO2 inverse opal via a modified filling process, Chin. Phys. Lett. 2005, 22(5): 1155-1158.
    [94] Dong W. T., Bongard H. J., Marlow F., New type of inverse opals: titania with skeleton structure, Chem. Mater. 2003, 15(2): 568-574.
    [95] Holland B. T., Blanford C. F., Do T., et.al, Synthesis of Highly Ordered, Three-Dimensional, Macroporous Structures of Amorphous or Crystalline Inorganic Oxides, Phosphates, and Hybrid Composites, Chem. Mater. 1999, 11(3): 795–805.
    [96] Vukusic P., Samples J. R., Lawrence C. R., et. al, Structural colour: Now you see it—now you don't, Nature, 2001, 410: 36.
    [97] Vukusic P., Samples J. R., Lawrence C. R., Colour mixing in wing scales of a butterfly, Nature, 2000, 404: 457.
    [98] Vukusic P., Hooper I. Directionally Controlled Fluorescence Emission in Butterflies, Science, 2005, 310: 1151.
    [99] Srinivasarao M. Nano-Optics in the Biological World: Beetles, Butterflies, Birds, and Moths, Chem. Rev. 1999, 99(7): 1935-1961.
    [100] Ghiradella H., Light and colour on the wing: structural colours in butterflies and moths. Appl Opt, 1991, 30(24): 3492-3500.
    [101] Huang J. Y., Wang X. D., Wang Z. L., Controlled Replication of Butterfly Wings for Achieving Tunable Photonic Properties, Nano. Lett., 2006, 10(6): 2325-2331.
    [102] Cook G., Timms P. L., Spickermann C. G., Exact Replication of Biological Structures by Chemical Vapor Disposition of Silica, Angew. Chem. Int. Ed., 2003, 42(5): 557-559.
    [103] Saison T., Peroz C., Chauveau V., et. al, Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol–gel films, Bioinso. Biomim., 2008, 3: 046004 (5pp).
    [104] Martín-Palma R. J., Pantano C. G., Lakhtakia A., Biomimetization of butterfly wings by the conformal-evaporated-film-byrotation technique for photonics, Appl. Phys. Lett., 2008, 93(), 083901.
    [105]天津大学无机化学教研室,无机化学,北京:高等教育出版社,2001:P467-468.
    [106] Liu X. H, Zhou L. B., Yi R., Single-Crystalline Indium Hydroxide and Indium Oxide Microcubes: Synthesis and Characterization J. Phys. Chem. C., 2008, 112(47): 18426–18430.
    [107] Cao H. Q., Qiu X. Q., Liang Y., et. al, Room-temperature ultraviolet-emitting In2O3 nanowires, Appl. Phys. Lett., 2003, 83(4): 761-763.
    [108] Zheng M. J., Zhang L. D., Li G. H., et. al, Ordered indium-oxide nanowire arrays and their photoluminescence properties, Appl. Phys. Lett., 2001, 79(6): 839-841.
    [109] Xu J., Ge J. P., Li Y. D., Solvothermal Synthesis of Monodisperse PbSe Nanocrystals, J. Phys. Chem. B., 2006, 110(6): 2497-2501.
    [110] K. Riwotzki, M. Haase, Wet-Chemical Synthesis of Doped Colloidal Nanoparticles: YVO4:Ln (Ln = Eu, Sm, Dy), J. Phys. Chem. B., 1998, 102 (50): 10129-10135.
    [111] Igarashi T., Ihara M., Kusunoki T., et. al, Relationship between optical properties and crystallinity of nanometer Y2O3: Eu phosphor, Appl. Phys. Lett., 2000, 76 (12): 1549-1551.
    [112] Xu L. L., Wei B., Zhang Z. G., et. al, Synthesis and luminescence of europium doped yttria nanophosphors via a sucrose-templated combustion method, Nanotechnology, 2006, 17(17): 4327-4331.
    [113] Ndiege N., Wilhoite T., Subramanian V.,et. al, Sol-Gel Synthesis of Thick Ta2O5 Films, Chem. Mater., 2007, 19(13): 3155-3161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700