环氧树脂多孔材料的亲水改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔材料由于具有各种优异的性能,已经成为一种应用广泛的功能材料。本文首先利用浓乳液聚合法制备了环氧树脂多孔材料,然后对其孔表面进行亲水改性,从而扩大此种环氧树脂多孔材料的应用领域。主要工作如下:
     1、利用浓乳液聚合法制备了环氧树脂多孔材料。利用扫描电镜研究了乳化剂用量、连续相预固化时间及分散相中二氧化硅胶体粒子溶度对环氧树脂浓乳液体系稳定性及环氧树脂多孔材料孔结构的影响。发现乳化剂的存在,对连续相进行适当的预固化,在分散相中加入二氧化硅胶体粒子均会提高浓乳液的稳定性,三者用量的改变均会影响多孔材料的孔结构;
     2、对环氧树脂多孔材料的孔表面进行亲水改性。通过溶胀法将引发剂固定在环氧树脂多孔材料的孔表面,进而在其表面接枝聚丙烯酸亲水层。研究了改性过程中溶胀用溶剂、环氧树脂多孔材料的固化时间及溶胀时间对改性效果的影响。不同的溶胀溶剂对改性的效果各不相同;环氧树脂多孔材料的固化时间越长,改性效果越差;溶胀时间越长,改性效果越好。利用扫描电镜测试、透射电镜测试、X射线电子能谱测试、压汞法测试、接触角测试及吸水率测试对比研究了改性前后的环氧树脂多孔材料的孔结构和亲水性能等。发现与未改性的环氧树脂多孔材料相比,改性后的环氧树脂多孔材料的孔内壁被聚丙烯酸亲水接枝层覆盖,且其亲水性有了明显的提高。
Because of the outstanding performance of porous materials, they were becoming one kind of functional material which has widespread application. In this dissertation, a porous epoxy monolith was firstly prepared via a concentrated emulsion polymerization, then, the pore surfaces of the monolith were modified. As a result, the application field of the modified porous epoxy monolith would expand. The main work of the dissertation was as following:
     1. Preparation the porous epoxy monoliths via a concentrated emulsion template. The effect of the emulsifier content, the pre-curing time of the continuous phase and the colloidal silica amount of the aqueous phase on the stability of the epoxy concentrated emulsion and pore structure of the porous epoxy monolith were studied by scanning electron microscopy. The emulsifier, the pre-curing of the continuous phase and the colloidal silica in the aqueous phase all did attribution to the stability of the concentrated emulsion, the change of their amount would affect the pore structure of the porous epoxy monolith.
     2. Hydrophilic modification was carried out to porous epoxy monoliths via pore surface-initiated graft polymerization. The initiator was immobilized on the pore surface by swelling the porous epoxy monolith with acetone solution of initiator, then the acrylic acid polymerized on the pore surface. The solvent used for swelling, the curing time of the porous epoxy monolith and the swelling time were also studied. Different swelling solvent got the different modification result; the longer the curing time of the porous epoxy monolith got the worse the modification result; the modification result was good as the swelling time last long. The morphology and the hydrophilic property of unmodified and modified porous epoxy monoliths were studied contrastively by scanning electron microscopy, transmission electron microscopy, energy-dispersive spectrometer, mercury instrusion porosimetry measurement, content angle measurement and water absorption. Compare with the unmodified porous epoxy monolith, the pore surface of the modified porous epoxy monolith was covered by poly acrylic acid layer, and the hydrophilic property of the modified porous epoxy monolith was improved obviously.
引文
[1]Gregg S J, Sing K S W. Adsorption Surface Area and Porosity [M]. Academic Press, New York,1982
    [2]Sing K S W, et al. Porous polymer carbons. Ⅱ. Preparation and properties of porous poly(vinylidene chloride) carbons [J]. Pure and Applied Chemistry,1985,57:603-615
    [3]Joannopoulous J D, Pierre R, et al. Calculation of the shock temperature of porous and non-porous high explosives [J]. Nature,1997.386:143-156
    [4]向安,陈鸿奎,高建平等.光子晶体的制备及应用[J].化学通报,2002,101:669-674
    [5]Schierbaum K D, Weiss T, Thoden van Veizen E U, et al. Molecular Recognition by Self-Assembled Monolayers of Cavitand Receptors [J]. Science,1994,265:1413-1415
    [6]Feng X, Fryxell E. Wang L Q, et al. Functionalized Monolayers on Ordered Mesoporous Supports [J]. Science,1997,276:923-926
    [7]Meng G Y. Biomechanical investigations of bone-porous carbon and porous metal interfaces [J]. Nature,1996,18(3):151-164
    [8]Wijnhoyen J, Vos W L. Preparation of Photonic Crystals Made of Air Spheres in Titania [J]. Science,1998,281:802-804
    [9]黄素平.多孔丝素蛋白膜在人造皮肤上的应用[J].山东纺织科技,2003,6:49-51
    [10]何天白,胡汉杰.海外高分子科学的新进展[M].北京:化学工业出版社,1997
    [11]侯文华,徐林,颜其洁等.具有超大通道结构的介孔氧化硅柱层状钛酸的合成和催化应用初探[J].无机化学学报,2002.18(7):744-747
    [12]Estermann M, Mccusker L B, Baerlocher C. A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening [J]. Nature,1991.352:320-323
    [13]翟尚儒,蒲敏,张晔等.纯硅MCM-48的合成研究[J].无机化学学报,2002.18(11):1081-1085
    [14]颜学武,韩小伟,曹毅等.微波法研制碱土金属氧化物负载型MCM-48碱性介孔材料[J].无机化学学报,2002.18(11):1 101-1106
    [15]刘信安,李伟,王里奥.球状多孔羟基磷灰石生物材料的制备与结构[J].应用化学,):223-227
    [16]Cameron N R. High inernal phase emulsion templating as a route to well-defined porous polymers[J]. Polymer,2005,46:1439-1449
    [17]Ottens M, Leene G, Beenackers A, et al. Kinetics, catalysis, and reaction engineering[J]. Industrial & Engineering Chemistry Research,2000,39:259-266
    [18]Herve D, Maillard B. Development of new ultraporous polymers as support in organic synthesis[J]. Bioorfanic and Chemistry Letters,2002,12:1877-1880
    [19]Krajnc P, Brown J F, Cameron N R. Monolithic scavenger resins by amine functionalizations of poly (4-vinylbenzylchloride-co-diviyl benzene) poly HIPE materials[J]. Organic Letters,2002,4:2497-2500
    [20]Moine L, Deleuze H, Maillard B. Preparation of high loading poly HI PE monoliths as scavengers for organic chemistry[J]. Tetrahedron Letters,2003,44:7813-7816
    [21]Busby W, Cameron N R, Jahoda CAB. Emulsion derived forms (poly HIPEs) containing poly (ε-caprolactone) as matrixes for tissue engineering[J]. Biomacromolecules,2001,2:
    154-1641
    [22]Busby W, Cameron N R, J ahoda CAB. Tissue engineering matrices by emulsion templating[J]. Polymer International,2002,51:871-881
    [23]Akay G, Birch MA, Bokhari M A. Microcellular poly HIPE polymer supports osteoblast growth and bone formation in vitro[J]. Biomaterials,2004,25:3991-4000
    [24]Hayman M W, Smit h K H, Cameron N R, Przyborski S A. Growth of human stem cell-derived neurons on solid three-dimensional polymers[J]. Biochem Biophys Methods, 2005,62:231-240
    [25]Bhumgara Z. Polyhipe foam materials as filtration media[J]. Polymeric Foam Filter Media, 1995,245-251
    [26]Elmes A R, Hammond K, Sherrington D C. [P]. European Patent Apply.289238,1988
    [27]Cameron N R, Barbetta A. The influence of porogen type on the porosity, surface area and morphology of poly (divinyl-benzen) Poly HIPE foams[J]. Journal of Material Chemistry, 2000,10:2466-2472
    [28]Cooper A L. Porous materials and superitical fluids[J]. Advaced Materials,2003,13: 1049-1059
    [29]Butler R, Hopkinson I, Cooper A I. Synthesis of porous emulsion-Templated polymers using high internal phase CO2-in-water emulsions[J]. Journal of the American Chemical Society,2003,125:14473-14481
    [30]Barbetta A, Cameron N R. Morphology and surface area of emulsion derived (poly HIPE) Solid Foams prepared with oil-phase soluble porogenic solvents:Span80 as surfactant [J]. Macromolecules,2004,37:3188-3201
    [31]Cameron N R, Sherrington D C. Synthesis and characterization of poly (aryl ether sulfone) poly HIPE materials[J]. Macromolecules,1997,30:5860-5869
    [32]Barbetta A, Cameron N R, Cooper S J. High internal phase emulsions (HIPEs) containing divinylbenzene and 4-vinyl-benzylchloride and t he morphology of the resulting Poly HIPE materials[J]. Chemitry Communication,2000,3:221-222
    [33]Barbetta A, Cameron N R. Morphology and surface area of emulsion derived (poly HIPE) Solid Foams prepared with oil-phase soluble porogenic solvent s:three-component surfactant system[J]. Macromolecules,2004,37:3202-3213
    [34]Solans C, Pons R, Kunieda H. Gel emusion-relationship between phase behavior and formation[M]. In:Binks BP, editor. Modern aspect of emulsion science.UK:The Royal Society of Chemistry,1998,20:367-394
    [35]Lissant K J. Geometry of high-inter-phase-ratio emulsions[J]. Journal of Colloid and Interface Science,1966,22:462-468
    [36]Hoffman H. Large shells in collective nuclear dynamics[J]. Advanced Colloid Interface Science,1990,32:123-1299
    [37]Ruckenstein Eli, Sun Fuming. Hydrophobic-hydrophilic composite membranes for the pervaporation of benzene-ethanol mixtures [J]. Journal of Membrane Science,1995, 103(1):271-283
    [38]Ruckenstein Eli, Kim K J. Polymerization in gel-like emulsions[J], Journal of Applied Polymer Science,1988,36(4):907-923
    [39]Li Hangquan, Ruckenstein Eli. Concentrated emulsion pathway to self-compatibilization of polymer blends [J]. Journal of Polymer Science Part A:Polymer Chemistry,2001, 39(6):757-764
    [40]Li Hangquan, Ruckenstein Eli. Self-Compatibilization of poly(butyl methacrylate)/acrylonitrile-co-styrene blends via concentrated emulsion polymerization [J]. Journal of Applied Polymer Science,1996,62(13):2285-2296
    [41]Yun Y, Li H Q, Ruckenstein E. Hydrophobic core/hydrophilic shell amphiphilic particles [J]. Journal of Colloid and Interface Science,2001,238:414-419
    [42]Sun F, Ruckenstein E, Preparation of high molecular weight monodisperse polystyrene latexes by concentrated emulsion polymerization[J], Journal of Applied Polymer Science, 1993,48(7):1279-1288
    [43]Kim K J, Ruckenstein E. Preparation of latex carriers for controlled release by concentrated emulsion polymerization [J], Journal of Applied Polymer Science,1989, 38(3):441-452
    [44]Ruckenstein E, Park J S. Hydrophilic-hydrophobic polymer composites[J]. Journal of Polymer Science, Part C:Polymer Letter,1988,26(12):529-536
    [45]Ruckenstein E, Sun F. A new concentrated emulsion polymerization pathway[J]. Journal of Applied Polymer Science,1992,46(7):1271-1277
    [46]Lissant Kenneth J., Mayhan Kenneth G. A study of medium and high internal phase ratio water/polymer emulsions [J]. Journal of Colloid and Interface Science,1973,42(1): 201-208
    [47]Lissant K J. Structure of high-internal-phase-ratio emulsions[J], Journal of Colloid and Interface Science,1974,47(2):416-423
    [48]Princen H M. Highly concentrated emulsions. Ⅰ. Cylindrical systems[J], Journal of Colloid and Interface Science,1979,71(1):55-66
    [49]Princen H M. Highly concentrated emulsions. Ⅱ. Real systems. The effect of film thickness and contact angle on the volume fraction in creamed emulsions[J], Journal of Colloid and Interface Science,1980,75(1):246-270
    [50]Princen H M. Rheology of foams and highly concentrated emulsions:1. Elastic properties and yield stress of a cylindrical model system[J], Journal of Colloid and Interface Science, 1983,91(1):160-175
    [51]Ruckenstein E, Chen H H. Composite membranes prepared by concentrated emulsion polymerization and their use for pervaporation separation of water-acetic acid mixtures [J]. Journal of Membrane Science,1992,66(2-3):205-210
    [52]Ruckenstein E, Li H Q. Self-compatibilization of polymer blends via concentrated emulsions [J]. Polymer Bulletin,1995,35(4):517-524
    [53]Shenton M J, Lovell-Hoare M C, Stevens G C. Adhesion enhancement of polymer surfaces by atmospheric plasma treatment [J]. Journal of Physics D:Applied Physics,2001,34: 2754-2760
    [54]姜晓霞,沈伟.化学镀理论及实践[M].北京:国防工业出版,2000
    [55]刘仁志.非金属电镀与精饰——技术与实践[M].北京:化学工业出版社,2006
    [56]姜晓霞,沈伟.化学镀理论与实践[M].北京:国防工业出版社,2000
    [57]许健南.塑料材料[M].北京:中国轻工业出版社,1999
    [58]Lai J N, Sunderland B, Xue J M, et al. Study on hydrophilicity of polymer surfaces improved by plasma treatment [J], Applied Surface Science,2006,252(10):3375-3379
    [59]Kan C W, Chan Yuen C W M, el al. Surface properties of low-temperature plasma treated
    wool fabrics [J], Journal of Materials Processing Technology,1998,83(1):180-184
    [60]Lefevre L, Belmonte T, Czerwiec T, el al. Study of late argon-nitrogen post-discharge interactions with oxidized iron surfaces [J]. Applied Surface Science,2000,153(2-3): 85-95
    [61]Gerenser L J, Grace J M, el al. Surface chemistry of nitrogen plasma-treated poly(ethylene-2,6-naphthalate):XPS, HREELS and static SIMS analysis [J]. Surface and Interface Analysis,2000,29(1):12-22
    [62]Park S H, Kim S D. Plasma surface treatment of HDPE powders by CF4 plasma in a fluidized bed reactor [J]. Polymer Bulletin,1998,41:479-486
    [63]Seidel C, Kopf H, Gotsmann B, et al. Ar plasma treated and Al metallised polycarbonate: a XPS, mass spectroscopy and SFM study [J]. Applied Surface Science,1999,150(1-4): 19-33
    [64]Seidel C, Gotsmann B, Kopf H, et al. Aluminium deposition on SF6 plasma-treated polycarbonate:an AFM, XPS and mass spectroscopy study [J]. Surface and Interface Analysis,1998,26(4):306-315
    [65]Hochart F, Levalois-Mitjaville J, Roger D J. Plasma surface treatment of poly (acrylonitrile) films by fluorocarbon compounds [J]. Applied Surface Science,1999, 142(1-4):574-578
    [66]Terlingen G A. Introduction of functional groups on polyethylene surface by a carbon dioxide plasma treatment [J]. Applied Surface Science,1995,57 (8):969-982
    [67]张开.高分子界面科学[M].北京:中国石化出版社,1997
    [68]吴人洁等.高聚物的表面与界面[M].北京:科学出版社,1998
    [69]李朝顺,臧智慧,饶志工等.四种方法对LDPE片材的表面改性与粘结[J].化学与粘合,1994,3:145-148
    [70]于建,宋宗生.臭氧氧化处理法对聚丙烯表面涂装性的改良研究(Ⅰ.聚丙烯表面的臭氧氧化反应过程)[J].合成树脂及塑料,1996,13(4):11-15
    [71]于建,宋宗生.臭氧氧化处理法对聚丙烯表面涂装性的改良研究(Ⅱ.臭氧浓度及臭氧发生气组成对聚丙烯表面氧化过程的影响)[J].合成树脂及塑料,1997,14(1):11-14
    [72]于建,宋宗生.臭氧氧化处理法对聚丙烯表面涂装性的改良研究(Ⅲ.聚丙烯表面含氧官能团相对生成量和涂膜氧剥离强度的关系)[J].合成树脂及塑料,1997,14(2):12-15
    [73]于建,宋宗生.臭氧氧化处理法对聚丙烯表面涂装性的改良研究(Ⅳ.聚丙烯表面亲水性和涂膜氧剥离强度的关系)[J].合成树脂及塑料,1997,14(3):15-19
    [74]Klee, Doris; Hocker, Hartwig. Polymers for Biomedical Applications:Improvement of the Interface Compatibility [J]. Advances in Polymer. Science,1999,149 (Biomedical Applications/Polymer Blends):1-57
    [75]Zdrahala Richard J., Zdrahala Ivanka. J. In Vivo Tissue Engineering:Part Ⅰ. Concept Genesis and Guidelines for its Realization [J]. Journal of Biomaterials applications,1999, 14(2):192-209
    [76]王琴梅,潘仕荣.异氰酸酯法在聚氦酯表面接枝聚甲基丙烯酸羟乙酯[J].生物医学工程学杂志,1999,16(Z1增刊):92-93
    [77]Gawish S M, Kantouch A, El-Naggar A M, et al. Gamma preirradiation and grafting of 2N-morpholino ethyl methacrylate onto polypropylene fabric [J]. Journal of Applied Polymer Science,1995,57(1):45-53
    [78]Mishra B N, Sood D. S., Mehta I. K. Grafting onto polypropylene. Ⅰ. Effect of solvents in gamma radiation-induced graft copolymerization of poly(acrylonitrile) [J]. Journal of Polymer Science:Polymer Chemistry Edition,1985,23(6):1749-1757
    [79]张德庆,胡玉洁,魏月贞.碳纤维(cF)表面接枝对聚酰亚胺(PMR-15)基复合材料界面性能的影响[J].复合材料学报,2001,18(1):50-54
    [80]Pulat, Mehisa, Babayigit Dogan. Surface modification of PU membranes by graft copolymerization with acrylamide and itaconic acid monomers [J]. Ploymer Testing,2001, 20(2):209-216
    [81]Oster G, Shibata O. Graft copolymer of polyacrylamide and natural rubber produced by means of ultraviolet light [J]. Journal of Polymer Science,1957,26(113):233-234
    [82]Ulbricht M, Matuschewskia H, Oechela A, et al. Photo-induced graft polymerization surface modifications for the preparation of hydrophilic and low-proten-adsorbing ultrafiltration membranes [J]. Journal of Membrane Science,1996,115(1):31-47
    [83]Ulbricht M, Oechel A, Lehmann C, et al. Gas-phase photoinduced graft polymerization of acrylic acid onto polyacrylonitrile ultrafiltration membranes [J]. Journal of Applied Polymer Science,1995,55(13):1707-1723
    [84]Allmer K, Hilborn. J, Larsson P H. Surface modification of polymers. V. Biomaterial applications [J]. Journal of Polymer Science Part A:Polymer Chemistry,1990,28: 173-183
    [85]Witold Brostow, Wunpen Chonkaew, Kevin P.Menard, Thomas W. Scharf. Modification of an epoxy resin with a fluoroepoxy oligomer for improved mechanical and tribological properties [J]. Materials Science and Engineering A,2009,57:241-251
    [86]T. Kasemura, Y. Oshibe, H. Uozuml. Surface modification of epoxy resin with fluorine-containing methacrylic ester copolymers[J]. Journal of Applied Polymer Science, 1993,47:2207-2216
    [87]王建莉.浓乳液模板法制备多孔聚合物材料[D].北京:北京化工大学材料科学与工程学院,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700