光子晶体光纤数值孔径、模场直径的实验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光子晶体光纤理论研究的深入和制作工艺的完善,光子晶体光纤的应用领域得到了不断的拓展,并推动了光子晶体光纤的实用化进程。现在,光子晶体光纤的制作技术已经得到很大的提高,人们已经能拉制出各种结构复杂的光子晶体光纤。但是,所有理论方面的研究最终还要归于实验验证才能充分表明其正确性。本文从实验测量和数值模拟两个方面对光子晶体光纤的数值孔径和模场直径进行了研究。
     首先阐述了光子晶体光纤性能测试的现状,总结了传统光纤数值孔径、模场直径测量方法的优缺点。然后根据实际的需要提出了实验方案,设计用光谱仪来测量光子晶体光纤的数值孔径,在光波长为500~1 100 nm范围内研究了光波长、包层空气孔直径、孔间距等对光纤数值孔径的影响,并与多极法的理论模拟结果进行了比较。通过测得的不同光波长下的数值孔径对光纤的非线性系数、宏弯损耗、截止波长、模场面积等与光波长有关的参数进行了计算和分析。
     其次通过研究传统光纤模场直径的测量方法,对光子晶体光纤模场直径的测量,引入一个基于横向位移法和光斑法原理的实验系统来实现。在现有实验条件下自行搭建实验平台,测量了课题组拉制的三种不同结构的光子晶体光纤,计算了光子晶体光纤的模场直径,用CCD观察了光纤的模场分布,并用matlab程序将光纤的模场转化成三维光强分布图。
     最后基于光子晶体光纤结构设计灵活的特点,利用多极法对光子晶体光纤的几何结构和材料特性进行了深入的理论分析和数值计算,设计出一种新颖结构的大模面积单模掺镱光子晶体光纤,这对高功率光子晶体光纤激光器、放大器的发展具有重要意义。
With the improvement of the numerical methods used in photonic crystal fiber analysis and the maturity of the fabrication technology, the application prospects of photonic crystal fiber have been continuously expanding and the practical process of photonic crystal fiber has been improved. Now, the fabrication technology of photonic crystal fiber has been greatly improved, a variety of photonic crystal fibers with complex structure have can be drawn out. However, all the theoretical studies shoud be proved its correctness by experiments. In this paper, the numerical aperture and mode field diameter of photonic crystal fiber are studied, including numerical simulation and experimental measurement.
     Firstly, it describes the actuality of the measurement of photonic crystal fiber and the advatage and disadvatage of traditional measurement method of numerical aperture and mode field diameter. Then it proposes using spectrometer to measure the numerical aperture of photonic crystal fiber and investigates the impact of the wavelength, the diameter of air-hole and the pitch on numerical aperture with wavelengh at 500~1 100 nm,and the measurement results are compared with simulation results. According to the measured numerical aperture, the parameters of fiber related with wavelength can be better studied, such as: the non-linearity coefficient, macro-bending loss, the effective mode area, cut-off wavelength and so on.
     Secondly, according to studying the traditional measurement method of numerical aperture and mode field diamete, it proposes the scheme to measure the mode field diameter of photonic crystal fiber based on lateral displacement method and spot method, then set up the experimental arrangement. By measuring three kinds of photonic crystal fiber which are fabricated by our laboratory, the mode field distribution of photonic crystal fiber can be received. The mode field distribution is observed by CCD. The mode field distribution is transformed into a three-dimensional light intensity distribution map by matlab program.
     Finally, a novel octagonal Yb3+-doped photonic crystal fiber with large mode area is proposed based on the flexible design feature of photnic crystal fiber. The properties of photonic crystal fiber are investigated by multipole method. This fiber is meaningful for the development of fiber lasers and fiber amplifiers.
引文
1 J. C. Knight. New ways to guide light. Science, 2002, 296: 276-277
    2 P. Rigby. A photonic crystal fiber. Nature, 1998, 396: 415-416
    3 J. C. Knight, T. A. Birks, P. St. J. Russell, et al. All-Silica Single-Mode Optical Fiber with Photonic Crystal Cladding. Opt. Lett., 1996, 21(19): 1547-1549
    4 P. Russell. Photonic Crystal Fibers. Science, 2003, 299: 358-362
    5 T. A. Birks, J. C. Knight, P. St. J. Russell, et al. Endlessly single-mode photonic crystal fiber. Opt. Lett., 1997, 22 (13): 961-963
    6 J. C. Knight, T. A. Birks, P. St. J. Russell, et al. All-silica single mode optical fiber with photonic crystal cladding. Opt. Lett., 1996, 21:1547-1549
    7 J. C. Knight, J. Arriaga, T. A. Birks, et al. Anomalous dispersionin photonic crystal fiber. IEEE Photon.Technol.Lett., 2000, 12(7): 807-809
    8 J. K. Ranka, R. S. Windeler, A. J. Stentz, et al. Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett., 2000, 25 (1): 25-27
    9 A. Ferrando, E. Silvestre, J. J. Miret, et al. Nearly zero ultraflattened dispersion in photonic crystal fibers. Opt. Lett. , 2000, 25: 790-792
    10 W.H.Reeves, J.C.Knight, P.St.J.Russell. Demonstration of ultra-flattened dis persion in photonic crystal fibers. Opt. Exp., 2002, 10: 609-613
    11 K. Saitoh and M. Koshiba. Chormatic dispersion control in photonic crystal fibers: Application to ultraflattened dispersion. Opt. Exp., 2003, 11: 843-852
    12 R. K. Sinha and S. K. Varshney. Dispersion properties of photonic crystal fiers. Micro- wave Opt. Technol. Lett. , 2003, 37: 129-132
    13 F. Gerome, J. L. Auguste, J. M.Blondy, et al. Design of dispersion-compensating fibers based on a dualconcetric-core photonic crystal fiber. Opt. Lett., 2004, 29: 2725-2727
    14 F. Poli, A. Cucinotta, S. Selleri, et al. Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers. IEEE Photon.Technol.Lett., 2004, 16(4): 1065-1067
    15 Tzong-Lin Wu and Chia-Hsin Chao. A novel ultraflattened dispersion photonic Crystal fiber. IEEE Photon.Technol.Lett., 2005, 17(1): 67-69
    16 A. Huttunen and P. Torma. Optimization of dual-core and microstructure fiber geo- metries for dispersion compensation and large mode aera. Opt. Exp., 2005, 13: 627-635
    17 T. Fujisawa, K. Saitoh, K. Wada, et al. Chromatic dispersion profile optimi zation of dual-concentric-core photonic crystal fibers for broadband dispersion compensation. Opt. Exp., 2006, 14(2): 893-900
    18 Sigang Yang, Yejin Zhang, Xiaozhou Peng, et al.Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field. Opt. Exp., 2006, 14(7): 3015-3023
    19 J. C. Knight, T. A. Birks, R. F. Cregan, et al. Large mode area photonic crystal fibre. Electron. Lett. , 1998, 34(13): 1347-1348
    20 T. M. Monro, D. J. Richardson, N. G. R. Broderick, et al. Holey optical fibers: An efficient modal model. J.Lightwave Technol., 1999, 17: 1093-1102
    21 N. G. Rroderick, T. M. Monro, P. J. Bennet, et al. Nonlinearity in holey optical fibers: measurement and future opportunities. Opt. Lett., 1999, 24: 1395-1397
    22 N. A. Mortensen. Effective area of photonic crystal fibers. Opt. Exp., 2002, 14(7): 341- 348
    23李曙光,刘晓东,侯蓝田.光子晶体光纤的导波模式与色散特性.物理学报. 2003, 52(11): 2811-2817
    24 L. Lavoute, P. Roy, A. Desfarges-Berthelemot, et al. Design of microstructured single mode fiber combining large mode area and high rare earth ion concentration. Opt. Exp., 2006, 14(7): 2994-2999
    25 John M. Fini. Bend-resistant design of conventional and microstructure fibers with very large mode area. Opt. Exp., 2006, 14 (l): 69-81
    26 A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, et al. Highly birefringent photonic crystal fibers. Opt. Lett. , 2000, 25(18): 1325-1327
    27 T. P. Hansen, J. Broeng, S. E. B. Libori, et al. Highly birefringent index-guiding phot- onic crystal fibers. IEEE Photon. Technol. Lett., 2001, 13(6): 588-590
    28 K. Saitoh, M. Koshiba. Photonic bandgap fibers with high birefringence. IEEE Photon. Technol. Lett., 2001, 14(9): 1291-1293
    29娄淑琴,王智,任国斌等.折射率导模高双折射光子晶体光纤.光学学报. 2004, 24(10): 1310-1315
    30 Y. Yue, G. Kai, Z. Wang, et al. Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core. IEEE Photon.Tech.Lett., 2006, 18(24): 2638-2640
    31 D. C. Zografopoulos, E. E. Kriezis, T. D. Tsiboukis. Tunable highly birefringent band- gap guiding liquid-crystal microstructured fibers.J.Lightwave Technol., 2006, 24(9): 3427- 3432
    32 D.Chen and L. Shen. Ultrahigh Birefringent Photonic Crystal Fiber With Ultralow Confi- nement Loss. IEEE Photon. Tech. Lett., 2007, 19(4): 185-87
    33 R. F. Cregan, B. J. Mangan, J. C. Knight, et al. Single-mode photonic band gap guid- ance of light in air. Science, 1999, 285: 1537-1539
    34 D. G. Ouzounov, F. R. Ahmad, D. Mbller, et al. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science, 2003, 301: 1702- 1704
    35 J. Laegsgaard, N. A. Mortensen, J. Riishede, et al. Material effects in air-guiding photonic bandgap fibers. J.Opt. Soc. Am.B: Opt. Phys., 2003, 20: 2046-2051
    36 F. Luan, J. C. Knight, P. St. J. Russell, et al. Femtosecond soliton pulse delivery at
    800nm wavelength in hollow-core photonic bandgap fibers. Opt. Exp., 2004, 12(5): 835-840
    37 J. D. Shephard, J. D. C. Jones, D. P. Hand, et al. High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers. Opt. Exp., 2004, 12: 717-723
    38 C. Peucheret, B. Zsigri and T. P. Hansen. 10Gbit/s transmission over air guiding photonic bandgap fibre at 1550 nm. Electron. Lett. , 2005, 41(1):27-29
    39李曙光,周桂耀,侯蓝田.带有无序填充气线石英介质的光子晶体光纤.激光杂志, 2003, 24 (2): 1-4
    40郭巍,周桂耀,倪永婧,等.利用改进的堆积法制备微结构光纤.光电子·激光, 2006, 17(9): 1035-1038
    41郭巍,周桂耀,倪永婧,等.微结构光纤间隙孔在制备过程中形变的研究.光电工程, 2006: 33(12): 61-64
    42周桂耀,侯峙云,潘普丰,等.微结构光纤预制棒拉制过程的温度场分布.物理学报, 2006, 55 (3): 1271-1275
    43刘艳云,侯蓝田,李秋菊,等.相干背散射法测量微结构光纤中的光子局域化.中国激光, 2006, 33(3): 343-346
    44栗岩锋,胡明列,王清月.光子晶体光纤的超连续光谱及其应用.光电子·激光, 2003, 14(11): 1240-1243
    45 Z. Wang, J. Ju and W. Jin. Optimizing PCFs for Two-mode Interference. Opt. Fiber Techno- logy, 2006, 12(1): 29-37
    46 W. Jin, Z. Wang and J. Ju . Two-mode Photonic Crystal Fibers. Opt. Exp., 2005, 13(6): 2082-2088
    47 C. Zhang, G. Kai, Z. Wang, et al. Design of Tunable Bandgap Guidance in High-Index Filled Microstructure Fibers. J. Opt. Soc. Am. B, 2006, 23(4): 782-786
    48 Z. Wang, Y. Liu, G. Kai, et al. Directional Couplers Operated by Resonant Coupling in All-Solid Photonic Bandgap Fibers. Opt. Exp., 2007, 15(14): 8925-8930
    49 H. Yan, C. Gu, C. Yang, et al. Hollow Core Photonic Crystal Fiber Surface-Enhanced Raman Probe. Appl. Phys. Lett., 2006, 89: 204101
    50杨广强,张霞,任晓敏,等.利用光子晶体光纤实现10 Gb/s光传输系统的色散补偿.中国激光, 2005,32(9): 1221-1224
    51沈格.多模光纤数值孔径测试.半导体光电, 1989, 10(4): 16-18
    52张森,梁艺军,温强,等.一种新的光纤数值孔径测量方法.应用科技, 2004, 31(9): 26- 28
    53孙青海,胡强国,李俊,等.用改进的分光计测量光纤理论数值孔径.物理实验, 2008, 28(9): 42-44
    54李平,林延东,李熙.用于单模光纤模场直径测量的横向错移法的研究.现代计量测试, 1999, 3: 27-30
    55杨高波,聂秋华.测量单模光纤模场半径的远场可变孔径方法.光纤与电缆及其应用技术, 1997, 2: 37-39
    56 E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Review Lett. , 1987, 58(20): 2059-2062
    57 S. John. Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Phys. Review Lett. , 1987, 58(23): 2486-2489
    58 J. C. Knight, T. A. Birks, P. St. J. Russell, et al. Pure silica single-mode fiber with hexagonal photonic crystal cladding. OFC’96: PD3-1
    59 D. A. Akimov, A. A. Ivanov, M. V. Alfimov, et al. Photonic Crystal Fiber Sources for Nonlinear Spectroscopy. Vibrational Spectroscopy, 2006, 42(1): 33-40
    60 S. V. Smirnov and J. D. Castanon . Optical Spectral Broadening and Super-continuum Generation in Telecom Applications. Optical Fiber Technology, 2006, 12(2): 122-147
    61 Y. Jiang, Y. Leng, X. Chen, et al. Active Phase Control and Frequency Chirp effects on Super-continuum Generation in High Birefringence Photonic Crystal Fiber. Optics Commun., 2008, 281(9): 2449-2453
    62 J. Limpert. High Power Air Clad Large Mode Area Photonic Crystal Fiber Laser. Opt. Exp., 2003, 11(7): 818-823
    63 P. Hansen. Dispersion Flattened: Hybird-core Nonlinear Photonic Crystal Fiber. Opt. Exp., 2003(11): 1503-1509
    64 Zhou Guiyao, Hou zhiyun, Li Shuguang, et al. Fabrication of glass photonic crystal fibers with a die-cast process. Appl. Opt., 2006, 45(18): 4433-4436
    65 Gary R. Pickrell, Daniel Kominsky, Roger Stolen, et al. Microstructura analysis of random hole optical fibers. IEEE Photo. Technology Lett. , 2004, 16(2): 491-493
    66 A. Argyrosl. Photonic bandgap with an index step of one percent. Opt. Exp., 2005, 13(1): 309-314
    67 M. D. Nielsen, J. R. Folkenberg, N. A. Mortensen, et al. Bandwidth comparison of phot- onic crystal fibers and conventional single-mode fibers. Opt. Exp., 2004,12(3): 430-435
    68 Jingyuan Wang, Chun Jiang, Weisheng Hu, et al. Modified design of photonic crystal fibers with flattened dispersion. Opt. Laser Technol, 2006, 38(3): 169-172
    69 T. Katagiri, Y. Matsuura and M. Miyagi. Photonic Bandgap Fiber with a Silica Core and Multilayer Dielectric Cladding. Opt. Lett., 2004, 29(6): 557- 559
    70 Y. Li, M. Hu, L. Chai, et al. Enhanced Nonlinear Effects in Photonic Crystal Fibers. Frontiers of Physics in China, 2006, 1(2): 160-170
    71 M. L. Hu, C. Y. Wang, Y. F. Li, et al. Multiplex Frequency Conversion of Unamplified
    30 fs Ti: Sapphire Laser Pulses by an Array of Waveguiding Wires in a Random-Hole Microstructure Fiber. Opt. Exp., 2004, 12(25): 6129-6134
    72 S. O. Konorov1, V. P. Mitrokhin1, A. B. Fedotov, et al. Hollow-Core Photonic-Crystal Fibres for Laser Dentistry. Phys. Med. Biol., 2004, 49: 1359-1368
    73 T. Udem, R. Holzwarth, T. W. Hansch. Optical Frequency Metrology. Nature, 2002, 416: 233-237
    74 P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, et al. Microstructured Optical Fiber as High-Pressure Microfluidic Reactors. Science, 2006, 311: 1583-1586
    75 Zhao Xingtao, Hou Lantian, Liu Zhaolun, et al. Improved fully vectorial effective index method in photonic crystal fiber. Appl. Opt., 2007, 46(19): 4052-4056
    76 Z. Wang, G.B. Ren, S.Q. Lou. A Novel Supercell Overlapping Method for Different Photonic Crystal Fibers. J. Lightwave Technol, 2004, 2(3):903-916
    77 S. Guo, F. Wu, S. Albin, et al. Loss and Dispersion Analysis of Microstructured Fibers by Finite-Difference Method. Opt. Exp., 2004, 12(15): 3341-3352
    78 Wang Zhi, Ren Guobin, Lou Shuqin, et al. Supercell Lattice Method for Photonic Crystal Fibers. Opt. Exp., 2003, 11(9): 980-991
    79 T. M. Monro, V. Pruneri, N. G. R. Broderick, et al. Broad-band Second-harmonic Generation in Holey Optical Fibers. IEEE Photo. Technol. Lett., 2001, 13(9): 981-983
    80 B. T. Kuhlmey, T. P. white, G. Renwersez, et al. Multipole method for microstructured optical fibers. II.implementation and results. 2002 J. Opt. Soc. Am. B, 19(10): 2331- 2340
    81 William J. Wadsworth, R. Mike Percival, Geraud Bouwmans, et al. Very high numerical aperture fibers. IEEE Photo. Technol. Lett., 2004, 16(3): 807- 809
    82白崇恩,刘有信.光纤测试.北京:人民邮出版社, 1988: 203-206
    83 Benjanmin G. Ward. Bend performance-enhanced photonic crystal fibers with aniso- tropic numerical aperture. Opt. Exp., 2008, 16(12): 8532-8548
    84 National Standardization Administration Committee. GB/T 15972.43. Specifications for optical fiber methods GB/T 15972.43.Beijing: China standard press, 2008
    85苑立波.光纤实验技术.哈尔滨:哈尔滨工程大学出版社, 2005: 99-104
    86 M. D. Nielsen, N. A. Mortensen, M. Albertsen, et al. Predicting macrobending loss for large mode area photonic crystal fibers. Opt. Exp., 2004, 12(8): 1775-1779
    87 J. R. Folkenberg and N. A. Mortensen. Experimental investigation of cutoff phenomena in nonlinear photonic crystal fibers. Opt. lett. , 2003, 28(20): 1882- 1884
    88 N. A. Mortensen and J. R. Folkenberg. Modal cutoff and the V parameter in photonic crystal fibers. Opt. lett. , 2003, 28(20): 1879-1881
    89 B. T. Kuhlmey. Modal cutoff in micro-structured optical fibers. Opt. lett. 2002, 27 (19): 1684-1686
    90 P. Wang, L. Cooper, J. K. JSahu, et al. Efficient single-mode operation of a cladding pumped ytterbium-doped helical-core fiber laser. 2006, Opt. Lett. 31(2): 226- 228
    91 J. M. Fini. Design of large-mode-area amplifier fibers resistant to bendinduced distor- tion. J. Opt. Soc. Am. B, 2007, 24(8): 1669-1676
    92 T. P. White, R. C. Mcphedran, de Sterke C M, et al. Confinement losses in micro- structured optical fibers. Opt. Lett., 2001, 26(21): 1660-1662
    93 Y. Tsuchida, K. Saitoh, M. Koshiba, et al. Design and characterization of single-mode holey fibers with low bending losses. Opt. Exp., 2005, 13(12): 4770-4779
    94 J. Olszewski, M. Szpulak, W. Urbanczyk, et al. Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers. Opt. Exp., 2005, 13(16): 6015-6022
    95 K. Saitoh, Y. Tsuchida, L. Rosa, et al. Design of all-solid leakage channel fibers with large mode area and low bending loss. Opt. Exp., 2009, 17(6): 4913-4919
    96 Y. Tsunchida, K. Saitoh, M. Koshiba, et al. Design of single-moded holey fibers with large-mode-area and low bending losses: the significance of the ring-core region. Opt. Exp., 2007, 15(4): 1794-1803
    97张晓娟,赵建林,侯建平.一种新型高双折射光子晶体光纤.物理学报, 2007, 56 (8): 4668-4676

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700