紫花苜蓿MsZFN及拟南芥HST基因鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以紫花苜蓿和拟南芥为研究对象,主要利用基因工程、转基因技术和表型分析,分析MsZFN和HST的功能。主要试验结果如下:
     1.通过PCR扩增获得了MsZFN基因gDNA(登陆号:JX131368)全长6829-bp,cDNA全长1667-bp,含有七个外显子,六个内含子,六个内含子长度分别为:820-bp,494-bp,1825-bp,286-bp,641-bp和1093-bp。
     2.采用RT-PCR和qRT-PCR的方法,分析MsZFN基因的表达特征。RT-PCR方法显示,MsZFN在所选的组织中(包括根,茎,叶,花)均有表达,但在叶片中表达量最高,花中表达量较低,尤其是花芽中表达量最低;MsZFN基因受黑暗诱导,随着黑暗时间延长,表达量升高。在有20μM ABA,20μM赤霉素等激素诱导条件下,MsZFN基因表达量没有明显差异,在冷处理条件下,MsZFN基因表达量,没有明显的变化。
     3.将MsZFN基因编码区插入pCAMBIA1302中,构建双元表达载体35S::MsZFN,并采用农杆菌介导的方法,成功获得拟南芥和烟草转基因植株。结果显示在拟南芥和烟草中过量表达MsZFN基因,能够明显推迟拟南芥和烟草的开花时间。
     4.发现一株拟南芥转基因突变体,表型为:白化苗,植株矮小,叶片很小,叶柄较短,没有分枝,腺毛较少,能抽薹,但是不能形成正常的花器官,植株高度败育,但开花时间提前。通过电子透射显微镜(TEM)和电子扫描显微镜(SEM)得知:突变体不能形成正常的叶绿体结构;叶片腺毛分枝由正常的三个,变为了两个;突变体气孔开放程度较大,气孔不能正常关闭。
     5.通过TAIL-PCR,发现:该突变体由于T-DNA插入导致的,插入位置在HST基因(At3g11945)的第二个内含子内。将拟南芥HST基因,导入突变体中,能够使突变体性状回复。通过RNAi方法获得HST基因低表达水平的转基因拟南芥植株。
     6.通过实时定量PCR和启动子表达分析,得知:该基因在绿色组织中表达量较高,随着叶片的衰老,基因表达量降低。
     7.通过ELISA测试,得知:该突变体脱落酸,赤霉素和玉米素水平严重下降,但赤霉素与ABA比值提高;植物生长素(IAA)水平提高。
In this study, we characterized the MsZFN gene from Medicago sativa (alfalfa) and HST gene fromArabidopsis thaliana by gene genetic engineering, transgenic technology and phenotype analysis. Theresults are showed below:
     1. A6,829-bp genomic DNA sequence (Access No.: JX131368) was obtained for MsZFN by PCR.Seven exons making up the1,667bp cDNA sequence of MsZFN were interrupted by six introns of820-bp,494-bp,1825-bp,286-bp,641-bp and1093-bp in length when the cDNA and the gDNAsequences were compared.
     2. To determine the expression pattern of the MsZFN gene in alfalfa, RT-PCR and qRT-PCR wereperformed. Using RT-PCR, the MsZFN transcript was detected in all alfalfa organs tested, includingroots, stems, leaves, and in florets before and after flower opening. Transcript levels were strongestin leaves compared with stems and roots and was weakest in floral buds and florets. Expressionwas also increased during growth under continuous dark conditions, but not affected by20μMABA,20μM GA3,3%sugar treatments or cold conditions.
     3. For transgenic expression experiments, the full-MsZFN coding domain sequence was inserted intothe pCAMBIA1302to generate binary fusion construct35S::MsZFN. To generate transgenicArabidopsis plants expressing MsZFN, Agrobacterium GV3101transformed with plasmid35S::MsZFN was used to infect Arabidopsis and tobacco. The results showed that overexpressionof MsZFN gene delayed flowering time in transgenic plants.
     4. We found one Arabidopsis mutant, and the mutant lines are albino and had shorter roots, fewer roothairs, fewer and smaller leaves with shorter petioles, and reduced trichome density. TEM analysisshowed that the mutants had lost the ability to develop into mature chloroplasts. SEM resultsshowed that mutant trichomes were shorter in length and some trichomes had two branches insteadof three. Stomata had bigger openings, suggesting that stomata may close abnormally.
     5. The TAIL-PCR and sequencing showed that the mutant phenotypes were caused by a T-DNAinsertion and the insertion was located at the second intron of the Arabidopsis HST gene(At3g11945). When expressed HST gene in mutants, the HST gene could completely rescue themutant phenotype. Transgenic Arabidopsis with low expressed levels of HST gene by RNAitechnology were obtained.
     6. To analyze expression pattern of HST gene, qRT-PCR and promoter expression methods wereperformed. The results showed that HST gene was highly expressed in green tissues and the levelsof HST transcript were highest in non-senescent leaves, and the transcript levels graduallydecreased as leaves began to senesce.
     7. Enzyme-linked immunosorbent assays (ELISA) were performed to determine concentrations ofdifferent hormones in WT and mutant plants. A substantial decrease in ABA, GA3and ZRconcentrations occurred in mutant plants compared with WT. This disruption of the HST gene also led to a substantial increase (by41.6%) in the IAA content in mutant.
引文
1.董洁,紫花苜蓿浓缩单宁合成途径中DFR和ANR基因的分离及遗传转化[博士学位论文].中国农业科学院,2012.
    2.韩利芳,张玉发.烟草MnSOD基因在保定苜蓿中的转化.生物技术通报,2004,1:39-46.
    3.李继平.利用转基因技术改良紫花苜蓿抗寒性的初步研究.北京:中国农业科学院,
    2009.
    4.李燕,紫花苜蓿诱导表达启动子MsZPP的克隆及功能分析[博士学位论文].中国农业科学院,2012.
    5.李燕,孙彦,杨青川,等.紫花苜蓿MsZIP基因超表达载体的构建及转基因苜蓿检测.草业学报,2013,21(6):182-189.
    6.刘晓林,农杆菌介导的MsNHX1基因转化中苜1号的初步研究[硕士学位论文].中国农业科学院,2007.
    7.刘艳芝,韦正乙,邢少辰,等.逆境相关转录因子DREB2A转化紫花苜蓿的研究.吉林农业科学,2008,32(6):27-29.
    8.罗小英,崔衍波,邓伟,等.超量表达苹果酸脱氢酶基因提高苜蓿对铝毒的耐受性.分子植物育种,2004,2(5):621-626.
    9.秦智慧,紫花苜蓿锌指蛋白MsZFN作用机制研究[硕士学位论文].重庆大学,2010.
    10.帅丽芳,沈景林,郭瑞萍,等.公农2号紫花苜蓿抗寒基因CAS19在烟草中的表达.安徽农业科学,2011(001):49-51.
    11.雍伟东,种康.高等植物开花时间决定的基因调控研究.科学通报,2000,45(5):455-466.
    12. Ahn J H, Miller D, Winter V J, et al. A divergent external loop confers antagonistic activity onfloral regulators FT and TFL1. The EMBO Journal,2006,25(3):605-614.
    13. Avraham T, Badani H, Galili S, et al. Enhanced levels of methionine and cysteine intransgenic alfalfa (Medicago sativa L.) plants over-expressing the Arabidopsis cystathionineγ-synthase gene. Plant biotechnology journal,2005,3(1):71-79.
    14. Bao A K, Wang S M, Wu G Q, et al. Overexpression of the Arabidopsis H+-PPase enhancedresistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Science,2009,176(2):232-240.
    15. Barone P, Rosellini D, LaFayette P, et al. Bacterial citrate synthase expression and soilaluminum tolerance in transgenic alfalfa. Plant cell reports,2008,27(5):893-901.
    16. Baucher M, Bernard-Vailhé M A, Chabbert B, et al. Down-regulation of cinnamyl alcoholdehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin compositionand digestibility. Plant molecular biology,1999,39(3):437-447.
    17. Bhandari D, Saha P. mRNA cycling sequence binding protein from Leishmania donovani(LdCSBP) is covalently modified by ubiquitination. FEMS microbiology letters,2007,273(2):206-213.
    18. Blázquez M A, Green R, Nilsson O, et al. Gibberellins promote flowering of Arabidopsis byactivating the LEAFY promoter. The Plant Cell Online,1998,10(5):791-800.
    19. Cheng Y, Kato N, Wang W, et al. Two RNA Binding Proteins, HEN4and HUA1, Act in theProcessing of AGAMOUS Pre-mRNA in Arabidopsis thaliana. Developmental Cell,2003,4:53-66.
    20. Davies, P. J. Plant hormones: physiology, biochemistry and molecular biology [M]. Dordrecht,The Netherlands: Kluwer Academic,1995.
    21. Deak M, Kiss G B, Koncz C, et al. Transformation of Medicago by Agrobacterium mediatedgene transfer. Plant Cell Reports,1986,5(2):97-100.
    22. Domagalska M A, Schomburg F M, Amasino R M, et al. Attenuation of brassinosteroidsignaling enhances FLC expression and delays flowering. Development,2007,134(15):2841-2850.
    23. Finnegan E J, Genger R K, Peacock W J, et al. DNA methylation in plants. Annual review ofplant biology,1998,49(1):223-247.
    24. Fowler S, Lee K, Onouchi H, et al. GIGANTEA: a circadian clock‐controlled gene thatregulates photoperiodic flowering in Arabidopsis and encodes a protein with several possiblemembrane‐spanning domains. The EMBO Journal,1999,18(17):4679-4688.
    25. Garner W W,Allard H A. Effect of the relative length of day and night and other factors of theenvironment on growth and reproduction in plants.1920,18:553-606.
    26. Gruber M Y, Ray H, Auser P, et al. Genetic systems for condensed tannin biotechnology[M//Plant Polyphenols2. Springer US,1999:315-341.
    27. Guo D, Chen F, Inoue K, et al. Downregulation of caffeic acid3-O-methyltransferase andcaffeoyl CoA3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure andimplications for the biosynthesis of G and S lignin. The Plant Cell,2001,13(1):73-88.
    28. Guo Y H, Yu Y P, Wang D, et al. GhZFP1, a novel CCCH‐type zinc finger protein fromcotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco byinteracting with GZIRD21Aand GZIPR5. New phytologist,2009,183(1):62-75.
    29. He Y, Doyle M R, Amasino R M. PAF1-complex-mediated histone methylation ofFLOWERING LOCUS C chromatin is required for the vernalization-responsive,winter-annual habit in Arabidopsis. Genes&development,2004,18(22):2774-2784.
    30. Hedden P, Phillips A L. Gibberellin metabolism: new insights revealed by the genes. Trends inplant science,2000,5(12):523-530.
    31. Hepworth S R, Valverde F, Ravenscroft D, et al. Antagonistic regulation of flowering‐timegene SOC1by CONSTANS and FLC via separate promoter motifs. The EMBO journal,2002,21(16):4327-4337.
    32. Hisamatsu T, King R W. The nature of floral signals in Arabidopsis. II. Roles forFLOWERING LOCUS T (FT) and gibberellin. Journal of experimental botany,2008,59(14):3821-3829.
    33. Hsieh M H, Goodman H M. The Arabidopsis IspH homolog is involved in the plastidnonmevalonate pathway of isoprenoid biosynthesis. Plant physiology,2005,138(2):641-653.
    34. Huang X, Zhang X, Yang S. A novel chloroplast-localized protein EMB1303is required forchloroplast development in Arabidopsis. Cell research,2009,19(10):1205-1216.
    35. Jackson LA, Shadle G L, Zhou R, et al. Improving saccharification efficiency of alfalfa stemsthrough modification of the terminal stages of monolignol biosynthesis. Bioenergy research,2008,1(3-4):180-192.
    36. Jiang Q, Zhang J Y, Guo X, et al. Physiological characterization of transgenic alfalfa(Medicago sativa) plants for improved drought tolerance. International journal of plantsciences,2009,170(8):969-978.
    37. Jin T, Chang Q, Li W, et al. Stress-inducible expression of GmDREB1conferred salt tolerancein transgenic alfalfa. Plant Cell, Tissue and Organ Culture (PCTOC),2010,100(2):219-227.
    38. Kamiya Y, Garc a-Mart n ez J L. Regulation of gibberellin biosynthesis by light. Currentopinion in plant biology,1999,2(5):398-403.
    39. Kim D H, Yamaguchi S, Lim S, et al. SOMNUS, a CCCH-type zinc finger protein inArabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. ThePlant Cell Online,2008,20(5):1260-1277.
    40. Kong Z, Li M, Yang W, et al. A novel nuclear-localized CCCH-type zinc finger protein,OsDOS, is involved in delaying leaf senescence in rice. Plant physiology,2006,141(4):1376-1388.
    41. Kozaki A, Hake S, Colasanti J. The maize ID1flowering time regulator is a zinc fingerprotein with novel DNA binding properties. Nucleic acids research,2004,32(5):1710-1720.
    42. Lai W S, Carballo E, Thorn J M, et al. Interactions of CCCH zinc finger proteins with mRNAbinding of tristetraprolin-related zinc finger proteins to Au-rich elements and destabilizationof mRNA. Journal of Biological Chemistry,2000,275(23):17827-17837.
    43. Lai W S, Kennington E A, Blackshear P J. Tristetraprolin and its family members can promotethe cell-free deadenylation of AU-rich element-containing mRNAs by poly (A) ribonuclease.Molecular and cellular biology,2003,23(11):3798-3812.
    44. Lange T. Molecular biology of gibberellin synthesis. Planta,1998,204(4):409-419.
    45. Lee I, Aukerman M J, Gore S L, et al. Isolation of LUMINIDEPENDENS: a gene involved inthe control of flowering time in Arabidopsis. The Plant Cell Online,1994,6(1):75-83.
    46. Levy Y Y, Mesnage S, Mylne J S, et al. Multiple roles of Arabidopsis VRN1in vernalizationand flowering time control. Science,2002,297(5579):243-246.
    47. Li J, Jia D, Chen X. HUA1, a regulator of stamen and carpel identities in Arabidopsis, codesfor a nuclear RNA binding protein. The Plant Cell,2001,13(10):2269-2281.
    48. Li W, Wang D, Jin T, et al. The vacuolar Na+/H+antiporter gene SsNHX1from the halophyteSalsola soda confers salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant MolecularBiology Reporter,2011,29(2):278-290.
    49. Li Z, Thomas T L. PEI1, an embryo-specific zinc finger protein gene required for heart-stageembryo formation in Arabidopsis. The Plant Cell,1998,10(3):383-398.
    50. Liu Z H, Zhang H M, Li G L, et al. Enhancement of salt tolerance in alfalfa transformed withthe gene encoding for betaine aldehyde dehydrogenase. Euphytica,2011,178(3):363-372.
    51. Macknight R, Bancroft I, Page T, et al. FCA, a Gene Controlling Flowering Time inArabidopsis, Encodes a Protein Containing RNA-Binding Domains. Cell,1997,89:737-745.
    52. Más P, Alabadí D, Yanovsky M J, et al. Dual role of TOC1in the control of circadian andphotomorphogenic responses in Arabidopsis. The Plant Cell Online,2003,15(1):223-236.
    53. McKersie B D, Murnaghan J, Jones K S, et al. Iron-superoxide dismutase expression intransgenic alfalfa increases winter survival without a detectable increase in photosyntheticoxidative stress tolerance. Plant Physiology,2000,122(4):1427-1438.
    54. Michaels S D, Amasino R M. FLOWERING LOCUS C encodes a novel MADS domainprotein that acts as a repressor of flowering. The Plant Cell Online,1999,11(5):949-956.
    55. Molecular Breeding of Forage Crops: Proceedings of the2nd International Symposium,Molecular Breeding of Forage Crops, Lorne and Hamilton, Victoria, Australia, November19-24,2000[M. Springer,2001.
    56. Moon J, Suh S S, Lee H, et al. The SOC1MADS‐box gene integrates vernalization andgibberellin signals for flowering in Arabidopsis. The Plant Journal,2003,35(5):613-623.
    57. Nievelstein V, Vandekerckhove J, Tadros M H, et al. Carotene desaturation is linked to arespiratory redox pathway in Narcissus pseudonarcissus chromoplast membranes. Europeanjournal of biochemistry,1995,233(3):864-872.
    58. Norris S R, Barrette T R, DellaPenna D. Genetic dissection of carotenoid synthesis inArabidopsis defines plastoquinone as an essential component of phytoene desaturation. ThePlant Cell Online,1995,7(12):2139-2149.
    59. Passos L P, K pp M M, Silva Lédo F J. Performance of tetraploid alfalfa genotypes asexposed to aluminum toxicity.Agricultural Sciences,2012,3(2).
    60. Pomeranz M C, Hah C, Lin P C, et al. The Arabidopsis tandem zinc finger protein AtTZF1traffics between the nucleus and cytoplasmic foci and binds both DNA and RNA. Plantphysiology,2010,152(1):151-165.
    61. Putterill J, Laurie R, Macknight R. It's time to flower: the genetic control of flowering time.Bioessays,2004,26(4):363-373.
    62. Qin G, Gu H, Ma L, et al. Disruption of phytoene desaturase gene results in albino and dwarfphenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis.Cell research,2007,17(5):471-482.
    63. Quail P H. Phytochrome photosensory signalling networks. Nature Reviews Molecular CellBiology,2002,3(2):85-93.
    64. Ramos S B V, Stumpo D J, Kennington E A, et al. The CCCH tandem zinc-finger proteinZfp36l2is crucial for female fertility and early embryonic development. Development,2004,131(19):4883-4893.
    65. Reddy M S S, Chen F, Shadle G, et al. Targeted down-regulation of cytochrome P450enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proceedings of theNationalAcademy of Sciences of the United States ofAmerica,2005,102(46):16573-16578.
    66. Rock C D, Zeevaart J A. The aba mutant of Arabidopsis thaliana is impaired inepoxy-carotenoid biosynthesis. Proceedings of the National Academy of Sciences,1991,88(17):7496-7499.
    67. Rosellini D, Barone P, Bouton J, et al. Aluminum tolerance in alfalfa with the citrate synthasegene [C//38th report of the north american alfalfa improvement conference.2002.
    68. Sadre R, Frentzen M, Saeed M, et al. Catalytic reactions of the homogentisate prenyltransferase involved in plastoquinone-9biosynthesis. Journal of biological chemistry,2010,285(24):18191-18198.
    69. Sadre R, Gruber J, Frentzen M. Characterization of homogentisate prenyltransferasesinvolved in plastoquinone-9and tocochromanol biosynthesis. FEBS letters,2006,580(22):5357-5362.
    70. Samac D A, Smigocki A C. Expression of oryzacystatin I and II in alfalfa increases resistanceto the root-lesion nematode. Phytopathology,2003,93(7):799-804.
    71. Schmitz R J, Hong L, Michaels S, et al. FRIGIDA-ESSENTIAL1interacts genetically withFRIGIDA and FRIGIDA-LIKE1to promote the winter-annual habit of Arabidopsis thaliana.Development,2005,132(24):5471-5478.
    72. Schwartz C, Balasubramanian S, Warthmann N, et al. Cis-regulatory changes atFLOWERING LOCUS T mediate natural variation in flowering responses of Arabidopsisthaliana. Genetics,2009,183(2):723-732.
    73. Sheldon C C, Rouse D T, Finnegan E J, et al. The molecular basis of vernalization: the centralrole of FLOWERING LOCUS C (FLC). Proceedings of the National Academy of Sciences,2000,97(7):3753-3758.
    74. Soderlund C, Descour A, Kudrna D, et al. Sequencing, mapping, and analysis of27,455maizefull-length cDNAs. PLoS genetics,2009,5(11): e1000740.
    75. Strizhov N, Keller M, Mathur J, et al. A synthetic cryIC gene, encoding a Bacillusthuringiensis δ-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proceedingsof the NationalAcademy of Sciences,1996,93(26):15012-15017.
    76. Sun J, Jiang H, Xu Y, et al. The CCCH-type zinc finger proteins AtSZF1and AtSZF2regulatesalt stress responses in Arabidopsis. Plant and cell physiology,2007,48(8):1148-1158.
    77. Sung S, Amasino R M. Vernalization in Arabidopsis thaliana is mediated by the PHD fingerprotein VIN3. Nature,2004,427(6970):159-164.
    78. Tesfaye M, Temple S J, Allan D L, et al. Overexpression of malate dehydrogenase intransgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. PlantPhysiology,2001,127(4):1836-1844.
    79. Tian L, DellaPenna D, Dixon R A. The pds2mutation is a lesion in the Arabidopsishomogentisate solanesyltransferase gene involved in plastoquinone biosynthesis. Planta,2007,226(4):1067-1073.
    80. Valverde F, Mouradov A, Soppe W, et al. Photoreceptor regulation of CONSTANS protein inphotoperiodic flowering. Science,2004,303(5660):1003-1006.
    81. Venkatesh T V, Karunanandaa B, Free D L, et al. Identification and characterization of anArabidopsis homogentisate phytyltransferase paralog. Planta,2006,223(6):1134-1144.
    82. Wang L, Xu Y, Zhang C, et al. OsLIC, a novel CCCH-type zinc finger protein withtranscription activation, mediates rice architecture via brassinosteroids signaling. PLoS One,2008,3(10): e3521.
    83. Winicov I, Bastola D R. Transgenic Overexpression of the Transcription FactorAlfin1Enhances Expression of the Endogenous MsPRP2Gene in Alfalfa and Improves SalinityTolerance of the Plants. Plant physiology,1999,120(2):473-480.
    84. Xing S, Miao J, Li S, et al. Disruption of the1-deoxy-D-xylulose-5-phosphatereductoisomerase (DXR) gene results in albino, dwarf and defects in trichome initiation andstomata closure in Arabidopsis. Cell research,2010,20(6):688-700.
    85. Yamaguchi S, Kamiya Y. Gibberellin biosynthesis: its regulation by endogenous andenvironmental signals. Plant and Cell Physiology,2000,41(3):251-257.
    86. Yang W, Cahoon R E, Hunter S C, et al. Vitamin E biosynthesis: functional characterization ofthe monocot homogentisate geranylgeranyl transferase. The Plant Journal,2011,65(2):206-217.
    87. Zhang J Y, Broeckling C D, Blancaflor E B, et al. Overexpression of WXP1, a putativeMedicago truncatula AP2domain‐containing transcription factor gene, increases cuticularwax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa).The Plant Journal,2005,42(5):689-707.
    88. Zhou Y, Ni M. SHB1plays dual roles in photoperiodic and autonomous flowering.Developmental biology,2009,331(1):50-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700