稀土、铜改性纳米TiO_2光催化还原CO_2的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO_2的减排问题是目前各个国家及不同领域研究和探讨的最重要议题之一,利用光催化反应还原CO_2合成低碳有机物具有重要的理论及现实意义,但是其反应的转化效率比较低,这也是研究人员长久以来研究的重点和努力解决的问题。本文一方面通过对TiO_2光催化剂进行材料改性,另一方面则通过对反应条件的优化,以提高光催化还原CO_2的效率,并对反应机理进行初步探讨。
     本文采用溶胶凝胶法制备TiO_2纳米粉体,并选择La、Nd、Y三种稀土元素对其进行掺杂改性,并且制备出稀土与铜共掺改性,与CuO复合共改性TiO_2纳米粉体,进行光催化还原CO_2的反应,研究掺杂的稀土元素种类和添加量,以及不同的改性方法对TiO_2光催化还原性能的影响。对改性材料进行XRD、TEM、XPS表征,分析其晶相结构、形貌及组分价态,并以光催化还原CO_2反应产物甲醛的生成量来评价催化剂的活性。结果表明,改性TiO_2经500℃煅烧后主要为锐钛矿型,晶粒粒径较小,具有良好的光催化活性。不同稀土元素改性效果La>Nd>Y,最佳的稀土元素添加量为0.1wt.%。以La为研究对象,不同的改性方法改性效果La-CuO/TiO_2>La-TiO_2>La/Cu-TiO_2。最优的催化剂为0.1wt.%的La-CuO/TiO_2,还原产物甲醛的生成量为953.53μmol/g·cat.。
     本文进一步研究了光催化还原CO_2的最佳反应条件,考察了光照时间、溶液初始pH值、通入的CO_2体积流量以及空穴捕获剂的添加量这四方面因素对CO_2光催化还原反应的影响。研究结果表明,在本实验条件下,光催化还原CO_2反应的最佳条件如下:光照时间为6h,溶液初始pH值为10,反应过程中通入的CO_2的体积流量为30mL/min,空穴捕获剂甲醇的添加量为1.0mol/L。
CO_2 emission reduction is one of the most important issues among different countries and various areas. Photocatalytic reduction of CO_2 to synthesis low-carbon organic matter has theoretical and practical significance. But conversion efficiency of the reaction is relatively low, which is the problem researchers have been focused on for a long time. In this study, we synthesized a series of rare earth (RE) and copper modified TiO_2 nano-photocatalysts to evaluate the activities of CO_2 photoreduction. Further more, we optimized the reaction conditions to improve the reaction efficiency.
     TiO_2 nano-particles were synthesized by sol-gel method. The RE (La, Nd, Y) doped, the RE and copper co-doped and CuO composite modified TiO_2 nano-particles were prepared for photocatalytic reduction of CO_2. The prepared particles were characterized using XRD, TEM, and XPS. And the activities of the photocatalysts were estimated by the yield of formaldehyde. The results showed that the modified TiO_2 nano-particles had better activities and smaller crystal grain size than the bare TiO_2. The comparison of catalytic efficiency between different rear earth doped materials showed La>Nd>Y, and the best doping amount was 0.1wt.%. Regarding La as the research subject, the catalytic efficiency varied by changing the modification method, which showed La-CuO/TiO_2>La-TiO_2>La/Cu-TiO_2. The best photocatalyst was La-CuO/TiO_2 with La doping amount of 0.1wt.%, and the yield of formaldehyde was 953.53μmol/g·cat..
     This research further investigated the optimum conditions of photocatalytic reduction of CO_2, including illumination time, initial pH value of reaction solution, CO_2 flow rate and the addition amount of hole scavenger. The results showed that the optimum conditions of CO_2 photoreduction were as follows: illumination time was 6h, pH value was 10, CO_2 flow rate was 30mL/min, and addition amount of methanol was 1.0mol/L.
引文
[1]秦大河.进入21世纪的气候科学——气候变化的事实、影响与对策[J].科技导报, 2004, 1(7): 4-5.
    [2]王雪臣,徐影,毛留喜.气候变化的科学背景研究[J].中国软科学, 2004, 5(l): 105-106.
    [3]国家气候变化对策协调小组办公室,全球气候变化——人类面临的挑战[M].北京:商务印书馆, 2004.
    [4]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社, 2002.
    [5]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社, 2006.
    [6] Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J]. Journal of photochemistry and Photobiology C: Photochemistry Reviews. 2000, 1(1): 1-21.
    [7] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37-38.
    [8]桥本和仁,藤岛昭.图解光催化技术大全[M].北京:科学出版社, 2007.
    [9] Floretina A, Betianu C, Robu B M, et al. Study concerning the influence of oxidizing agents on heterogeneous photocatalytic degradation of persistent organic pollutants[J]. Environmental Engineering and Management Journal, 2007, 6(6): 483-489.
    [10]李川,古国榜,柳松. TiO_2光催化处理废水中贵重金属的研究进展[J].环境污染治理技术与设备, 2003, 4(11): 6-11.
    [11] Ku Y, Lee W H, Wang W Y. Photocatalytic reduction of carbonate in aqueous solution by UV/TiO_2 process[J]. Journal of Molecular Catalysis A: Chemical, 2004, 212(2): 191-196.
    [12] Ferguson J E. MacMillan Encyclopedia of Chemistry, vol.1[M]. New York: Simon & Schuster Macmillan, 1997.
    [13]尚久方,操时杰,辛无名,等译.兰氏化学手册(J.A.迪安主编)[M].北京:科学出版社, 1991.
    [14]施骏业,翟晓华,谢晶,等. CO_2在食品加工和冷藏业中的应用前景[J].制冷技术, 2005, 6(3): 39-43.
    [15] Song C S. Global challenges and strategies for control, conversion and utilization of CO_2 for sustainable development involving energy, catalysis, adsorption and chemical processing[J]. Catalysis Today, 2006, 115(1): 2-32.
    [16] Omae I. Aspects of carbon dioxide utilization[J]. Catalysis Today, 2006, 115(1): 33-52.
    [17] Centi G, Perathoner S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels[J]. Catalysis Today, 2009, 148(3): 191-205.
    [18] Lou Z S, Chen Q W, Zhang Y F, et al. Diamond Formation by Reduction of Carbon Dioxide at Low Temperatures[J]. Journal of the American Chemical Society, 2003, 125(31): 9302-9303.
    [19]何艳青,张焕芝. CO_2提高石油采收率技术的应用与发展[J].石油科技论坛, 2008, 8(3): 24-26.
    [20]江怀友,沈平平,陈立滇.北美石油工业二氧化碳提高采收率现状研究[J].中国能源, 2007, 29(7): 30-34.
    [21]张群. CO_2焊在工程建设中的应用[J].现代焊接, 2008, 3(12): 28-30.
    [22]廖维荣,张江南. CO_2气腹对肿瘤增殖及转移影响的研究进展[J].实用临床医学, 2010, 11(1): 118-121.
    [23]茅培森,陈军.超临界二氧化碳萃取技术在环境领域中的应用[J].环境研究与监测, 2006, 19(3): 56-58.
    [24]周家贤.二氧化碳开发利用综述[J].化工设计, 2004, 14(4): 7-9.
    [25] Inoue T, Fujishima A, et al. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979, 277: 6372-6381.
    [26] Anpo M, Chiba K. Photocatalytic reduction of CO_2 on anchored titanium oxide catalysts[J]. Journal of Molecular Catalysis, 1992, 74(2): 207-212.
    [27] Anpo M, Yamashita H, Ichihashi Y, et al. Photocatalytic reduction of CO_2 with H2O on various titanium oxide catalysts[J]. Journal of Electroanalytical Chemistry, 1995, 396(1): 21-26.
    [28] Yamashita H, Kamada N, He H. Reduction of CO_2 with H2O on TiO_2 (100) and TiO_2 (110) Single Crystals under UV-irradiation[J]. Chemistry Letters, 1994, 23(5): 855-858.
    [29] Tanaka K, Miyahara K, Toyoshima I. Adsorption of carbon dioxide on titanium dioxide and platinum/Titanium dioxide studied by x-ray photoelectron spectroscopy and Auger electron spectroscopy[J]. The Journal of Physical Chemistry, 1984, 88(16): 3504-3508.
    [30] Zhang Q H, Han W D, Hong Y J, et al. Photocatalytic reduction of CO_2 with H2O on Pt-loaded TiO_2 catalyst[J]. Catalysis Today, 2009, 148(4): 335-340.
    [31] Ishitani O, Inoue C, Suzuki Y, et al. photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO_2[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 72(3): 269-271.
    [32]徐用军,周定,罗中贯,等.二氧化钛负载型光催化剂的制备及光还原二氧化碳的研究[J].哈尔滨工程大学学报, 1998, 19(4): 89-93.
    [33] Choi W, Terrain A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO_2 correlation between photoreactivity and charge carrier recombination dynamics[J]. The Journal of Physical Chemistry B, 1994, 98(51): 13669-13679.
    [34] Tseng I H, Chang W C, Wu J C S, et al. Photoreduction of CO_2 using sol-gel derived titanic and titanic-supported copper catalysts[J]. Applied Catalysis B: Environmental, 2002, 37(1): 37-48.
    [35]岳林海,水森,徐铸德,等.稀土掺杂二氧化钛的相变和光催化活性[J].浙江大学学报(理学版), 2000, 27(1): 69-74.
    [36]梁金生,金宗哲,王静.稀土/纳米TiO_2的表面电子结构[J].中国稀土学报, 2002, 20(1): 74-76.
    [37]曾波.纳米TiO_2光催化还原CO_2制备甲醇研究[D].西安:西北大学, 2008.
    [38] Serpone N, Maruthamuthu P, Pichat P, et al. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 85(3): 247-255.
    [39]刘亚琴,徐耀,李志杰. CO_2在纳米SiO_2/TiO_2悬浮体系中的光催化还原[J].化学学报, 2006, 64(6): 453-457.
    [40] Wu J C S, Photocatalytic Reduction of Greenhouse Gas CO_2 to Fuel[J]. Catalysis Surveys from Asia, 2009, 13(1): 30-40.
    [41]赵志换,范济民,王志忠,等.改进溶胶-凝胶法制备CoPc/TiO_2及其光催化还原CO_2反应的研究[J].现代化工, 27(增刊1): 238-241.
    [42]谢明明,赵志换,王志忠.原位合成CoPc/TiO_2光催化剂及其光催化还原CO_2的研究[J].应用化工, 2007, 36(9): 882-884.
    [43] Goswam D Y, Vijayaraghavan S. New and emerging developments in solar energy[J]. Solar Energy, 2004, 76(1): 33-38.
    [44]康华,李桂春,徐德永. Zn、Si共掺杂纳米TiO_2的制备及其光催化性能[J].金属功能材料, 2009, 16(6): 25-29.
    [45]丁珂,田进军,王晟,等.液相沉淀法制备纳米TiO_2及其光催化性能的研究[J].工业催化, 2004, 12(10): 30-33.
    [46]张刚,邓沁瑜,简子聪,等. TritonX-100/正己醇/环己烷/水, CTAB/正己醇/水微乳体系制备纳米TiO_2/SiO_2复合物[J].华南师范大学学报(自然科学版), 2009, 21(3): 88-92.
    [47]路彦景,李向清,穆劲. CuO-NiO助催化剂对TiO_2(P25)光催化活性的影响[J].无机化学学报, 2009, 25(7): 1149-1152.
    [48]周林,谭欣,赵林,等.可见光响应的Fe3+修饰纳米TiO_2光催化降解氮氧化物研究[J].化学工业与工程, 2008, 25(5): 399-403.
    [49]冀晓静,郑经堂,石建稳,等. Fe/Si/TiO_2三元复合光催化剂的性能研究[J].环境污染与防治, 2007, 29(11): 801-804.
    [50]陈晓青,杨娟玉,蒋新宇,等.掺铁TiO_2纳米微粒的制备及光催化性能[J].应用化学, 2003, 20(1): 73-76.
    [51]张敬畅,李青,曹维良.超临界流体干燥法制备TiO_2/Fe2O3和TiO_2/Fe2O3/ SiO_2复合纳米粒子及光催化性能[J].复合材料学报, 2005, 22(1): 79-84.
    [52] Xu A W, Gao Y, Liu H Q. The preparation, characterization and their photocatalytic activities of rare-earth-doped TiO_2 nanoparticles[J]. Journal of Catalysis, 2002, 207(2): 151-157.
    [53]刘光华.稀土材料学[M].北京:化学工业出版社, 2007.
    [54]周玉,武高辉.材料分析测试技术——材料X射线衍射与电子显微分析[M].哈尔滨:哈尔滨工业大学出版社, 2007.
    [55]张锐.现代材料分析方法[M].北京:化学工业出版社, 2007.
    [56] Klenov D O, Kryukova G N, Plyasova L M. Localization of copper atoms in the structure of the ZnO catalyst for methanol synthesis[J]. Journal of Materials Chemistry, 1998, 8(7): 1665-1669.
    [57] Liu Z L, Cui Z L, Zhang Z K. The structural defects and UV–VIS spectral characterization of TiO_2 particles doped in the lattice with Cr3+ cations[J]. Materials Characterization, 2005, 54(2): 123-129.
    [58] Václav S, Snejana B, Nataliya M. Preparation and photocatalytic activity of rare earth doped TiO_2 nanoparticles[J]. Materials Chemistry and Physics, 2009, 114(1): 217-226.
    [59]郭沁林. X射线光电子能谱[J].物理, 2007, 36(5): 405-410.
    [60] Sanjinés R, Tang H, Berger H, et al. Electronic structure of anatase TiO_2 oxide[J]. Journal of Applied Physics, 1994, 75(6): 2945-2951.
    [61]杨建军,郭泉辉,毛立群,等.商品二氧化钛的光催化性能比较[J].化学研究, 2001, 12(2): 12-14.
    [62] Xie Y B, Yuan C W. Photocatalysis of neodymium ion modified TiO_2 sol under visible light irradiation[J]. Applied Surface Science, 2004, 221(1): 17-24.
    [63] Huang J, Wang S R, Zhao Y Q, et al. Synthesis and characterization of CuO/TiO_2 catalysts for low-temperature CO oxidation[J]. Catalysis Communications, 2006, 7(12): 1029-1034.
    [64] Xu B, Dong L, Chen Y. Influence of CuO loading on dispersion and reduction behavior of CuO/TiO_2 (anatase) system[J]. Journal of the Chemical Society, Faraday Transactions, 1998, 94(13): 1905-1909.
    [65]郑柏存,汪仁. CuO在TiO_2载体表面上的分散状态[J].催化学报, 1992, 13(6): 425-431.
    [66] Komova O V, Simakov A V, Rogov V A, et al. Investigation of the state of copper in supported copper-titanium oxide catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2000, 161(2): 191-204.
    [67] Kaneco S, Shimizu Y, Ohta K, et al. Photocatalytic reduction of high pressure carbon dioxide using TiO_2 powders with a positive hole scavenger[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 115(3): 223-226.
    [68]柳丽芬,董晓艳,杨凤林,等. Ag/TiO_2光催化还原硝酸氮[J].无机化学学报, 24(2): 211-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700