二极管泵浦固体激光器中倍频过程对光束质量的影
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以倍频理论作为理论基础,以高斯光束为光束模型,研究了在倍频激光器中,倍频过程对基频光的模式分布,基频光以及倍频光的光束质量的影响。
     假定在圆形镜共焦腔中,初始时刻基频光为基模高斯光束,在倍频晶体的二阶非线性效应的影响下,通过倍频晶体的基频光不再是原来的基模高斯光束,为了描述这种过程,引入模式分解的概念:将通过倍频晶体后的基频光在拉盖尔高斯函数空间里展开,并表示为展开系数与基函数的点积和形式。模式的权重为展开系数的归一化形式。在此基础上,研究了腔外倍频,腔内倍频均匀增益,腔内倍频非均匀增益的情况下,前三阶模式的权重。
     以初始时刻基频光为基模高斯光束为前提,在腔内倍频情况下,基频光来回通过倍频晶体,且基频光受到激光晶体的增益作用,高阶模式权重可以与基模相比较。
Based on the frequent-doubling theory of light, Gaussian beam as a beam model, the beam quality affected by the process of frequent-doubling effecting is studied.
     Assumed that the beam in confocal resonator at initial time is fundamental-mode Gaussian beam, due to the second-order nonlinear effect of frequency doubling crystal, the beam getting through the frequency doubling crystal is not the fundamental-mode Gaussian beam. To describe the process, the modelling method is introduced. It means that make the beam through the frequency doubling crystal expanding in Laguerre-Gauss function space. The weights of modes are the coefficients by normalizing the coefficient of the expansion. The weights of three modes in the events that frequency doubling crystal is outside the resonator, inside the resonator with well-distributed gain, and inside the resonator with nonequilibrium gain distribution are put forward.
     In the situation of frequency doubling crystal inside the resonator, the fundamental laser beam get though the frequency doubling crystal back and forth, and it would be magnified by laser crystal. In that case, high modes build-up quickly, and the weight of fundamental-mode Gaussian beam can’t dominate over the beam.
引文
[1] R.L.Byer, Science, vo1.239, p.742 (1988)
    [2] G.T. Forrest, Laser Focus/E-O, vol.23, No.ll, p.62 (1987)
    [3]吕百达,马虹,激光与红外,Vo1.30,No.2, p.67 (2000)
    [4]A. Larsson et al., Electron. Lett, vol.l22, p.79 (1986)
    [5]B. Zhou et al., Opt,Lett, vol.10, p.62 (1985)
    [6]T M. Baer et al., US.Patent, 4,653,056
    [7]《半导体激光器和异质结发光二极管》,亨利等,国防工业出版社
    [8]《光纤通信》,意大利通信研究中心著,中国铁道出版社(1987)
    [9] I.P. Alcock and A .I. Ferguson, Opt. Commun., vo1.58, p.417 (1987)
    [10] R. Allen et al., Electron. Lett,vo1.22, No.18, p.947 (1986)
    [11] H. Hemmati, Opt. Lett, vol.14, No.9, p.435 (1989)
    [12] J.Y. Alain et al., Electorn.Lett, vo1.25, No.5, p.318 (1989)
    [13] W.P. Risk et al., Appl.Phys.Lett. vo1.54, p.1624 (1989)
    [14]F. Hanson,Improved laser performance at 946 and 473nm from ancomposite Nd:Y3Al5O12.Appl.Phys.Lett.1995,66:3549~3551.
    [15]V, Pruneri,R Koch.P. G Kazansky,W. A Clarkson et a1.,49mw of cw blue light generated by first-order quasi-phase-matched frequency doubling of a diode-pumped 946-nm Nd:YAG laser, Opt.1ett. 1995, 20:2375~2377
    [16]J.A.Trail, J.L.Nightingale,J.K. Johnson, et a1.,Compact, solid-state,green, blue, and ultraviolet lasers,SPIE, 1995,2380:65~72
    [17]G.Mizell,D.Essen, K.Yates, J.Cuthbertson.Diod-pumped Nd:YAG/NbO3 monolithic blue laser, SPIE, 1996,2700:331~313
    [18]I.D.Lindsay, M.Ebrahimzadeh.Efficient continuous wave and Q-switched operation of a 946nm Nd:YAG laser pumped by an injection-locked broad-area diode laser.Appl.opt,1998,37:3961~3970.
    [19]H Jones-Bey, Expiring license opens field for solid-state blue lasers.Laser Focus World, 2000,36(1):133~137
    [20] Industry report: Nichia, Matsuchita to ship blue laser. Laser Focus World, 1998, 34(6):41
    [21] W.P.Risk, W.Lenth.Diode laser pumped blue-light source based on intracavity sum frequency generation.Appl, Phys, Lett 1989,54(9):789~791
    [22]L f.Johnson,R.A.Thomas.Maser oscillations at 0.9 and 1.35 microns in CaWO4:Nd3+ ,Phys.Rev.1963,131:2038~2040.
    [23]R.W. Wallace.S.E.Harris.Oscillation and doubling of the 0.946 line in Nd3+:YAG Appl. Phys.1ett.1969,15:111~112
    [24]T.M.Baer and M .S. Keirstead, Conf. Laser Electro-Opt.,Paper T hzzl(1985)
    [25]T.M.Baer et al., U .S.Patent,4,656,635
    [26]M.Oka et al.,CLEO'90,Paper CWC5
    [27]T.Y Fan et al., Opt. Let., vol. ll, p.204(1986)
    [28]H. Hemati, IEEE J. Quantum Electron., vo1.28,p.1018(1992)
    [29]W.P.Risk and W. Lenth.Room-temperature, continuous-wave, 946nm Nd:YAG laser pumped by laserdiode arrays and intracavity frequency doubling to 473nm.Opt.Let.,vol.12,No.12,p.993(1987)
    [30]W.P.Risk, Compact blue laser device based on nonlinear frequency up conversion. SPIE, vol.104,p.13(1989)
    [31]W P.Risk et al., Appl. Phys. Lett., vo1.54,p.1625(1989)
    [32]共振腔内倍频的473nm蓝光激光器,激光与光电子学进展,vol.2,p. 21(1997)
    [33]D.G Mathews et al,Blue microchip laser fabricated from Nd:YAG and KNb03. Opt. Lett.,vo1.12,No3,p.198(1996)
    [34]G Mizell et al., Diode一pumped Nd:YAG/KNb03 monolithic blue laser. SPIE, vol.2700,p.331(1996)
    [35]G T.Dixon, Laser Focus World, No.9,p.99(1990)
    [36]W J.Kozlovsky et al.,Opt.Lett.,vol.13,p.1102(1988)
    [37]W J.Kozlovsky et al., IEEE J. Quantum Electron., vol.QE-24,p.913(1988)
    [38]D.C.Gerstmberger et al .,Opt .Lett.,vol.16,p.992(1991)
    [39]B. Comaskey et al.,CLEO'90,Paper CWC4
    [40]《激光原理(第4版)》周炳琨,高以智等国防工业出版社p.148
    [41]《激光原理(第4版)》周炳琨,高以智等国防工业出版社p.326附录二
    [42]《非线性光学》石顺祥,陈国夫等西安电子科技大学出版社p.88
    [43]《非线性光学》石顺祥,陈国夫等西安电子科技大学出版社p.96
    [44]《激光原理(第4版)》周炳琨,高以智等国防工业出版社p.87
    [45]《非线性光学》石顺祥,陈国夫等西安电子科技大学出版社表3.5-2常用非线性晶体的性质
    [46]Jia Shou-quan,Jiang Pei-zhi et al.,1986,J.Crystal Growth,74:275~280
    [47]《非线性光学——原理与进展》钱士雄,王恭明复旦大学出版社p.69
    [48]Wang S Y, Guo Z and Fu J M 2003 Acta photonics Sinica 32 286
    [49]Wang S Y, Guo Z and Wen J G 2000 Acta Optica Sinica 20 1467
    [50]D.E.McCumber,Eigenmodes of a Symmetric Cylindrical confocal laser resonatorand their perturbation by output -----coupling. Bell Sys. Tech. J, 1965, 44(2): 333~363

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700