极化聚合物薄膜的电光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
极化聚合物材料由于其优良的可加工性,高度的可剪裁性和优异的衬底兼容性等优点,以及近年来在光损耗、热稳定性等关键特性方面的突破性进展,使得极化聚合物电光材料在高速电光器件方面有着重要的应用前景。本论文针对制备高速电光调制器、电光开关的极化聚合物电光材料在理论和实验上进行了基础性的研究工作。搭建并校准了测量极化聚合物薄膜电光系数的简单反射法测试系统,首次提出在高频段测量电光系数的准确性。针对单层电光材料和有上包层的电光材料,分别推导了计算其电光系数的公式。另外,为了消除系统带来的误差,还推导了计算GaAs电光系数的公式,利用两式作比得到了校准后的计算极化聚合物电光系数的公式。利用简单反射法测试系统测量了极化聚合物DR1/PMMA在1310nm波长下的电光系数为11.45pm/V,理论和实验结果表明,用校准后的反射法测试系统测得的电光系数具有更高的可靠性。首次用溶胶—凝胶法制备了? -(2,3-环氧丙氧)丙基三甲氧基硅烷(KH560)修饰的掺杂型DR1/SiO2—TiO2有机/无机杂化电光材料,利用校准后的测试系统在1310nm波长下测得其电光系数为3.5pm/V。有机相的引入解决了以往有机/无机杂化材料薄膜易开裂的问题,针对这种材料柔韧的特性,设计并制备了上加载条形电光波导,最后得到了这种结构波导的近场输出光斑。
Recently, with the rapid development of high-speed optical communication and all-optical networks, the higher requirements for optical communication devices and photonic integrated has been put forward. And the study of poled polymer materials has also been promoted greatly. The inorganic materials ,which are currently used, such as LiNbO3, III-V compound semiconductor materials(GaAs/GaAlAs、
     InGaAsP/InGaAs), silicon-based semiconductor materials(Si、SOI、SiO2), are difficult to meet the key requirments of high-speed, large capacity, wide-bandwidth, high-density for the actual system. In contrast, poled polymer materials have rised a wide concern of scientific researchers and businessmen because of their fast response speed, large electro-optic (E-O) coefficient, low dielectric constant, easy process and so on. Therefore, the study to the poled polymer is extremly valuable for research and applications on a wide range.
     Currently, the research on the poled polymers is mostly concentrated in their preparation, poling, and E-O testing. For different polymer systems, the methods of their preparations are also different, for example, the organic / inorganic hybrid E-O material which now attracts most attention is based on Sol-Gel method, while the host and guest doped E-O materials are just simple physical doping. As to the poling method of polymers, it has been developed from electrode-contact poling at first, to today's corona poling, all-optical poling, and auxiliary poling of light. The corona poling and contact poling are the two most widely used poling techniques. In the E-O testing, the focus is on measuring the E-O coefficient of the poled polymers. In recent years, there have been many ways for measuring the E-O coefficient of the poled polymers, such as Mach-Zehnder interferometer method, waveguide technology based on Fabry-Perot cavity method (F-P resonant cavity method), attenuated total reflection(ATR) method, secondary harmonic generation method (SHG method), and the simple reflection method. Compared with other methods, the simple reflection method is becoming a widely used measuring methods because it can be achieved more quickly and easily. Thus, the research on the test system and calculating method is particularly important.
     Firstly,the concept, main advantages and classification of poled polymer are introduced in this thesis. Secondly, the E-O effect of poled polymer is studyed, the method to enhance the E-O coefficient, and the principle and techniques of polarization. Then, the basic research focused on setting up and adjustment of the simple reflection system for measuring the E-O coefficient is carried out. And the formula for measuring the E-O coefficient of poled polymer is also deriveded and adjusted. Finaly, a kind of organic/inorganic hybrid E-O material via sol-gel method is analyzed by both theory and experiment. And the waveguide based on this material is fabricated and measured successfully. The main results are listed as follows:
     1. The simple reflection system for measuring the E-O coefficient of poled polymer is set up, and the calibration is placed on this system based on its principle. Then, we derived the formula of calculating the E-O coefficient for the single layer E-O material and the GaAs. Because of the error resulted from the testing system, we derived a adjusted formula for calculating the E-O coefficient of single layer E-O material.
     2. The formula is derived for calculating the E-O coefficient of two-layer film which contains one layer top caldding on the E-O film. And according to optical configuration of the laser beam propagation in this structure, the influence of impedance and dielectric constant of the top cladding at the AC modulated voltage is analysed, which is important for designing E-O devices such as E-O modulation, E-O switch and so on.
     3. With the testing system, we measure the E-O coefficient of poled polymer DR1/PMMA, and obtain stronger signals at the frequency of 30KHz and 50KHz. The accuracy for measuring E-O coefficient in the high-frequency is demonstrated. And we measure E-O signals in different frequencies at the range of 70KHz to 130KHz, and the EO coefficient is about 11.45pm/V at 1310 nm wavelengh which is measured by our system and formula adjusted. Thus, it proves that the testing system and the formula adjusted for calculating the E-O coefficient of the poled polymer materials are accordant.
     4. We synthesize a kind of silane coupling agent KH560-based organic / inorganic hybrid E-O material by Sol - Gel method. The reaction mechanism of hydrolysis and condensation of KH560 in the case of hydrochloric acid as a catalyst is analysed. Then we characterize the surface morphology, refractive index and E-O properties of the E-O thin films by means of atomic force microscopy (AFM), ellipsometry, and simple reflection method. At last, we obtain the poled polymer films that have good shape and alterable refractive index. The electro-optic coefficient is measured to be 3.5pm / V at the wavelength of 1310nm wavelengh based on the simple reflection method.
     5. By utilizing silane coupling agent KH560 as the silicon source, we successfully enhance the the flexibility of organic/inorganic hybrid E-O materials. According to the feature, we design the structure of the strip-loaded waveguide guided by the simulating results of the two-dimensional and three-dimensional light fields by the Opti-BPM software. After exploring the processing technology, we complete the fabrication of the waveguide with strip-loaded structure. Finally the near-field images of this waveguide are obtained by through the measurment system.
引文
[1] K. D. Singer, M. G. Kuzyk, W.R.Holland, et al. Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films[J].Appl. Phys.Lett,1988,53(19):1800-1802.
    [2] R. A. Hill, A. knoesen, M. A. Mortazavi, et al. Corana poling of nonlinear polymer thin films for electro-optic modulators [J].Appl.Phys.Lett, 1994, 65 (14):173-175.
    [3] H. Tang, J. M. Taoada, G. Cao, et al. Enhanced electro-optic coefficient of nonliear optical polymer using liquid contact poling [J].Appl.Phys.Lett, 1999, 770(5): 538-540.
    [4] S. Kalluri, S. Gamer, M. Zian, et al. Simple two-slit interference electrode poling of polymer thin films[J].Appl.Phys.Lett,1996,69(2):275-277.
    [5] Wakita K., Mitomi O, Kotaka 1, et al. High-speed electro-optic phase modulators using InGaAs/InAlAs multiple quantum well waveguides[J]. IEEE Photonics Technology Letters,1989,1(12):441-442.
    [6] Cada M, Muller G, Greil A, et al. Dynamic switching characteristics of a 4×4 InP/InGaAsP matrix switch[J].Electronics Letters,1992,28(23):2149-2150.
    [7] L. R. Dalton. Rational design of organic electro-optic materials[J].Phys. Condens. Matter,2003,15:897-934.
    [8]黄德群,单振国,干福熹著.新型光学材料[M] .北京:科学出版社,1991.
    [9] J. L. Oudar, D. S. Chemla. Novel EO-polymers for EO Devices[J]. J. Chem. Phys,1977,66:266-270.
    [10]李梅.极化聚合物的电光特性研究及其应用[D].长春:吉林大学,2008:2-3.
    [11] H. Hayashi, H. Nakayama, O. Sugihara. Thermally stable and large second order nonlinearity in poled silica films doped with Disperse Red 1 in high concentration [J].Opt. Lett,1995,20(22):2264-2266.
    [12]侯阿临.极化聚合物电光调制器的基础研究[D].长春:吉林大学,2008:10-18.
    [13] E. E. Havinga, and P. Vanpelt. Intramolecular charge transfer, studied by electro chromism of organic molecules in polymer matrices[J].Molecules Crystal liquid Cryst al,1979,52:145-156.
    [14] Choi DH, Song SY, Lim SJ, et al. Second-order nonlinear optical properties ofnovelα-methylstyrene copolymers containing the organo-boron salt dye chromo- phore in the side chain[J].Synthetic Metals,1995,71(1-3):1731-1732.
    [15]黄智华,王化滨,杨春才等.含非线性光学单元侧链液晶共聚物的合成及极化膜的紫外研究[J].高等学校化学学报,1994, 15(1):136-139.
    [16]黄旭东,谢洪泉.带发色侧基的非线性光学聚合物的合成极化和稳定性的研究[J].高分子材料科学与工程,1995, 11(5), 36-41.
    [17] W. Koehler, D.R. Robello, C.S. Willand, et al. Dielectric relaxation study of some novel polymers for nonlinear optics[J].Macromolecules,1991,24:4589- 4599.
    [18] Yan-Gang Liu, Yu Sui, Re Yin, et al. Synthesis and characterization of side-chain polyimides for second-order nonlinear optics via a post-azo-coupling reaction[J]. Journal of Applied Polymer Science,2000,76(3):290-295.
    [19]单志博.基于极化聚合物DR1/SU-8的电光开关基础研究[D].长春:吉林大学,2009:21-27.
    [20] M Chen, Yu L, Dalton L R. New polymers with large and stable second-order nonlinear optical effects[J].Macromolecules,1991,24(9):5421-5428.
    [21]罗敬东,詹才茂,秦金贵.极化聚合物电光材料研究进展[J].高分子通报,2000,3:9-19.
    [22]孙杰.基于加载条形光波导的极化聚合物电光调制器的研究[D].长春:吉林大学,2009:2-8.
    [23] F. Pedrotti and L. Pedrotti. Introduction to Optics[M]. Prentice Hall, 1993, 2-5.
    [24]黄章勇.光纤通信用光电子器件和组件[M] .北京:北京邮电大学出版社,2001:115-154.
    [25]马春生,刘式墉.光波导模式理论[M].长春:吉林大学出版社,2007:422-424.
    [26] Y. Shi, C. Zhang, H. Zhang, et al. Low (Sub-1-Volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape[J].Science, 2000,288(7):119-122.
    [27] J. P. Drunmond, S. J. Clarson, J. S. Zetts, et al. Enhanced electro-optic poling in guest-host systems using conductive polymer based cladding layers[J]. Appl.Phys. Lett,1999,74(3):368-370.
    [28] Y. Enami, D. Mathine, C. T. DeRose, et al. Hybrid cross-linkable polymer/ sol-gel waveguide modulators with 0.65V halfwave voltage at 1550nm[J]. Appl. Phys. Lett, 2007,91(9),:093505-1-093505-3.
    [29] Reem Song, Andrew Yick, William H. Steier, et al. Conductivity-dependency– free in-plane poling for Mach-Zehnder modulator with highly conductive electro- optic polymer[J].Appl. Phys.Lett, 2007,90(19):191103-1-191103-3.
    [30] Tomas Pliska, Joachim Meier Arne Eckau. Relative electrical resistivities and poling of nonlinear optical polymeric waveguide[J].Appl.Phys.Lett, 2007,76(3): 265-267.
    [31] Christopher T. DeRose, Y. Enami, C. Loychik, et al. Pockel’s coefficient enhanc- ement of poled electro-optic polymers with a hybrid organic-inorganic sol-gel cladding layer[J].Appl.Phys. Lett, 2006,89(13):131102-1-131102-3.
    [32]徐建东,鲍信先,李淳飞.非线性光学聚合物的极化技术[J] .高技术通讯,1997, 10:59-61.
    [33] A. Otomo, G. I. Stegeman, W. H. G. Horsthuis, et al. Strong field, in-plane poling for nonlinear optical devices in highly nonlinear side chain polymers[J]. Appl. Phys. Lett,1994,65(19):2389-2391.
    [34]杨建义,江晓清,王明华.采用接触式极化法研制有机聚合物电光光波导调制器[J] .光学学报,2003,23(4):422-425.
    [35] Zhang Xuping, Shi Zan, Lu Xuejun. Experimental comparison between corona a- nd contact poling for EO polymer modulators[J].Journal of Southeast University (English Edition),2005,21(4):449-452.
    [36]杨建义,江晓清,王明华.基于接触式极化法的M-Z型聚合物电光调制器[J] .光电子.激光,2002,13(9):897-899.
    [37]洪建勋,陈建平,王义平等.电光聚合物电晕极化过程中的电场和极化分析[J] .光电子技术,2005,25(2):26-29.
    [38]黄成功,陈福深.电晕极化电光聚合物调制器的制备研究[J] .高分子通报,2007,8:7-10.
    [39] K. Y. Wong, Qishun Shen. Effects of physical aging on the relaxation of poled nonlinear optical polymers[J]. Jounal of Applied Phsics, 1999, 86(6):2953-2958.
    [40]马常宝,任诠.测量NLO聚合物薄膜材料电光系数的方法[J].光电子·激光,1999,10(2):183-186.
    [41]刘航,韩成浩.电光系数的研究与测量[J].长春理工大学学报,2005, 28(4):30-32.
    [42]尹鑫,史伟,房昌水.测量聚合物薄膜电光系数的一种简单方法——干涉法[J].压电与声光,2001, 23(3):230-239.
    [43]尚有魁,沈启舜,史坚,等.用ATR法测量晶体的压电系数和电光系数[J] .光电工程,2005, 32(4):63-88.
    [44] Yi-Ping Wang, Jian-Ping Chen, Xin-Wan Li, et al. Measuring electro-optic coefficients of poled polymers using fiber-optic Mach–Zehnder interferometer [J].Appl.Phys. Lett,2004,85(21):5102-5103.
    [45]史伟,房昌水,潘奇伟,等.简单反射法测量聚合物薄膜线形电光系数的研究[J].物理学报,2000,49(2):262-266.
    [46]徐建东,杨昆,刘树田,等.椭偏法测量极化聚合物的电光系数[J] .中国激光,1995,22(9):661-665.
    [47] C.C. Teng, H.T. Man. Simple reflection technique for measuring the electro-optic coefficient of poled polymers[J].Appl.Phys.Lett,1990,56(18):1734-1736.
    [48] S. H. Han, J. W. Wu. Single-beam polarization interferometry measurement of the linear electro-optic effect in poled polymer films with a reflection configur ti- on[J]. Opt. Soc. Am. B,1997,14(5):1131-1137.
    [49] James G. Grote, John S. Zetts, James P. Drumond, et al. Effect of dielectric constant on modulation voltage for nonlinear optic polymer based optoelectronic devices[R]. in Opto-electronic Integrated Circuits IV, Y. Park, and R. Chen, Eds.Proc. SPIE., 2000, 3950:108-116.
    [50] J. P. Drunmond, S. J. Clarson, J. S. Zetts, et al. Conductive polymer films for improved poling in non-linear optical polymer waveguide[J]. Proc. Soc. Plastics Engrs. (ANTEC) ,1998,2:1265-1270.
    [51] Mark Lee, O. Mitrofanov, H. E. Katz, et al. Millimeter-wave dielectric properties of electro-optic polymer materials[J]. Appl.Phys.Lett, 2002,81(8):1474 -1476.
    [52] James G. Grote, John S. Zetts, Robert L. Nelson, et al. Effect of conductivity and dielectric constant on the modulation voltage for optoelectronic devices based on nonlinear optical polymers[J]. Opt. Eng. (Bellingham),2001,40:2464 -2473.
    [53] Sean M. Garner, Jeffrey S. Cites, Mingqian He, et al. Polysulfone as an electro- optic polymer host material[J].Appl.Phys.Lett,2004,84(7):1049-1051.
    [54]闫兆旭.微型电光探测器的制作工艺研究[D].长春:吉林大学,2009:33-35.
    [55] Mark Lee, Howard E. Katz, Christoph, et al. Broadband modulation of light by using an electro-optic polymer[J]. Science., 2002, 298:1401-1403.
    [56] Xuejun Lu, Linghui Wu, Xuping Zhang. A wide-band polymeric electro-optic m- dulator array based on unidirectional coupling between multi-mode wave guide array and a vertical configured pumpling planar waveguide[J].Optics&Laser Technology,2006,38:573-576.
    [57] Hongfei Liu, Maobin Yi, Hongbo Zhang. Electro-optic measurement system with high spatial resolution utilizing poled polymer film as external probe tip[J].Optics &Laser Technology, 2005,37:410-415.
    [58]杨建义,江晓清,王明华.基于接触式极化法的M-Z型聚合物电光调制器[J] .光电子.激光,2002,13(9):897-899.
    [59]黄剑锋.溶胶-凝胶原理与技术[M] .北京:化学工业出版社,2005第1版.
    [60]刘旭俐,马俊峰,欧阳胜林,等.溶胶-凝胶技术的发展与研究[J] .现代技术陶瓷,1994,4,12.
    [61]杨南如,余桂郁.溶胶—凝胶法简介[J] .硅酸盐通报,1993,12(2):56—63.
    [62]王华林.有机聚合物/SiO2有机无机杂化材料的研究[M].合肥:合肥工业大学出版社,2007:1-8.
    [63] Maclachlan M J, Manners I, Ozin G A. New(Inter) Faces: Polymers and Materials. Adv. Master, 2000, 12: 675-681.
    [64] Mackenzie J D. Structures and properities of ormosils. J. Sol-Gel Sci. & Techn, 1994,2:8-86.
    [65]顾哲明.硅烷偶联剂水解缩合制备低聚倍半硅氧烷[D].北京:北京化工大学,2006:34-40.
    [66]刘海林.带环氧基倍半硅氧烷的合成及其对环氧树脂的改性研究[D].西安:西北工业大学,2005:25-44.
    [67]侯阿临.极化聚合物电光调制器的基础研究[D].长春:吉林大学,2008:109-115.
    [68]崔婷,唐绍裘,万隆,等.溶胶—凝胶法制备纳米TiO2/SiO2复合薄膜的研究[J] .陶瓷学报,2006,27(2):193-196.
    [69] Weinan Gao, Jie Sun, Xiaoqiang Sun, et al. Design and fabrication of an organic/ inorganic hybrid co-planar waveguide electro-optic modulator[J]. Optica Aplicata, 2009, XXXIX(3):467-472.
    [70] E. M. Yeatman, M. M. Ahmad, O. McCarthy, et al. Optical gain in Er-doped SiO2 -TiO2 waveguides fabricated by the sol-gel technique[J]. Optics Communication, 1999,164:19-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700