改性介孔二氧化钛光催化性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化技术在解决能源危机和处理环境污染方面得到了广泛研究。Ti02由于其无毒无害,化学稳定性高,不会发生光腐蚀以及价格便宜储量丰富等优点而成为最有潜力的光催化剂。为了提高Ti02的光催化活性,科学家们从制备纳米二氧化钛催化剂并对其进行改性等各个方面进行研究。本论文主要根据半导体光催化的理论,利用改性的溶胶-凝胶法合成掺杂的介孔Ti02材料,研究其光催化活性。研究内容主要包括:
     (1)通过改变Ti源前驱体,合成不同介孔Ti02,并且考察这些材料对亚甲基蓝溶液和甲醛溶液的光降解活性。实验结果发现使用不同的Ti前驱体合成的材料在对亚甲基蓝溶液和甲醛溶液的光降解活性是不一样的。在相同的焙烧温度下,对亚甲基蓝光降解效果最好的是使用TiCl4钛源前驱体,盐酸作为pH调节剂的介孔二氧化钛;而对甲醛的光降解而言,效果最好的是使用TiCl4和钛酸四丁酯共钛源前驱体。焙烧温度对亚甲基蓝和甲醛的光降解影响也不一样,对于亚甲基蓝而言,最佳焙烧温度为450℃,对甲醛而言,最佳焙烧温度为350℃。主要是由于两个反应中影响光降解速率的因素不一样。对于亚甲基蓝的降解而言,光降解速率是由晶化程度和比表面积共同作用的结果;而对于甲醛的降解而言,比表面积的作用要更大些。不同离子掺杂对材料的光催化活性的影响是不同的,有些能提高活性,如Ag+,Bi3+;有些反而使活性降低,如Ca2+。
     (2)利用改性溶胶-凝胶法(AcHE法)合成含苯硅氧烷介孔Ti02材料,考察掺杂浓度对降解亚甲基蓝的光催化活性的影响。光催化结果表明,掺杂材料对降解亚甲基蓝的活性相对于纯Ti02提高了很多,最佳掺杂浓度为1%。利用XRD,BET, TG, TEM,固体NMR, EPR等方法对材料进行表征探索催化活性改变的原因。表征结果分析得出制备的样品均为锐钛矿,掺入含苯硅氧烷后材料的晶化被抑制,固体NMR结果表明在350℃焙烧后,碳硅键断裂导致Ti02孔道中存在着芳香性碳物种。活性的提高主要是由于芳香性碳物种的存在延长电子-空穴寿命。EPR测试结果表明掺杂后的材料能产生更高的羟基自由基,进而可以参与亚甲基蓝的氧化反应,这也是光生电子-空穴的复合速率减慢的结果,与荧光测试结果一致。
     (3)利用改性的溶胶-凝胶法(AcHE法)合成了Cu掺杂介孔TiO2,并考察它在无氧条件下分解甲醛溶液产氢的光催化活性。Cu的掺入大大地提高了催化剂的活性,同时掺杂浓度和焙烧温度对催化剂产氢能力都有影响,最佳的掺杂浓度为1%,最佳的焙烧温度为350℃。与此同时,二氧化碳也是一种生成物。比较反应过程中产生氢气和二氧化碳的物质的量之比发现,在低温焙烧下,低掺杂量(Cu%≤2%),产生的氢气和二氧化碳的物质的量之比为2:1;当增大掺杂浓度(Cu%≥5%)时,产生的氢气和二氧化碳的物质的量变为1:1。焙烧温度同样会影响到氢气和二氧化碳的比例。在低温焙烧时(≤450℃),产生的氢气和二氧化碳的物质的量之比为2:1,高焙烧温度(≥550℃)产生的氢气和二氧化碳的物质的量变为1:1。减少甲醛量到330μmol,延长反应时间,产生了500μmol的氢气,侧面证明了水参加了反应。XPS的结果表明低温焙烧时,低掺杂浓度(Cu%≤2%),Cu完全以一价存在;当增大掺杂浓度一价铜开始转变为二价铜。高温焙烧也使得一价铜转变为二价铜。一价铜的存在能使水参与分解反应,而二价铜却不能。DFT理论计算证明高浓度Cu掺杂或是高温焙烧使Cu生成一个很大的能垒,材料的带隙能过小,不能分解水。
Photocatalysis has been widely studied because it has the ability to solve the energy crisis and environmental pollution. TiO2 is one of the most promising photocatalysts due to its non-toxicity, chemical stability and rich abundance. Many stategies have been developed to improve the photocatalytic activity of TiO2. In this thesis, mesoporous TiO2 was synthesized using a modified sol-gel process. Their photocatalytic activity in photodegradation of dyes and formaldelyde under UV light was investigated. In addition, the doping of aromatic carbon or Cu ions have been proved to be an efficient way to improve their photocatalytic performance. This dissertation consists of the following contents.
     (1) Mesoporous TiO2 was synthesized with different Ti precursor. The photoactivity on methylene blue degradation and formaldehyde decomposition over these samples were investigated. For the two typical reactions, it was found that the photocatalytic procedures were not the same. On photodegradation of methylene blue, the photocatalyst using TiCl4 as Ti precursor and hydrochloric acid as pH regulators showed the best activity. However, formaldehyde decomposition proceeded much faster over samples using TiCl4 and tetra butyl titanate ester as co-titanium precursor. The effect of calcinations temperature on photocatalytic efficiency of methylene blue degradation and formaldehyde decomposition was also different. The best temperature for TiO2 was 450℃in the case of methylene blue degradation but 350℃for formaldehyde. It is concluded that the main factor influences the decomposition rate was different. As for methylene blue, it was the cooperation of crystallization and specific surface area. As for formaldehyde, specific surface area played the main role. Additionally, the influence of different ion doping was different. Some metal ions, such as Ag+, Bi3+may enhance the photocatalytic activity, while others, such as Ga2+may decrease the activity.
     (2) Benzene siloxane doped mesoporous TiO2 (denote as BS-TiO2) was synthesized using a modified sol-gel process (AcHE method).The influence of doping concentration was investigated. Photocatalytic tests on the photodegradation of methylene blue showed that the activity of BS-TiO2 was greatly improved compared to pure TiO2. The best doping concentration was 1%.The prepared samples were characterized with XRD, TEM, BET, TG, solid NMR and EPR. The results showed that all catalysts were anatase. The crystallization was inhibited due to the incorporation of benzene siloxane, which made better sustain mesoporous structure and specific surface area. Solid NMR results show that the bond of carbon and silicon was broken when calcined at 350℃and aromatic carbon speices exist in the pore of TiO2 which is consistent with the result of TG. The reasons of the improved activity were due to longer electronic-hole life because of the existing of aromatic carbon speices. EPR proved that more hydroxyl radicals were produced for BS-TiO2 as the result of slowed recombination rate of photoinduced electron and hole. The PL also showed that the recombination of photoinduced electron and hole was inhibited after doping.
     (3) Cu doped mesoporous TiO2 was synthesized using AcHE method. Its photoactivity of hydrogen generation from formaldehyde solution under anaerobic conditions was investigated. The results showed that the activity of mesoporous TiO2 was greatly improved with the best doping concentration of 1%and the best calcination temperature of 350℃. Meanwhile, the carbon dioxide was also evolved as the by-product. It was found that the molar ratio of the amount of hydrogen and carbon dioxide was 2:1 with low doping concentration Cu%≤2%) and changed to 1:1 with increased doping concentration (Cu%≥5%). In addition, elevating calcination temperature led to the similar trend. When the amount of formaldehyde was reduced to 330μmol,500μmol hydrogen were produced, which proved that water must participat in the photocatalytic reaction. the XPS results showed that Cu(I) was extensively exsited with low doping concentration Cu%≤2%) and began to convert into Cu(Ⅱ) with increasing the doping concentration (Cu%≥5%). In addition, high calcination temperature also led to the formation of Cu (Ⅱ). We have shown that Cu(Ⅰ) favors the H abstraction from water but Cu (Ⅱ) doesn't. DFT theoretical calculations proved that high doping concentration or high calcinations temperature make the band gap of catalyst too small to decompose water.
引文
1. Chen, B. L.; Ockwig, N. W.; Millward, A. R.; Contreras, D. S.; Yaghi, O. M., High H-2 adsorption in a microporous metal-organic framework with open metal sites. Angewandte Chemie-International Edition 2005,44, (30),4745-4749.
    2. Dinca, M.; Dailly, A.; Liu, Y.; Brown, C. M.; Neumann, D. A.; Long, J. R., Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. Journal of the American Chemical Society 2006,128, 16876-16883.
    3. Dinca, M.; Long, J. R., Strong H-2 binding and selective gas adsorption within the microporous coordination solid Mg-3(02C-CioH6-C02)(3). Journal of the American Chemical Society 2005,127, (26),9376-9377.
    4. Kaye, S. S.; Long, J. R., Hydrogen storage in the dehydrated Prussian blue analogues M-3[Co(CN)(6)](2) (M= Mn, Fe, Co, Ni, Cu, Zn). Journal of the American Chemical Society 2005,127, (18),6506-6507.
    5. Rowsell, J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M., Hydrogen sorption in functionalized metal-organic frameworks. Journal of the American Chemical Society 2004,126, (18),5666-5667.
    6. Rowsell, J. L. C.; Yaghi, O. M., Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. Journal of the American Chemical Society 2006,128, (4),1304-1315.
    7. Vajo, J. J.; Skeith, S. L.; Mertens, F., Reversible storage of hydrogen in destabilized LiBH4. Journal of Physical Chemistry B 2005,109, (9),3719-3722.
    8. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972,238, (5358),37-+.
    9. Du, P. W.; Schneider, J.; Jarosz, P.; Eisenberg, R., Photocatalytic generation of hydrogen from water using a platinum(Ⅱ) terpyridyl acetylide chromophore. Journal of the American Chemical Society 2006,128, (24),7726-7727.
    10. Macyk, W.; Kisch, H.. Photosensitization of crystalline and amorphous titanium dioxide by platinum(IV) chloride surface complexes. Chemistry-a European Journal 2001,7, (9),1862-1867.
    11. Frank, S. N.; Bard, A. J., Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous-Solutions at Semiconductor Powders. Journal of Physical Chemistry 1977,81, (15),1484-1488.
    12. Schrauzer, G. N.; Guth, T. D., Photolysis of Water and Photoreduction of Nitrogen on Titanium-Dioxide. Journal of the American Chemical Society 1977,99, (22),7189-7193.
    13. Kraeutler, B.; Bard, A. J., Heterogeneous Photocatalytic Preparation of Supported Catalysts-Photodeposition of Platinum on TiO2 Powder and Other Substrates. Journal of the American Chemical Society 1978,100, (13),4317-4318.
    14. Ernst, B.; Libs, S.; Chaumette, P.; Kiennemann, A., Preparation and characterization of Fischer-Tropsch active Co/SiO2 catalysts. Applied Catalysis a-General 1999,186, (1-2),145-168.
    15. Deng, Y.; Qi, D.; Deng, C; Zhang, X.; Zhao, D., Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. Journal of the American Chemical Society 2008,130, (1),28-+.
    16. Martinez, A.; Lopez, C.; Marquez, F.; Diaz, I., Fischer-Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts:the influence of metal loading, cobalt precursor, and promoters. Journal of Catalysis 2003,220, (2),486-499.
    17. Kochkar, H.; Figueras, F., Synthesis of hydrophobic TiO2-SiO2 mixed oxides for the epoxidation of cyclohexene. Journal of Catalysis 1997,171, (2), 420-430.
    18. Cheng, C. F.; Park, D. H.; Klinowski, J., Optimal parameters for the synthesis of the mesoporous molecular sieve [Si]-MCM-41. Journal of the Chemical Society-Faraday Transactions 1997,93, (1),193-197.
    19. Carp, O.; Huisman, C. L.; Reller, A., Photoinduced reactivity of titanium dioxide. Progress in Solid'State Chemistry 2004,32, (1-2),33-177.
    20. Boschloo, G. K.; Goossens, A.; Schoonman, J., Investigation of the potential distribution in porous nanocrystalline TiO2 electrodes by electrolyte electroreflection. Journal of Electroanalytical Chemistry 1997,428, (1-2),25-32.
    21.Diebold, U., The surface science of titanium dioxide. Surface Science Reports 2003,48,53-229.
    22. Ding, Z.; Lu, G. Q.; Greenfield, P. F., Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. Journal of Physical Chemistry B 2000,104, (19),4815-4820.
    23. Liu, G.; Wang, X. W.; Chen, Z. G; Cheng, H. M.; Lu, G. Q., The role of crystal phase in determining photocatalytic activity of nitrogen doped TiO2. Journal of Colloid and Interface Science 2009,329, (2),331-338.
    24. Loddo,V.; MarcI,G.; Palmisano, L.; Sclafani, A., Preparation and characterization of Al2O3 supported TiO2 catalysts employed for 4-nitrophenol photodegradation in aqueous medium. Materials Chemistry and Physics 1998,53, (3),217-224.
    25. Sclafani, A.; Herrmann, J. M., Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. Journal of Physical Chemistry 1996,100, (32),13655-13661.
    26. Li, S. C.; Chu, L. N.; Gong, X. Q.; Diebold, U., Hydrogen Bonding Controls the Dynamics of Catechol Adsorbed on a TiO2(110) Surface. Science 328, (5980),882-884.
    27. Li, S. C.; Wang, J. G.; Jacobson, P.; Gong, X. Q.; Selloni, A.; Diebold, U., Correlation between Bonding Geometry and Band Gap States at Organic-Inorganic Interfaces:Catechol on Rutile TiO2(110). Journal of the American Chemical Society 2009,131,(3),980-984.
    28. Luttrell, T.; Li, W. K.; Gong, X. Q.; Batzill, M., New Directions for Atomic Steps:Step Alignment by Grazing Incident Ion Beams on TiO2(110). Physical Review Letters 2009,102, (16).
    29.Yang, H. G; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q., Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008,453, (7195),638-U4.
    30. Tian, G. H.; Fu, H. G.; Jing, L.Q.; Xin, B. F.; Pan, K., Preparation and characterization of stable biphase TiO2 photocatalyst with high crystallinity, large surface area, and enhanced photoactivity. Journal of Physical Chemistry C 2008,112, (8),3083-3089.
    31.Chai, S. Y.; Kim, Y. J.; Jung, M. H.; Chakraborty, A. K.; Jung, D.; Lee, W. I., Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst. Journal of Catalysis 2009,262, (1),144-149.
    32.Kim, Y J.; Gao, B.; Han, S. Y.; Jung, M. H.; Chakraborty, A. K.; Ko, T.; Lee, C; Lee, W. I., Heterojunction of FeTiO3 Nanodisc and TiO2 Nanoparticle for a Novel Visible Light Photocatalyst. Journal of Physical Chemistry C 2009,113, (44), 19179-19184.
    33. Rawal, S. B.; Chakraborty, A. K.; Lee, W. I., Heteroj unction of FeOOH and TiO2 for the Formation of Visible Light Photocatalyst. Bulletin of the Korean Chemical Society 2009,30, (11),2613-2616.
    34. Zhang, Z. B.; Wang, C. C.; Zakaria, R.; Ying, J. Y, Role of particle size in nanocrystalline TiO2-based photocatalysts. Journal of Physical Chemistry B 1998, 102,(52),10871-10878.
    35. Margolese, D.; Melero, J. A.; Christiansen, S. C.; Chmelka, B. F.; Stucky, G. D., Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups. Chemistry of Materials 2000,12, (8),2448-2459.
    36. Vartuli, J. C.; Schmitt, K. D.; Kresge, C. T.; Roth, W. J.; Leonowicz, M. E.; McCullen, S. B.; Hellring, S. D.; Beck, J. S.; Schlenker, J. L.; Olson, D. H.; Sheppard, E. W., Effect of Surfactant Silica Molar Ratios on the Formation of Mesoporous Molecular-Sieves-Inorganic Mimicry of Surfactant Liquid-Crystal Phases and Mechanistic Implications. Chemistry of Materials 1994,6, (12), 2317-2326.
    37. Yang, P. D.; Zhao, D. Y; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D., Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chemistry of Materials,1999,11, (10),2813-2826.
    38.Magg, N.; Immaraporn, B.; Giorgi, J. B.; Schroeder, T.; Baumer, M.; Dobler, J.; Wu, Z. L.; Kondratenko, E.; Cherian, M.; Baerns, M.; Stair, P. C.; Sauer, J.; Freund, H. J., Vibrational spectra of alumina-and silica-supported vanadia revisited: An experimental and theoretical model catalyst study. Journal of Catalysis 2004,226, (1),88-100.
    39. Liu, Y. M.; Cao, Y.; Yi, N.; Feng, W. L.; Dai, W. L.; Yan, S. R.; He, H. Y.; Fan, K. N., Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane. Journal of Catalysis 2004, 224, (2),417-428.
    40. Shimizu, K.; Koizumi, S.; Hatamachi, T.; Yoshida, H.; Komai, S.; Kodama, T.; Kitayama, Y., Structural investigations of functionalized mesoporous silica-supported palladium catalyst for Heck and Suzuki coupling reactions. Journal of Catalysis 2004,228, (1),141-151.
    41. Yang, C. M.; Kalwei, M.; Schuth, F.; Chao, K. J., Gold nanoparticles in SBA-15 showing catalytic activity in CO oxidation. Applied Catalysis a-General 2003,254, (2),289-296.
    42. Panpranot, J.; Goodwin, J. G.; Sayari, A., Synthesis and characteristics of MCM-41 supported CoRu catalysts. Catalysis Today 2002,77, (3),269-284.
    43. Fornes, V.; Lopez, C.; Lopez, H. H.; Martinez, A., Catalytic performance of mesoporous VOx/SBA-15 catalysts for the partial oxidation of methane to formaldehyde. Applied Catalysis a-General 2003,249, (2),345-354.
    44. Long, R. Q.; Yang, R. T., Pt/MCM-41 catalyst for selective catalytic reduction of nitric oxide with hydrocarbons in the presence of excess oxygen. Catalysis Letters 1998,52, (1-2),91-96.
    45. Klimova, T.; Calderon, M.; Ramirez, J., Ni and Mo interaction with Al-containing MCM-41 support and its effect on the catalytic behavior in DBT hydrodesulfurization. Applied Catalysis a-General 2003,240, (1-2),29-40.
    46. Longo, A.; Liotta, L. F.; Di Carlo, G.; Giannici, F.; Venezia, A. M.; Martorana, A., Structure and the Metal Support Interaction of the Au/Mn Oxide Catalysts. Chemistry of Materials 22, (13),3952-3960.
    47. McArdle, S.; Curtin, T.; Leahy, J. J., Hydrogenation of sunflower oil over platinum supported on silica catalysts:Preparation, characterisation and catalytic activity. Applied Catalysis a-General 382, (2),332-338.
    48. Ghedini, E.; Menegazzo, F.; Signoretto, M.; Manzoli, M.; Pinna, F.; Strukul, G., Mesoporous silica as supports for Pd-catalyzed H2O2 direct synthesis:Effect of the textural properties of the support on the activity and selectivity. Journal of Catalysis 273, (2),266-273.
    49. Huang, M.; Chu, W.; Liao, X. M.; Dai, X. Y., Immobilization of 12-phosphotungstic heteropolyacid on amine-functionalized SiO2 for tetrahydrofuran polymerization. Chinese Science Bulletin 55, (24),2652-2656.
    50. Li, Y.; Wang, W. N.; Zhan, Z. L.; Woo, M. H.; Wu, C. Y.; Biswas, P., Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Applied Catalysis B-Environmental 100, (1-2),386-392.
    51. Yang, P. D.; Zhao, D. Y.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D., Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 1998,396, (6707),152-155.
    52. Wang, X. C.; Yu, J. C.; Ho, C. M.; Hou, Y. D.; Fu, X. Z., Photocatalytic activity of a hierarchically macro/mesoporous titania. Langmuir 2005,21, (6), 2552-2559.
    53. Yu, J. G.; Zhou, M. H.; Cheng, B.; Yu, H. G.; Zhao, X. J., Ultrasonic preparation of mesoporous titanium dioxide nanocrystalline photocatalysts and evaluation of photocatalytic activity. Journal of Molecular Catalysis a-Chemical 2005,227, (1-2),75-80.
    54. Yu, J. G.; Yu, H. G.; Cheng, B.; Zhao, X. J.; Zhang, Q. J., Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method. Journal of Photochemistry and Photobiology a-Chemistry 2006,182, (2), 121-127.
    55. Joly, Y.; Cabaret, D.; Renevier, H.; Natoli, C. R., Electron population analysis by full-potential X-ray absorption simulations. Physical Review Letters 1999,82, (11),2398-2401.
    56. Li, X. Z.; Li, F. B., Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environmental Science & Technology 2001,35, (11),2381-2387.
    57. Li, Q.; Li, Y. W.; Wu, P. G.; Xie, R. C.; Shang, J. K., Palladium Oxide Nanoparticles on Nitrogen-Doped Titanium Oxide:Accelerated Photocatalytic Disinfection and Post-Illumination Catalytic "Memory". Advanced Materials 2008, 20, (19),3717-+.
    58. Sclafani, A.; Herrmann, J. M., Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase arid rutile) in organic and aqueous media. Journal of Photochemistry and Photobiology a-Chemistry 1998,113, (2),181-188.
    59. Choi, W. Y.; Termin, A.; Hoffmann, M. R., The Role of Metal-Ion Dopants in Quantum-Sized TiO2-Correlation between Photoreactivity and Charge-Carrier Recombination Dynamics. Journal of Physical Chemistry 1994,98, (51), 13669-13679.
    60. Li, G. H.; Dimitrijevic, N. M.; Chen, L.; Rajh, T.; Gray, K. A., Role of Surface/Interfacial Cu2+Sites in the Photocatalytic Activity of Coupled CuO-TiO2 Nanocomposites. Journal of Physical Chemistry C 2008,112, (48),19040-19044.
    61. Li, X. Z.; Li, F. B.; Yang, C. L.; Ge, W. K., Photocatalytic activity of WOx-TiO2 under visible light irradiation. Journal of Photochemistry and Photobiology a-Chemistry 2001,141, (2-3),209-217.
    62. Xia, C. B.; Zhou, Y.; Li, X.; Zeng, J.; Xu, R. Y., Photo-catalytic degradation of acid orange 7 in aqueous solution with La3+-doped TiO2 photocatalysts. Rare Metals 2005,24, (4),358-362.
    63.Asahi, R.; Morikawa, T.; Ohwaki,T.; Aoki, K.; Taga, Y., Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001,293, (5528), 269-271.
    64. Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B., Efficient photochemical water splitting by a chemically modified n-TiO2. Science 2002,297, (5590),2243-2245.
    65. Burda, C.; Lou, Y. B.; Chen, X. B.; Samia, A. C. S.; Stout, J.; Gole, J. L. Enhanced nitrogen doping in TiO2 nanoparticles. Nano Letters 2003,3, (8), 1049-1051.
    66. Gole, J. L.; Stout, J. D.; Burda, C.; Lou, Y. B.; Chen, X. B., Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale. Journal of Physical Chemistry B 2004,108, (4),1230-1240.
    67. Diwald, O.; Thompson, T. L.; Zubkov, T.; Goralski, E. G; Walck, S. D.; Yates, J. T., Photochemical activity of nitrogen-doped rutile TiO2(l 11) in visible light. Journal of Physical Chemistry B 2004,108, (19),6004-6008.
    68. Mao, C. C.; Weng, H. S., Promoting effect of adding carbon black to TiO2 for aqueous photocatalytic degradation of methyl orange. Chemical Engineering Journal 2009,155, (3),744-749.
    69. Wang, X. J.; Hu, Z. H.; Chen, Y. J.; Zhao, G. H.; Liu, Y. F.; Wen, Z. B., A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon. Applied Surface Science 2009,255, (7),3953-3958.
    70. Li, Y.; Zhang, S.; Yu, Q.; Yin, W, The effects of activated carbon supports on the structure and properties of TiO2 nanoparticles prepared by a sol-gel method. Applied Surface Science 2007,253,9254-9258.
    71. Wang, X. J.; Liu, Y F.; Hu, Z. H.; Chen, Y. J.; Liu, W.; Zhao, G. H., Degradation of methyl orange by composite photocatlaysts nano-TiO2 immobilized on activated carbons of different porosities. Journal of Hazardous Materials 2009, 169,(1-3),1061-1067.
    72. Kuo, C. Y., Prevenient dye-degradation mechanisms using UV/TiO2/carbon nanotubes process. Journal of Hazardous Materials 2009,163, (1),239-244.
    73. Yu, Y.; Yu, J. C.; Yu, J. G.; Kwok, Y.C.; Che, Y. K.; Zhao, J. C.;.Ding, L. Ge, W. K.; Wong, P. K., Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Applied Catalysis a-General 2005,289, (2),186-196.
    74. Wang, W. D.; Serp, P.; Kalck, P.; Faria, J. L., Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. Journal of Molecular Catalysis a-Chemical 2005,235, (1-2),194-199.
    75. Zhang, L. W.; Fu, H. B.; Zhu, Y. F., Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Advanced Functional Materials 2008,18, (15),2180-2189.
    76. Ohno, T.; Tsubota, T.; Toyofuku, M.; Inaba, R., Photocatalytic activity of a TiO2 photocatalyst doped with C4+and S4+ions having a rutile phase under visible light. Catalysis Letters 2004,98, (4),255-258.
    77. Wang, Q.; Chen, C. C.; Zhao, D.; Ma, W. H.; Zhao, J. C., Change of adsorption modes of dyes on fluorinated TiO2 and its effect on photocatalytic degradation of dyes under visible irradiation. Langmuir 2008,24, (14),7338-7345.
    78. Kim, H.; Choi, W., Effects of surface fluorination of TiO2 on photocatalytic oxidation of gaseous acetaldehyde. Applied Catalysis B-Environmental 2007,69, (3-4),127-132.
    79. Park, J. S.; Choi, W., Enhanced remote photocatalytic oxidation on surface-fluorinated TiO2. Langmuir 2004,20, (26),11523-11527.
    80. Wen, C.; Zhu, Y. J.; Kanbara, T.; Zhu, H. Z.; Xiao, C.F, Effects of I and F codoped TiO2 on the photocatalytic degradation of methylene blue. Desalination 2009,249, (2),621-625.
    81. Park, H.; Choi, W., Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors. Journal of Physical Chemistry B 2004, 108, (13),4086-4093.
    82. Xu, Q. C.; Wellia, D. V.; Sk, M. A.; Lim, K. H.; Loo, J. S. C.; Liao, D. W.; Amal, R.; Tan, T. T. Y., Transparent visible light activated C-N-F-codoped TiO2 films for self-cleaning applications. Journal of Photochemistry and Photobiology a-Chemistry 210, (2-3),181-187.
    83. Wu, X. W.; Wu, D. J.; Liu, X. J., Effects of B (N, F) doping on optical properties of TiO2 nanoparticles. Acta Physica Sinica 59, (7),4788-4793.
    84. Pelaez, M.; de la Cruz, A. A.; Stathatos, E.; Falaras, P.; Dionysiou, D. D., Visible light-activated N-F-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water. Catalysis Today 2009,144, (1-2),19-25.
    85. Yu, Y.; Wu, H. H.; Zhu, B. L.; Wang, S. R.; Huang, W. P.; Wu, S. H.; Zhang, S. M., Preparation, characterization and photocatalytic activities of F-doped TiO2 nanotubes. Catalysis Letters 2008,121, (1-2),165-171.
    86. Mori, K.; Maki, K.; Kawasaki, S.; Yuan, S.; Yamashita, H., Hydrothermal synthesis of TiO2 photocatalysts in the presence of NH4F and their application for degradation of organic compounds. Chemical Engineering Science 2008,63, (20), 5066-5070.
    87. Ren, G. J.; Gao, Y. A.; Liu, X.; Xing, A.; Liu, H. T.; Yin, J. G., Synthesis of high-activity F-doped TiO2 photocatalyst via a simple one-step hydrothermal process. Reaction Kinetics Mechanisms and Catalysis 100, (2),487-497.
    88. Xie, Y.; Li, Y. Z.; Zhao, X. J., Low-temperature preparation and visible-light-induced catalytic activity of anatase F-N-codoped'TiO2. Journal of Molecular Catalysis a-Chemical 2007,277, (1-2),119-126:
    89. Su, Y. L.; Zhang, X. W.; Zhou, M. H.; Han, S.; Lei, L. C., Preparation of high efficient photoelectrode of N-F-codoped TiO2 nanotubes. Journal of Photochemistry and Photobiology a-Chemistry 2008,194, (2-3),152-160.
    90.周明华,介孔二氧化钛光催化剂的制备、表征及性能研究.2006.
    91. Zhao, W.; Sun, Y. L.; Castellano, F. N., Visible-light induced water detoxification catalyzed by Pt-II dye sensitized titania. Journal of the American Chemical Society 2008,130, (38),12566-+.
    92. Spanhel, L.; Weller, H.; Henglein, A., Photochemistry of Semiconductor Colloids.22. Electron Injection from Illuminated Cds into Attached TiO2 and ZnO Particles. Journal of the American Chemical Society 1987,109, (22),6632-6635.
    93. Engweiler, J.; Harf, J.; Baiker, A., WOx/TiO2 catalysts prepared by grafting of tungsten alkoxides:Morphological properties and catalytic behavior in the selective reduction of NO by NH3. Journal of Catalysis 1996,159, (2),259-269.
    94. Alemany, L. J.; Lietti, L.; Ferlazzo, N,; Forzatti, P.; Busca, G.; Giamello, E.; Bregani, F., Reactivity and Physicochemical Characterization of V2O5-WO3/TiO2 De-Nox Catalysts. Journal of Catalysis 1995,155, (1),117-130.
    95. Vinodgopal, K.; Kamat, P. V., Enhanced Rates of Photocatalytic Degradation of an Azo-Dye Using SnO2/TiO2 Coupled Semiconductor Thin-Films. Environmental Science & Technology 1995,29, (3),841-845.
    96. Wang, Z. S.; Huang, C. H.; Huang, Y. Y.; Hou, Y.J.; Xie, P. H.; Zhang, B. W.; Cheng, H. M., A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode. Chemistry of Materials 2001,13, (2), 678-682.
    97. Bessekhouad, Y.; Robert, D.; Weber, J., Bi2S3/Ti02 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. Journal of Photochemistry and Photobiology a-Chemistry 2004, 163, (3),569-580.
    98. Wu, N. L.; Lee, M. S., Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. International Journal of Hydrogen Energy 2004,29, (15),1601-1605.
    99. Choi, H. J.; Kang, M., Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2. International Journal of Hydrogen Energy 2007,32, (16),3841-3848.
    100. Hameed, A.; Gondal, M. A., Laser induced photocatalytic generation of hydrogen and oxygen over NiO and TiO2. Journal of Molecular Catalysis a-Chemical 2004,219, (1),109-119.
    101. Zou, J. J.; Liu, C. J.; Yu, K. L.; Cheng, D. G.; Zhang, Y. P.; He, F.; Du, H. Y.; Cui, L., Highly efficient Pt/TiO2 photocatalyst prepared by plasma-enhanced impregnation method. Chemical Physics Letters 2004,400, (4-6),520-523.
    102. Lin, C. H.; Lee, C. H.; Chao, J. H.; Kuo, C. Y.; Cheng, Y. C.; Huang, W N.; Chang, H. W.; Huang, Y. M.; Shih, M. K., Photocatalytic generation of H-2 gas from neat ethanol over Pt/TiO2 nanotube catalysts. Catalysis Letters 2004,98, (1), 61-66.
    103. Senda, S.; Arai, T.; Sato, Y.; Shinoda, K.; Jeyadevan, B.; Tohji, K., Influence of Cu on the photocatalytic activity of ZnS nanoparticles. Water Dynamics 2006,833,65-68.
    104. Jin-Ook, B.; Kanade, K. G.; Kale, B. B.; Sang Mi, L.; Chul Wee, L. Sang-Jin,M.; Hyunju, C., Self-assembled aligned Cu doped ZnO nanoparticles for photocatalytic hydrogen production under visible light irradiation. Materials Chemistry and Physics 2007,102, (1),98-104.
    105. Hameed, A.; Gondal, M. A.; Yamani, Z. H., Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: role of 3d-orbitals. Catalysis Communications 2004,5, (11),715-719.
    106. Wu, Y. Q.; Lu, G. X.; Li, S. B., The Role of Cu(I) Species for Photocatalytic Hydrogen Generation Over CuOx/TiO2. Catalysis Letters 2009,133, (1-2),97-105.
    107. Martinez-de La Cruz, A.; Villarreal, S.; Torres-Martinez, L. M.; Cuellar, E. L.; Mendeza, U. O., Photoassisted degradation of rhodamine B by nanoparticles of alpha-Bi2Mo3O12 prepared by an amorphous complex precursor. Materials Chemistry and Physics 2008,112, (2),679-685.
    108. Takata, T.; Tanaka, A.; Hara, M.; Kondo, J. N.; Domen, K., Recent progress of photocatalysts for overall water splitting. Catalysis Today 1998,44, (1-4), 17-26.
    109. Zhang, G. K.; Gong, J.; Zou, X.; He, R.; Zhang, H.; Zhang, Q.; Liu, Y.; Yang, X.; Hu, B., Photocatalytic degradation of azo dye acid red G by KNb3O8 and the role of potassium in the photocatalysis. Chemical Engineering Journal 2006,123, (1-2),59-64.
    110. Zhang, G K.; He, F. S.; Zou, X.; Gong, J.; Tu, H. B.; Zhang, H.; Zhang, Q.; Liu, Y, Hydrothermal synthesis and photocatalytic property of KNb3O8 with nanometer leaf-like network. Journal of Alloys and Compounds 2007,427, (1-2), 82-86.
    111. Domen, K.; Ebina, Y.; Sekine, T.; Tanaka, A.; Kondo, J.; Hirose, C., Ion-Exchangeable Layered Niobates as Photocatalysts. Catalysis Today 1993,16, (3-4),479-486.
    112. Zhang, L. L.; Zhang, W. G.; Lu, L. D.; Yang, X. J.; Wang, X., Synthesis, structure and photocatalytic reactivity of layered CdS/H2La2Ti3O10 nanocomposites. Journal of Materials Science 2006,41, (12),3917-3921.
    113. Li, X. K.; Kikugawa, N.; Ye, J. H., Nitrogen-doped Lamellar.Niobic Acid with Visible Light-responsive Photocatalytic Activity. Advanced Materials 2008,20, (20),3816-+.
    114. Peller, J. R.; Whitman, R. L.; Griffith, S.; Harris, P.; Peller, C; Scalzitti, J., TiO2 as a photocatalyst for control of the aquatic invasive alga, Cladophora, under natural and artificial light. Journal of Photochemistry and Photobiology a-Chemistry 2007,186, (2-3),212-217.
    115. Sonawane, R. S.; Hegde, S. G.; Dongare, M. K., Preparation of titanium(IV) oxide thin film photocatalyst by sol-gel dip coating. Materials Chemistry and Physics 2003,77, (3),744-750.
    116. M, et, r. A. L. G J. V., photocatalytic decomposition of trichlorobenzene using TiO2 Supported on nickel poly (tetranuoroethylene) composite plate. J. Chem. Let 1995,261-262.
    117. Babelon, P.; Dequiedt, A. S.; Mostefa-Sba, H.; Bourgeois, S.; Sibillot, P.; Sacilotti, M., SEM and XPS studies of titanium dioxide thin films grown by MOCVD. Thin Solid Films 1998,322, (1-2),63-67.
    118. Alberius, P. C. A.; Frindell, K. L.; Hayward, R. C; Kramer, E. J.; Stucky, G. D.; Chmelka, B. F., General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chemistry of Materials 2002,14, (8),3284-3294.
    119. Tian, B. Z.; Yang, H, F.; Liu, X. Y; Xie, S. H.; Yu, C. Z.; Fan, J.; Tu, B.; Zhao, D. Y, Fast preparation of highly ordered nonsiliceous mesoporous materials via mixed inorganic precursors. Chemical Communications 2002, (17),1824-1825.
    120. Fan, J.; Boettcher, S. W.; Stucky, G. D., Nanoparticle assembly of ordered multicomponent mesostructured metal oxides via a versatile sol-gel process. Chemistry of Materials 2006,18, (26),6391-6396.
    121. 李仁宏,金属修饰Ti02及光催化活性的研究.2009.
    122. Gao, X. T.; Wachs, I. E., Titania-silica as catalysts:molecular,structural characteristics and physico-chemical properties. Catalysis Today 1999,51, (2), 233-254.
    123. Liu, X. N.; Guo, J.F.; Xiao, L. P.; Fan, J., Enhanced photoinduced surface reactivity of mesoporous titania modified with benzene siloxane. Chemical Communications 46, (36),6729-6731.
    124. Hattori, A.; Shimoda, K.; Tada, H.; Ito, S., Photoreactivity of sol-gel TiO2 films formed on soda-lime glass substrates:Effect of SiO2 underlayer containing fluorine. Langmuir 1999,15, (16),5422-5425.
    125. Irokawa, Y.; Morikawa, T.; Aoki, K.; Kosaka, S.; Ohwaki, T.; Taga, Y., Photodegradation of toluene over TiO2-xNx under visible light irradiation. Physical Chemistry Chemical Physics 2006,8, (9),1116-1121.
    126. Nakano, Y.; Morikawa, T.; Ohwaki, T.; Taga, Y., Electrical characterization of band gap states in C-doped TiO2 films. Applied Physics Letters 2005,87, (5).
    127. Yu, J. C.; Zhang, L. Z.; Zheng, Z.; Zhao, J. C., Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chemistry of Materials 2003,15, (11),2280-2286.
    128. Cho, E. B.; Kim, D.; Jaroniec, M., Preparation of mesoporous benzene-silica nanoparticles. Microporous and Mesoporous Materials 2009,120, (3), 252-256.
    129. Wu, Z. W.; Pang, J. B.; Lu, Y. F., Synthesis of highly-ordered mesoporous carbon/silica nanocomposites and derivative hierarchically mesoporous carbon from a phenyl-bridged organosiloxane. Nanoscale 2009,1, (2),245-249.
    130. Imahori, H.; Fukuzumi, S., Conducting molecular materials and electrochemistry 1. Photoinduced electron transfer at electrodes modified with fullerene derivatives. Electrochemistry 2002,70, (4),274-278.
    131. Kobayashi, N.; Teshima, K.; Hirohashi, R., Conducting polymer image formation with photoinduced electron transfer reaction. Journal of Materials Chemistry 1998,8, (3),497-506.
    132. Smilowitz, L.; Sariciftci, N. S.; Wu, R.; Gettinger, C.; Heeger, A. J.; Wudl, F., Photoexcitation Spectroscopy of Conducting-Polymer-C(60) Composites-Photoinduced Electron-Transfer. Physical Review B 1993,47, (20),13835-13842.
    133. Forro, L.; Chauvet,O.; Emin, D.; Zuppiroli, L.; Berger, H.; Levy, F., High-Mobility N-Type Charge-Carriers in Large Single-Crystals of Anatase (Tio2). Journal of Applied Physics 1994,75, (1),633-635.
    134. Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D.. W., Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews 1995,95, (1),69-96.
    135. Tsetseris, L.; Pantelides, S. T., Migration, incorporation, and passivation reactions of molecular hydrogen at the Si-SiO2 interface. Physical Review B 2004,70, (24).
    136. Hammer, B.; Hansen, L. B.; Norskov, J. K., Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B 1999,59, (11),7413-7421.
    137. Fan, J.; Dai, Y. H.; Li, Y. L.; Zheng, N. F.; Guo, J. F.; Yan, X. Q.; Stucky, G. D., Low-Temperature, Highly Selective, Gas-Phase Oxidation of Benzyl Alcohol over Mesoporous K-Cu-TiO2 with Stable Copper(Ⅰ) Oxidation State. Journal of the American Chemical Society 2009,131, (43),15568-+.
    138. Goodby, B. E.; Pemberton, J. E., Xps Characterization of a Commercial Cu/ZnO/Al2O3 Catalyst-Effects of Oxidation, Reduction, and the Steam Reformation of Methanol. Applied Spectroscopy 1988,42, (5),754-760.
    139. Mahalingam, T.; Chitra, J. S. P.; Ravi, G.; Chu, J. P.; Sebastian, P. J., Characterization of pulse plated Cu2O thin films. Surface & Coatings Technology 2003,168,(2-3),111-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700