咪唑类离子液体粘度数据的收集及其QSPR研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体是近十几年内才发展起来的一种全新的绿色溶剂,因其优异的物理化学性质,已经在诸多领域引起了广泛的研究兴趣。但离子液体有一个不足的地方,就是其粘度高(通常比传统有机分子型溶剂高1-3个数量级),高粘度已经成为制约离子液体工业化应用的瓶颈之一,如何降低其粘度成为离子液体研究领域的一个关键问题。然而目前人们对离子液体粘度的认识还很有限,因此,建立起离子液体微观结构与宏观粘度之间的定量关系,揭示离子液体粘度高的微观本质,对于低粘度离子液体的定向合成与设计有重要的意义。基于此,
     本文主要开展了如下研究:
     1)建立了咪唑类离子液体粘度的数据库,收集了1983-2009年间的粘度数据,共包括1731条数据条目,涉及255种离子液体(79种阳离子,71种阴离子);
     2)基于所建数据库,定性分析了影响离子液体粘度的一些因素,发现了温度、压力、阳离子上的烷基侧链、阳离子C(2)位置甲基化、阴离子结构等对粘度的影响规律;
     3)从数据库中选出四类咪唑离子液体进行了定量结构性质关系(QSPR)研究,得到了较好的拟合模型(相关性系数R2>0.92),结果表明,阴阳离子间的静电作用对咪唑类离子液体粘度的影响很大,其它诸如氢键、范德华作用及分子体积、对称性、极化率等对粘度也有一定影响;
     4)将咪唑类离子液体粘度的QSPR结果与传统分子型有机溶剂粘度的QSPR结果进行了比较,发现,不同于分子型有机溶剂,在咪唑类离子液体中,阴阳离子间的静电作用是影响粘度的主要因素之一,而氢键作用、范德华作用次之。
Owing to some desirable properties, ionic liquids (ILs) have attracted increasing interests and applications in many domains. Unfortunately, however, they generally have much higher viscosities than conventional molecular solvents, which results to some problems of handling or transferring in chemical processing. ILs with lower viscosity are desired. Therefore, understanding the relationship between micro-structure and macro-viscosity along with a comprehensive viscosity data is important for the synthesis and rational design of ILs with low viscosity.
     In this work:
     1) A comprehensive database on viscosities of ionic liquids, which has been collected from 142 kinds of literature sources in the period from 1984 through 2009, was established. The cations and anions were named and ordered according to their molecular weight. There are totally 79 kinds of cations,71 kinds of anions and 1731 pieces of data.
     2) Based on our data base, we got the qualitative analysis of ionic liquid structure on the viscosity and found that the temperature, pressure, cation alkyl side chain on the cation C(2) position to replace the anion structure affect the viscosity;
     3) quantitative structure-property relationship (QSPR) study is performed for four selected data sets. The four correlations are obtained with R2>0.93, and quantum-chemical descriptors gave significant contributions. The cation-anion electrostatic interaction has the significant effects on the viscosity of imidazolium-based ILs, while other interactions (e.g., interionic hydrogen-bond, Van der Waals) or micro-characteristics (e.g., molecular orbital, electronic population, polarizability, volume, shape, branching degree, symmetry) also give some effects.
     4) Compared with the viscosity of organic matter, it can be found that the electrostatic interaction between ions is no longer the main factor affecting for the viscosity, hydrogen bonding and van der of force are even more prominent role. Ionic liquids is not only in common with ordinary organic compounds, but also have their unique.
引文
[1]Seddon K R. Ionic Liquids for Clean Technology [J]. J. Chem. Technol. Biotechnol.,1997,68: 351-356
    [2]Walden P. Molecular Weights and Electrical Conductivity of Several Fused Salts [M]. Bull. Acad. Imper. Sci.,1914,1800
    [3]Hurley F H, Wier T P Jr. Electrodeposition of Metals from Fused Quaternary Ammonium Salts[J]. Electrochem. Soc.,1951,98(5):203-206
    [4]Chum H L, Koch V R, Miller L L, Osteryoung R A. Electrochemical Scrutiny of Organometallic Iron Complexes and Hexamethylbenzene in a Room Temperature Molten Salt [J]. J. Am. Chem. Soc.,1975,97:3264-3265
    [5]Wilkes J S, Levisky J A, Wilson R A, Hussey C L. Dialkylimidazolium Chloroaluminate Melts:A New Class of Room-Temperature Ionic Liquids for Electrochemistry, Spectroscopy, and Synthesis [J]. Inorg. Chem.,1982,21:1263-1264
    [6]Wilkes J S, Zaworotko M J. Air and Water Stable 1-Ethyl-3-Methylimidazolium Based Ionic Liquids [J]. Chem. Commun.,1992,965-967
    [7]Zamostny P, Kukula P, Young J S. Possible Green House Gases and Global Climate Change [J]. Chem. Listy,1999,93:238-242
    [8]Arianna B, Fabio M, Carmine R, Luciano S. A preliminary investigation on the organic ionic liquids as green solvents for acylation and oxidation reactions [J]. Journal of Cleaner Production,2007,18:1797-1805
    [9]Rogers R D, Seddon K R. Ionic Liquids-Solvents of the Future [J]. Science,2003,302: 792-793
    [10]Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Green Processing Using Ionic Liquids and CO2 [J]. Nature,1999,399:28-29
    [11]Seddon K R. Ionic Liquids-Professor Kenneth Seddon, from Queen's University, Belfast, Introduces This Special Issue on Ionic Liquids [J]. Green Chem.,2002,4:G25-G26
    [12]Yuan K, Ling H. Ionic Liquids in Green Chemistry:Today's Solvent or Tomorrow's Solution [J]. Progress in Chemistry,2008,20:5-10
    [13]Katritzky A R, Lomaka A, Petrukhin R, Jain R, Karelson M, Visser A E, Rogers R D. QSPR Correlation of the Melting Point for Pyridinium Bromides, Potential Ionic Liquids [J]. J. Chem. Inf. Comput. Sci.,2002,42:71-74
    [14]王均凤,张锁江,陈慧萍,李闲,张密林.离子液体的性质及其在催化反应中的应用[J],过程工程学报,2003,3(2):177-185
    [15]Howarth J. Oxidation of Aromatic Aldehydes in the Ionic Liquid [bmim]PF6 [J]. Tetrahedron Lett.,2000,41:6627-6629
    [16]Song C E, Roh E. Practical Method to Recycle a Chiral (salen) Mn Epoxidation Catalyst by Using an Ionic Liquid [J]. J. Chem. Commun.,2000,837-838
    [17]Owens G S, Abu-Omar M M. Methyltrioxorhenium-Catalyzed Epoxidations in Ionic Liquids [J]. Chem. Commun.,2000,1165-1166
    [18]Peng J J, Shi F, Gu Y L, Deng Y Q. Highly Selective and Green Aqueous-Ionic Liquid Biphasic Hydroxylation of Benzene to Phenol with Hydrogen Peroxide [J]. Green Chem., 2003,5:224-227
    [19]Singer R D, Scammells P J. Alternative Methods for the MnO2 Oxidation of Codeine Methylether to Thebaine Utilizing Ionic Liquids [J]. Tetrahedron Lett.,2001,42:6831-6833
    [20]Reynolds J L, Erdner K R, Jones P B, Photoreduction of Benzophenones by Amines in Room-Temperature Ionic Liquids [J]. Org Lett.,2003,4(6):917-919
    [21]Howarth J, James P, Ryan R. Synth. Commun.,2001,31(19):2935-2938
    [22]Howarth J, James P, Dai J F. Immobilized Baker's Yeast Reduction of Ketones in an Ionic Liquid, [bmim]PF6, and Water Mix [J]. Tetrahedron Lett.,2001,42(42):7517-7519
    [23]Chauvin Y, Mussmann L, Oliver H. A novel class of versatile solvents for tow-phase catalysis: hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by Rhodium complexes in liquid 1,3-dialkylimidazulium salts [J]. Angew. Chem. Int. Ed.1995,34: 2698-2703
    [24]Suarez P A Z, Dullius J E L, Einloft S, de Souza R F, Dupont J. The Use of New Ionic Liquids in Two-Phase Catalytic Hydrogenation Reaction by Rhodium Complexes Polyhedron [J]. 1996,15:1217
    [25]Dyson P J, Ellis D J, Parker D G, Welton T. Arene Hydrogenation in a Room-Temperature Ionic Liquid Using a Ruthenium Cluster Catalyst [J]. Chem. Commun.,1999,25-26
    [26]Brown R A, Pollet P, McKoon E, Eckert C A, Liotta C L, Jessop P G. Asymmetric Hydrogenation and Catalyst Recycling Using Ionic Liquid and Supercritical Carbon Dioxide [J]. J. Am. Chem. Soc.,2001,123:1254-1255
    [27]Valkenberg M H, DeCastro C, Hlderich W F. Friedel-Crafts Acylation of Aromatics Catalysed by Supported Ionic Liquids [J]. Appl. Catal. A,2001,215:185-190
    [28]Wasserscheid P, Waffenschmidt H, Machnitzki P. Cationic Phosphine Ligands With Phenylguanidinium Modified Xanthene Moieties-a Successful Concept for Highly Regioselective, Biphasic Hydroformylation of Oct-1-ene in Hexafluorophosphate Ionic Liquids [J]. Chem. Commun.,2001,451-452
    [29]Brauer D J, Kottsieper K W, Liek C, Stelezer O, et al. Phosphines with 2-Imidazolium and Para-Phenyl-2-Imidazolium Moieties-Synthesis and Application in Two-Phase Catalysis [J]. J. Organomet Chem.,2001,630:177-184
    [30]Sellin M F, Webb P B, Cole H D. Continuous Flow Homogeneous Catalysis: Hydroformylation of Alkenes in Supercritical Fluid-Ionic Liquid Biphasic Mixtures [J]. Chem. Commun.,2001,781-782
    [31]Wasserscheid P, Waffenschmidt H. Ionic Liquids in Regioselective, Platinum Catalysed Hydroformylation [J]. J. Mol. Catal. A,2000,164:61-67
    [32]Knifton J F. Syn Gas Reactions. Part Ⅺ. The Ruthenium Melt-Catalyzed Oxonation of Internal Olefins [J]. J. Mol. Catal.,1987,43:65-77
    [33]Knifton J F. Syngas Reactions. Part XIII. The Ruthenium'Melt'-Catalyzed Oxonation of Terminal Olefins [J]. J. Mol. Catal.,1988,47:99-116
    [34]Carlin R T, Fuller J. Reductive Carbonylation of Bis(cyclopentadienyl) titanium Dichloride in a Room Temperature Chloroaluminate Molten Salt [J]. Inorg. Chem. Acta,1997,255:189-192
    [35]乔焜,邓友全.超强酸性室温离子液体反应介质中烷烃羰化研究[J].化学学报,2002,60(8):1520-1522
    [36]石峰,马宇春,周瀚成,邓友全.钯-离子液体/钛硅复合氧化物催化剂的合成及在胺羰化中的应用[J].高等学校化学学报,2002,23(9):1781-1784
    [37]Deng Y Q, Shi F, Peng J, Qiao K, Miao S. Ionic Liquid as a Green Catalytic Reaction Medium for Esterifications [J]. J. Mol Catal. A,2001,165(1-2):33-36
    [38]Cole A C, Jensen J L, Ntai I,. Novel Bronsted Scidic Ionic liquids and Their Use as Dual Solvent-Catalysts [J]. J. Am. Chem. Soc.,2002,124:5962-5963
    [39]李桂花,张锁江,李增喜,李铭岫,张香平.离子液体对甲基丙烯醛氧化酯化反应的影响[J],高等学校化学学报,2004,25(6):1136-1137
    [40]Boon J A, Levisky J A, Pflug J L, Wilkes J S. Friedel Crafts Reactions in Ambient-Temperature Molten-Salts [J]. J. Org. Chem.,1986,51:480-483
    [41]deCastro C, Sauvage E, Valkenberg H M, Hlderich W. Immobilised Ionic Liquids as Lewis Acid Catalysts for the Alkylation of Aromatic Compounds with Dodecene [J]. J. Catal.,2000, 196:86-94
    [42]Song C E, Shim W H, Roh E J, et al. Ionic Liquids as Powerful Media in Scandium Triflate Catalyzed Diels-Alder Reactions:Significant Rate Acceleration, Selectivity Improvement and Easy Recycling of Catalyst [J]. Chem. Commun.,2001,1122-1123
    [43]Earle M J, McCormac P B, Seddon K R. Regioselective Alkylation in Ionic Liquids [J]. Chem. Commun.,1998:2245-2246
    [44]Forsyth S A, McFarlan D R, Thomson R J, et al. Rapid, Clean and Mild O-acetylation of Slcohols and Carbohydrates in an Ionic Liquid [J]. Chem. Commun.,2002,714-715
    [45]Abbott A P, Capper G, Davies D L, et al. Diels-Alder Reactions in Zinc Chloride-Choline Chloride (2:1) Ionic Liquid:Relatively Inexpensive, Water Insensitive, Recyclable Melt [J]. Green Chem.,2002,4(1):24-26
    [46]Abbott A P, Capper G, Davies D L, et al, Preparation of Novel, Moisture-Stable, Lewis-Acidic Ionic Liquids Containing Quaternary Ammonium Salts With Functional Side Chains [J]. Chem Commun.,2001,2010-2011
    [47]Deshmukh R R, Rajagopal R, Srinivasan K V. Ultrasound Promoted C-C Bond Formation: Heck Reaction at Ambient Conditions In Room Temperature Ionic Liquids [J]. Chem. Commun.,2001,1544-1545
    [48]Dell'Anna M M, Gallo V, Mastrorilli P, et al. Metal Catalyzed Michael Additions in Ionic Liquids [J]. Chem. Commun.,2002,434-435
    [49]Wassercheid P, Eichmann M. Selective Dimerisation in Biphasic Mode Using buffered Chloroaluminate ionic Liquid Solvents. Design and Application of a Continuous Loop Reactor [J]. Catal. Today,2001,66:309-316
    [50]Laali K K, Gettwert V J, Fluorodediazoniation in Ionic Liquid Solvents:New Life for the Balz-Schiemann Reaction [J]. J. Fluor. Chem.,2001,107:31-34
    [51]Michiaki M, Kenji M, Kazuo K. Toxicity of ionic liquids and organic solvents to lactic acid-producing bacteria. Journal of Bioscience and Bioengineering,2004,5:344-347
    [52]彭家建,邓友全.离子液体系中催化环己酮肟重排制己内酰胺[J].石油化工,2001,30(2):91-92
    [53]Huddleston J G, Willauer H D, Swatloski R P, et al. Room Temperature Ionic Liquids as Novel Media for'Clean'Liquid/Liquid Extraction Media [J]. Chem. Commun.,1998,16: 1765-1766
    [54]Cull S G, Holbrey J D, Vargas-Mora V, et al. Room-Temperature Ionic Liquids as Replacements for Organic Solvents in Multiphase Bioprocess Operations [J]. Biotechnology and Bioengineering,2000,69(2):227-233
    [55]Robin D R, Visser A E, Swatloski R P., Proceedings of the Engineering Foundation Conference, Warrendale [J], Pennsylvania,1999,139-147
    [56]Dai S, Ju Y H, Barnes C E. Solvent Extraction of Strontium Nitrate by a Crown Ether Using Room-Temperature Ionic Liquids [J]. Chem. Soc., Dalton Trans.,1999,8:1201-1202
    [57]Blanchard L A, Hancu D, Beckman E J, et al. Green Processing Using Ionic Liquid and CO2 [J]. Nature,1999,399(6731):28-29
    [58]Zhang S J, Chen Y H, Ren R X, et al. Solubility of CO2 in Sulfonate Ionic Liquids at High Pressure[J]. J. Chem. Eng. Data,2005,50:230-233
    [59]Caja J, Dunstan T D J, Ryan D M et al. Proc. Electrochem. Soc.,99-41 (Molten slats XII), 150-160
    [60]Fuller J, Carlin R T, Osteryoung R A. The Room Temperature Ionic Liquid 1-Ethyl-3-Methylimidazolium Tetrafluoroborate:Electrochemical Couples and Physical Properties [J]. J. Electrochem. Soc.,1997,144(11):3881-3885
    [61]Hussey C L, King L A, Carpio R A. J. Electrochem. Soc., Solid-state and Technology.,1979, 126(6):1029
    [62]Zhao Y, VanderNoot T J. Electrodeposition of Aluminium From Nonaqueous Organic Electrolytic Systems and Room Temperature Molten Salts [J]. J. Electrochimica Acta,1997, 42(1):3-13
    [63]Ali M R, Nishikata A, Rsuru T. Electrodeposition of Aluminum-Chromium Alloys from AlCl3-BPC Melt and Its Corrosion and High Temperature Oxidation Behaviors [J]. J. Electrochimica Acta,1997,42(15):2347-2354
    [64]Ali M R, Nishikata A, Rsuru T. Electrodeposition of Co-Al Alloys of Different Composition From the AlCl3-BPC-CoCl2 Room Temperature Molten Salt [J]. J. Ecectrochimica Acta, 1997,42(12):1819-1828
    [65]Gery R S. J. Electrochem. Soc.,1989,136(3):635
    [66]Erbeldinger M, Mesiano A J, Russell A J. Enzymatic Catalysis of Formation of Z-Aspartame in Ionic Liquid-an Alternative to Enzymatic Catalysis in Organic Solvents [J]. Biotechnol. Prog.,2000,16(6):1129-1131
    [67]Litjens M J J, Straathof A J J, Jogejan J A. Synthesis of Primary Amides by Lipase-Catalyzed Amidation of Carboxylic Acids with Ammonium Salts in an Organic Solvent [J]. Chem. Commun.,1999:1255-1256
    [68]Lou R M, Van R F, Seddon K R, et al. Lipase-Catalyzed Reactions in Ionic Liquids [J]. Org. Lett.2000,2(26):4189-4191
    [69]Schofer S H, Kaftzik N, Wasserscheid P, et al. Enzyme Catalysis in Ionic Liquids:Lipase Catalyzed Kinetic Resolution of 1-Phenylethanol with Improved Enantioselectivity [J]. Chem. Commun.,2001:425-426
    [70]Virtanen P, Karhu H, Toth G, Kordas K, Mikkola J P. Towards one-pot synthesis of menthols from citral:Modifying Supported Ionic Liquids Catalysts (SILCAs) with Lewis and Bronsted acids [J]. Journal of Catalysis,2009,2:209-219
    [71]Eleanor D B, Rebecca D M, Ioanna N and James H D. CO2 Capture by a Task-Specific Ionic Liquid [J]. J. Am. Chem. Soc.,2002,124(6):926-927
    [72]Wei G T, Yang Z, Chen C J. Room Temperature Ionic Liquid as a Novel Medium for Liquid/Liquid Extraction of Metal Ions [J]. Analytica Chimica Acta,2003,488:183-192
    [73]Valkenberg M H, DeCastro C, Holderich W F. Immobilisation of Ionic Liquids on Solid Supports [J]. Green Chemistry,2002,4:88-93
    [74]Virtanen P, Hannu K, Krisztian K, Mikkola J P. The effect of ionic liquid in supported ionic liquid catalysts (SILCA) in the hydrogenation of a,(3-unsaturated aldehydes [J]. Chemical Engineering Science,2007,14:3660-3671
    [75]DeCastro C, Sauvage E, Valkenberg M H, Holderich W F. Immobilised Ionic Liquids as Lewis Acid Catalysts for the Alkylation of Aromatic Compounds with Dodecene [J]. J. Catal., 2000,196:86-94
    [76]Noda A, Watanabe M. Highly Conductive Polymer Electrolytes Prepared by in situ Polymerization of Vinyl Monomers in Room Temperature Molten Salts [J]. Electrochim. Acta, 2000,45:1265-1270
    [77]Hirao M, Ito K, Ohno H, Preparation and Polymerization of New Organic Molten Salts; N-Alkylimidazolium Salt Derivatives [J]. Electrochim. Acta,2000,45:1291-1294
    [78]Watanabe M, Yamada S I, Ogata N. Ionic Conductivity of Polymer Electrolytes Containing Room Temperature Molten Salts Based on Pyridinium Halide and Aluminum Chloride [J]. Electrochim Acta,1995,40(13):2285-2288
    [79]Ohno H. Molten Salt Type Polymer Electrolytes [J]. Electrochim Acta,2001,46:1407-1411
    [80]Yoshizawa M, Ohno H. Synthesis of Molten Salt-Type Polymer Brush and Effect of Brush Structure on the Ionic Conductivity [J]. Electrochim acta,2001,46:1723-1728
    [81]Nakai Y, Ito K, Ohno H. Ion Conduction in Molten Salts Prepared by Terminal-Charged PEO Derivatives [J]. Solid State Ionics,1998,113-115:199-204
    [82]Yoshizawa M, Ito A K, Ohno H. Evidence of Interaction Between Anion and Polyether in the Bulk [J]. Electrochim Acta,2000,45:1617-1621
    [83]Doyle M, Choi S K, Proulx G. High-Temperature Proton Conducting Membranes Based on Perfluorinated Ionomer Membrane-Ionic Liquid Composites [J]. J. Electrochem Soc.,2000, 147:34-37
    [84]Fuller J, Breda A C, Carlin R T. Ionic liquid-Polymer Gel Electrolytes From Hydrophilic and Hydrophobic Ionic Liquids [J]. J. Electrochem Chem.,1998,4:29-34
    [85]Sun J, MacFarlane D R, Forsyth M. Lithium Polyelectrolyte-Ionic Liquid Systems [J]. Solid State Ionics,2002,147:333-339
    [86]Nishida T, Tashiro Y, Yamamoto M. Physical and Electrochemical Properties of 1-Alkyl-3-Methy-limidazolium tetrafluoroborate for electrolyte [J]. Journal of Fluorine Chemistry,2003,120:135-141
    [87]Huddleston J G, Visser A E, Rogers R D. Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation [J]. Green Chemistry,2001,3:156-164
    [88]Suarez P A Z, Einloft S, Dullius J E L, de Souza R F, Dupont. J. Synthesis and Physical-Chemical Properties of Ionic Liquids Based on 1-n-Butyl-3-Methylimidazolium Cation [J]. J. Chem. Phys.,1998,95:1626
    [89]McEwen A B, Ngo H L, LeCompte K.Electrochemical Properties of Imidazolium Salt Electrolytes for Electrochemical Capacitor Applications [J]. J. Electrochem. Soc.,1999,146: 1687-1695
    [90]Ohno H, Yoshizawa M. Ion conductive characteristics of ionic liquids prepared by neutralization of alkylimidazoles [J]. Solid State Ionics,2002,154-155:303-309
    [91]Hardacre C, Holbrey J D, Katdare S P, Seddon K R. Alternating Copolymerisation of Styrene and Carbon Monoxide in Ionic Liquids [J]. Green Chemistry,2002,4:143-146
    [92]Liu J, Jiang G B. Use of Ionic Liquids for Liquid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons [J]. Analytical Chemistry,75(21):5870-5876
    [93]Branco L C, Rosa J N. Preparation and Characterization of New Room Temperature Ionic Liquids [J]. Chemistry-a European Journal,8(16):3671-3677
    [94]Lange's Handbook of Chemistry (the 15th edition) [M], ED. J.A. Dean. McGraw-Hill, New York,1999, pp 5.87 pp 5.134
    [95]Holbrey J D, Seddon K R. The Phase Behavior of 1-Alkyl-3-Methylimidazolium Tetrafluoroborates; Ionic Liquids and Ionic Liquid Crystals [J]. J. Chem. Soc. Dalton Trans., 1999:2133-2139
    [96]Fang S H, Yang L, Wei C, Peng C X, Tachibana K, Kamijima K. Low-viscosity and Low-melting point asymmetric trialkylsulfonium based ionic liquids as potential electrolytes. Journal of Moecular Structure,2007,11,2696-2702
    [97]Marsh K N, Boxall J A, lichtenthaler R. Room temperature ionic and their mixtures-a review [J].2004,1:93-98
    [98]Hagiwara R, Ito Y. Room Temperature Ionic Liquids of Alkylimidazoliumcations and Fluoroanions [J]. J. Fluorine Chem.,2000,105:221-227
    [99]Noda A, Hayamizu K. Pulsed-Gradient Spin-Echo H-1 and F-19 NMR Ionic Diffusion Coefficient, Viscosity, and Ionic Conductivity of Non-Chloroaluminate Room-Temperature Ionic Liquids [J]. Journal of Physical Chemistry B.,2001,105(20):4603-4610
    [100]Law G, Watson P R. Surface Tension Measurements of N-Alkylimidazolium Ionic Liquids [J]. Langmuir,2001,17:6138-6141
    [101]Charles M G. New developments in catalysis using ionic liquids. Applied Catalysis A: General,2001,1-2:101-107
    [102]Wu B Q, Reddy R G, Rogers R D. Proceedings of Solar Forum, Solar Energy:The Power to Choose [M]. April 21-25,2001, Washington, DC
    [103]Helene O, Lionel M. Ionic liquids:perspectives for organic and catalytic reactions [J]. Journal of Molecular Catalysis A:Chemical Volumes.2002:182-183,419-437
    [104]Gordon C M, Holbrey J D, Kennedy A R, Seddon K R. Ionic Liquid Crystals: Hexafluorophosphate Salts. J. Mater. Chem.,1998,8:2627-2636
    [105]Dzyuba S V, Bartsch R A. Influence of Structural Variations in 1-Alkyl(aralkyl)-3-Methylimidazolium Hexafluorophosphates and Bis(trifluoromethylsulfonyl)imides on Physical Properties of the Ionic Liquids [J]. Chem. Phys. Chem.,2002,3:161-166
    [106]Bonhote P, Dias A P, Papageorgiou N, Kalyanasundaram K, Gratzel M. Hydrophobic, Highly Conductive Ambient-temperature Molten Salts [J]. Inorg. Chem.,1996,35:1168-1178
    [107]Ngo H L, LeCompte K, Hargens L, McEwen A B. Thermal Properties of Imidazolium Ionic Liquids [J]. Thermochim. Acta.,2000,357:97-102
    [108]Ann E V, Reichert W M, Swatloski R P, Willauer H D, Huddleston J G, Rogers R D. Characterization of Hydrophilic and Hydrophobic Ionic Liquids:Alternatives to Volatile Organic Compounds for Liquid-Liquid Separations. Ionic Liquids Industrial Applications to Green Chemistry. ACS Symposium Series,2002,818:289-308
    [109]Mahesh L P, Laxman R, Shinobu T, Kazuhiro T, Kiyotaka O, Hiroaki S. Synthesis of novel spiro imidazolium salts as chiral ionic liquids. Tetrahedron,2007,51:12702-12711
    [110]Sheldon R. Catalytic Reactions in Ionic Liqids [J]. Chem. Commun.,2001,2399-2407
    [111]Tooru A, Nobuyuki A, Akio K, Kazuhiko S. Photochromism of 3-butyl-l-methyl-2-phenylazo-imidazolium in room temperature ionic liquids. Journal of Photochemistry and Photobiology A:Chemistry,2010,1,12-18
    [112]Aki SNVK, Brennecke J F, Samanta A. How Polar are Ionic Liquids? [J]. Chem. Commun., 2001,413-414
    [113]Fletcher K A, Storey I A, Hendricks A E, Pandey S. Behavior of the Solvatochromic Probes Reichardt's Dye, Pyrene, Dansylamide, Nile Red and 1-Pyrenecarbaldehyde within the Room-Temperature Ionic Liquid [bmim]PF6[J]. Green Chem.,2001,3:210-215
    [114]Muldoon M J, Gordon C M, Dunkin I R. Investigation of Solvent-Solute Interactions in Room Temperature Ionic Liquids Using Solvatochromic Dyes [J]. J. Chem. Soc., Perkin Trans., 2001,2:433-435
    [115]Carmichael A J, Seddon K R. Polarity Study of Some 1-Alkyl-3-Methylimidazolium Ambient-Temperature Ionic Liquids with the Solvatochromic Dye, Nile Red [J]. J. Phys. Org. Chem.,2000,13:591-595
    [116]Dzyuba S V, Bartsch R A. Expanding the Polarity Range of Ionic Liquids [J]. Tetrahedron Letters.,2002,43:4657-4659
    [117]Dullius J E L, Suarez P A Z, Einloft S, de Souza R F, Dupont J, Fischer J, De Cian A. Selective Catalytic Hydrodimerization of 1.3-Butadiene by Palladium Compounds Dissolved in Ionic Liquids [J]. Organometallics,1998,17:815-819
    [118]Zhang S J, Li X, Chen H. Determination of Physical Properties for 1-Ethyl-3-Methyl Imidalozium Tetrafluoroborate and Water Binary System [J]. J. Chem. Eng. Data,2004,49: 760-764
    [119]Heintz A, Lehmann J K, Wertz C J. Thermodynamic Properties of Mixtures Containing Ionic Liquids.3. Liquid-Liquid Equilibria of Binary Mixtures of 1-Ethyl-3-Methylimidazolium Bis(trifluoromethylsulfonyl)imide with Propan-1-ol, Butan-1-ol, and Pentan-1-ol [J]. Chem. Eng. Data,2003,48:472-474
    [120]Heintz A, Kulikov D V,Verevkin S P. Thermodynamic Properties of Mixtures Containing Ionic Liquids.1. Activity Coefficients at Infinite Dilution of Alkanes, Alkenes, And Alkylbenzenes in 4-Methyl-n-Butylpyridiium Tetrafluoroborate Using Gas-Liquid Chromatography [J]. Chem. Eng. Data,2001,46:1526-1529
    [121]Heint Z, Kulikov D V, Verevkin S P. Thermodynamic Properties of Mixtures Containing Ionic Liquids.2. Activity Coefficients at Infinite Dilution of Hydrocarbons and Polar Solutes in 1-Methyl-3-ethylimidazolium Bis(trifluoromethyl-sulfonyl)amide and in 1,2-Dimethyl-3-Ethylimidazolium Bis(trifluoromethyl-sulfonyl)amide Using Gas-Liquid Chromatography [J]. J. Chem. Eng. Data,2002,47:894-899
    [122]Graenacher C. Cellulose Solution [M]. U. S. Paten 1943,176,1934.
    [123]Swatloski R P, Spear S K, Holbery J D, Rogers R D. Dissolution of Cellulose with Ionic Liquid [J]. J. Am. Chem. Soc.,2002,124:4974-4975
    [124]Seddon K R, Stark A, Torres M J. Influence of Chloride, Water, and Organicsolvents on the Physical Properties of Ionic Liquids [J]. Pure Appl. Chem.,2000,72:2275-2287
    [125]Elias A M, Wilkes J S. Densities, Molar Volumes and Thermalexpansivities of 1-Methyl-3-Imidazolium Chloride AlCl3 and Alkaline Chlorides or Sodium Halides Molten Salts [J]. J. Chem. Eng. Data.1994,29:79
    [126]Perry R L, Jones K M, Scott W D, Liao Q, Hussey C L. J. Chem. Eng. Data,1995,40:615
    [127]Liao Q, Charles L H. Densities, Viscosities, and Conductivities of Mixtures of Benzene with the Lewis Acidic Aluminum Chloride+l-Methyl-3-ethylimidazolium Chloride Molten Salt [J]. J.Chem. Eng. Data,1996,41:1126-1130
    [128]Gasteiger J, Engle T著.粱逸曾,徐峻,姚建华,等译.化学信息学教程[M],北京,化学工业出版社,2005
    [129]王连生,韩朔睽等.分子结构、性质与活性[M],化学工业出版社,1997
    [130]刘焕香.基于支持向量机方法的QSAR/QSPR在化学、生物及环境科学中的应用研究[D].
    兰州:兰州大学,2005.
    [131]Katritzky A R, Jain R, Lomaka A, Petrukhin R, Karelson M, Visser A E, Rogers R D Correlation of the Melting Points of Potential Ionic Liquds (Imidazolium Bromides and Benzimidazolium Bromides) Using the CODESSA Program [J]. J. Chem. Inf. Comput. Sci., 2002,42:225-231
    [132]Eike D M, Brennecke J F, Maginn E J. Predicting Melting Points of Quaternary Ammonium Ionic Liquids [J]. Green Chemistry,2003,5:323-328
    [133]Sun N, He X Z, Dong K,. Fluid Phase Equilib.,2006,246:137-142
    [134]Trohalaki S, Pachter R, Drake G W, Hawkins T. Quantitative Structure-Property Relationships for Melting Points and Densities of Ionic Lquids [J]. Energy& Fuels,2005,19:279
    [135]Carrera V S M, Branco C, Afonso A M, Exploration of quantitative structure-property relationships (QSPR) for the design of new guanidinium ionic liquids.Tetrahedron,2008,64: 2216-2224
    [136]Gardas R L, Coutinho J A P. Applying a QSPR correlation to the prediction of surface tensions of ionic liquids. Fluid Phase Equilib.,2008,265:57-65
    [137]Diedenhofen M, Eckert F, K lamt A. J. Chem. Eng. Data,2003,48 (3):475-479.
    [138]Eike D M, Brennecke J F, Maginn E. J. Predicting Infinite-Dilution Activity Coefficients of Organic Solutes in Ionic Liquids. Ind. Eng. Chem. Res.,2004,43(4):1039-1048.
    [139]朱吉钦,于燕梅,陈健.有机物在离子液体中无限稀释活度因子及液液界面张力的定量机构-性质关系.化工学报,2006,57(8):1835-1840
    [140]Tamm K, Burk P. QSPR Analysis for Infinite Dilution Activity Coefficients of Organic Compounds J. Mol. Model,2006,12:417-421
    [141]Katritzky A R, Kuanar M, Slavov S H. Quantitative structure-property relationship studies on Ostwald solubility and partition coefficients of organic solutes in ionic liquids. J. Chem. Eng. Data,2008,53(5):1085-1092
    [142]Couling D J, Bernot R J, Docherty K M, et al. Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure-property relationship modeling, Green Chem.,2006,8:82-90
    [143]Luis P, Ortiz I, Aldaco R, et al. A novel group contribution method in the development of a QSAR for predicting the toxicity (Vibrio fischeri EC50) of ionic liquids. Ecotoxicol. Environ. Saf.,2007,67:423-429
    [144]Matsuda H, Yamamoto H, Kurihara K, et al. Computer-aided reverse design for ionic liquids by QSPR using descriptors of group contribution type for ionic conductivities.Fluid Phase Equilib.,2007,261:434-443
    [145]H. Yamamoto, K. Tochigi, Estimation of Ionic Conductivity and Viscosity of Ionic Liquids Using a QSPR Model. J. Phys. Chem. C 111 (2007) 15989-15994
    [146]R. Binia, M. Malvaldia, W. R. Pitnerb and C. Chiappea, J. Phys. Org. Chem.2008,21: 622-629
    [147]Merck. The Ionic Liquid Database. http://pb.merck.de/servlet/PB/menu/1061470/
    [148]Elsevier MDL. The Beilstein Database. MDL Information System GmbH. http://www.Beilstein.com.
    [149]Sun N, Zhang S J, Zhang X P, Zhang J M. The 18th IUPAC International Conference on Chemical Thermodynamics, Physical Properties of Ionic Liquids:Database and Evaluation 458 (2004); Ionic Liquids Database, World Wide Web, http://159.226.63.140.
    [150]Tohoku molten salt database,http://ras.material.tohoku.ac.jp
    [151]Ionic Liquids Database-(ILThermo), http://ilthermo.boulder.nist.gov/ILThermo /mainmenu.uix
    [152]Blum D J W, Speece R E. Determining Chemical Toxicity to Aquatic Species:the Use of QSARs and Surogate Organisms [J]. Environ. Sci. Technol,1990,24:284-293.
    [153]王连生,支正良.分子连接性与分子结构-活性[M].北京,中国环境科学出版社,1992
    [154]王连生,韩朔睽.有机物定量结构活性相关[M].北京,中国环境科学出版社,1993
    [155]俞庆森,朱龙观.分子设计导论[M].北京,高等教育出版社,2000
    [156]Kamlet M J, Doherty R M, Abboud J-L M. Abraham M H, Taft R W. Solubility:a New Look [J]. Chemtech,1986,16:566-576
    [157]Kamlet M J, Doherty Abraham M H, Marcus Y., Taft R. W. Linear Solvation Energy Relationship.46. An Improved Equation for Correlation and Prediction of Octanol/Water Partition Coefficients of Organic Nonelectrolytes (including Strong Hydrogen Bond Donor Solutes) [J]. J. Phys. Chem.,1988,92 (18):5244-5255
    [158]Gaussian 03, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M.W. Gill, B. Johnson,W. Chen,M.W.Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford CT,2004
    [159]A. R. Katritzky, V. S. Lobanov, M. Karelson, CODESSA Reference Manual. Version 2.0, University of Florida,1996
    [160]a) D.T. Stanton, P.C. Jurs, Anal. Chem.,1990,62:2323-2329; b) D.T. Stanton, L.M. Egolf, P.C. Jurs, M.G. Hicks, J. Chem. Inf. Comput. Sci.,1992,32:306-316
    [161]R. Franke, Theoretical Drug Design Methods. Elsevier, Amsterdam,1984.
    [162]a) D.A. McQuarrie, Statistical Thermodynamics, Harper& Row Publishers, New York, 1973; b) A.I. Akhiezer, S.V. Peltminskii, Methods of Statistical Physics, Pergamon Press, Oxford,1981.
    [163]P. W. Atkins, Quanta, Oxford University Press, Oxford,1991.
    [164]Handbook of Chemistry and Physics, CRC Press, Cleveland OH,1974, p. F-112
    [165]S.C. Basak, D. K. Harriss, V. R. Magnuson, J. Pharm. Sci.73 (1984) 429-437
    [166]a) M. Randi, J. Am. Chem. Soc.1975,97:6609-6615; b)L. B. Kier, L. H. Hall, Molecular Connectivity in Structure-Activity Analysis, J. Wiley& Sons, New York,1986
    [167]K.-H. Cho, Y. K. Kang, K. T. No, and H. A. Scheraga, A Fast Method for Calculating Geometry-Dependent Net Atomic Charges. J. Phys. Chem. B 2001,105:3624-3634
    [168]R. Rajappan, P. D. Shingade, R. Natarajan, V. K. Jayaraman, Quantitative Structure-Property Relationship (QSPR) prediction of liquid viscosities of pure organic compounds employing random forest regression. Ind. Eng. Chem. Res.,2009,48: 9708-9712
    [169]A. R. Katritzky, K. Chen, Y. Wang, M. Karelson, B. Lucic, N. Trinajstic, T. Suzuki and G. Schuurmann, Prediction of Liquid Viscosity for Organic Compounds by a Quantitative Structure-Property Relationship. J. Phys. Org. Chem.,2000,13:80-86
    [170]G. W. Kauffman and P. C. Jurs, Prediction of surface tension,viscosity and thermal conductivity for common organic solvents using quantitative structure-property relationships. J. Chem. Inf. Comput. Sci.,2001,41:408-418
    [171]M. Cocchi, P. D. G. Benedetti, R. Seeber, L. Tassi, and Al. Ulrici, J. Chem. Inf. Comput. Sci.,1999,39:1190-1203
    [172]T. Suzuki, K. Ohtaguchi and K. Koide, Computer-assisted approach to develop a new prediction method of liquid viscosity of organic compounds. Computers chem. Engng., 1996,20:161-173
    [173]T. Suzuki, R. Ebert, and G. Schuurmann, Estimation of Vapour Pressures for Hydrocarbons and Halogenated Hydrocarbons from Chemical Structure by a Neural Network. J. Chem. Inf. Comput. Sci.,1997,37:1122-1128
    [174]T. Suzuki, R. Ebert, and G. Schuurmann, J. Chem. Inf. Comput. Sci.,2001,41:776-790

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700