桃花发育相关MADS box基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桃开花时间和花器官发育是重要农艺性状。桃开花时间有2层含义:其一是经过2到5年的幼年期生长过渡到生殖生长第一次开花;其二是具有开花能力的果树每年秋天分化花芽,然后花芽冬眠,次年开花,称为季节性开花。缩短果树到达第一次开花的时间对加快果树育种和生产具有实际意义。较长的幼年期严重影响桃属果树的品种选育、遗传改良和果树生产。寻找控制桃属植物季节性开花的遗传位点和基因有特别重要的应用价值:桃花的发育和最终产量密切相关。
     前人对桃属果树及其他蔷薇科植物花发育的遗传位点有较多分析。由于像桃这样的木本植物生长周期长、遗传操作困难,对其花发育的分子遗传控制机制知之甚少。另一方面,近年模式植物花发育有大量研究,揭示出了一个由众多基因组成的调控网络,其中花器官特性基因MADS box基因是这个网络的关键节点,它们在开花时间、花器官发育和果实发育中有重要功能。这些基因在桃中的同源基因可能是控制桃花发育的重要候选基因。本研究从2个方面来研究它们:桃中花发育候选基因的克隆和功能鉴定,基因的分子标记发展和遗传定位并检测其位置是否与前人鉴定的开花时间和花器官发育的遗传位点重合。本研究得到如下结果:
     1:通过EST搜索、RACE、同源克隆等方法共克隆8个具有完整编码区的MADS box基因,它们属于B、C、D、E四类花器官特性基因。
     2:3个E(SEPALLATA)类基因PrpMADS2、PrpMADS5和PrpMADS7属于3个不同的亚分支,SOUTHERN分析表明3个基因在桃基因组中为单拷贝,它们集中在花和果实中表达,但表达模式各不相同。过表达PrpMADS2的拟南芥与野生型对照相比没有明显差异。在拟南芥中过表达PrpMADS5和PrpMADS7都能促进开花,但PrpMSDS7促进开花的功能更强。PrpMADS5和转录抑制子SRDX融合转化拟南芥可导致花器官发育异常,表明PrpMADS5在花器官发育中扮演重要功能。
     3:系统进化分析表明PrpMADS4、PrpMADS8、PrpMADS9可能是拟南芥AG、SHP、STK的直向同源基因。PrpMADS10和PrpMADS11能是拟南芥PI和TM6的直向同源基因。在拟南芥中过表达PrpMADS4可模拟AG功能。
     4:把PrpMADS2、PrpMADS4和PrpMADS5转化为高多态性的SSR标记,并将PrpMADS5定位在桃的第1连锁群上,PrpMADS2和PrpMADS4同在第5连锁群上。目前还没有发现它们与桃属植物开花时间和花器官发育遗传位点的联系。
     此外本论文还讨论了利用基因内SSR标记和公共EST数据库挖掘控制重要农艺性状候选基因的途径。
     我国有丰富的与桃花发育性状有关的遗传资源,我们的最终目的是找到控制这些重要遗传变异的分子基础并用于桃属果树的遗传改良。本文所克隆基因可能是解释这些变异的重要候选基因。
The knowledge of the genetic control of flowering time and floral organ development in peach may have a significant importance for fruit improvement in Prunus species. More than ten QTLs and major loci associated with blooming time and flower development were identified in Prunus species; however, the molecular factors that control these traits are largely unknown. In contrast, many genes known to control flowering time and floral organ formation have been identified and characterized in model plants, mainly in Arabidopsis thaliana, and a complex network has been established. In this network, floral organ identity genes, MADS box genes, play crucial roles. Assuming that a similar mechanism controls flower development in the model herbaceous and in Prunus species, we should be able to identify candidate key genes homologous with those of model plants and then associate them with the above mentioned traits.
    In this paper we report the isolation of eight MADS box genes with complete coding region. Through analyses of their gene sequences and phylogeny it was revealed that they belonged to the distinct clades of the floral identity gene families.
    PrpMADS2, PrpMADS5 and PrpMADS7, which belong to distinct SEP gene clades, appear as single copy genes in the peach genome and were found to preferentially express in flower organs and fruits. Arabidopsis transformants expressing 35S::PrpMADS2 were indistinguishable from wild type plants. Overexpression of PrpMADS5 led to earlier flowering. Through chimeric repressor silencing technology, PrpMADS5 was found to function in floral organ development. Expression of PrpMADS7 in Arabidopsis caused a dramatic attenuation of both juvenile and adult growth phases and, in severely affected plants, it led to flower formation immediately after the embryonic phase.
    PrpMADS4、 PrpMADS8、 PrpMADS9、 PrpMADS10 and PrpMADS11 are the putative orthologues of AG、 SHP、 STK、 PI and TM6, respectively. Overexpressing PrpMADS4 in Arabidopsis demonstrate it can function like AGAMOUS.
    Moreover, based on the sequence variations three SSR markers were developed for PrpMADS2, PrpMADS4 and PrpMADS5. PrpMADS2 and PrpMADS4 were assigned to the linkage group 5 and PrpMADS5 to the group 1. We could not find co-locolization between our MADS box genes and the loci reported that control flower development in peach.
引文
王力荣,朱更瑞,左覃元,方伟超(2000)短低温桃和油桃育种进展。果树科学,17:57—62,
    姚家琳,付春华,胡春根(2000)李胚胎发育中败育现象的研究。华中农业大学学报,19:71—73
    胡宝忠,李桂琴,桂明珠(1997)杏大小抱子与雌雄配子体发育。东北农业大学学报,28:179-185
    张春英,戴思兰,张秀英(1999)桃花种质资源的数量分类学研究。北京林业大学学报
    王坷(2005)桃属不同种花芽分化特性及遗传倾向的研究。河南农业大学硕士学位论文
    张潞生(1994)桃早花种类雌雄配子体发育特性的研究。园艺学报,21:13-16
    Abe, M., Kobayashi, Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:052-1056
    Albrecht C, Russinova E, Hecht V, Baaijens E, de Vries S (2005) The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis.Plant Cell 17(12):3337-49
    Alen C, Kent N A, Jones H S, O'Sullivan J, Aranda, A. Proudfoot N J (2002) A role for chromatin remodeling in transcriptional termination by RNA polymerase Ⅱ. Mol. Cell 10:1441-1452
    Alvarez-Buylla E R, Liljegren S J, Pelaz S, Gold S J, Burgeff C,Ditta GS, Verara-Silva F, Yanofsky, M. F (2000) MADS-box gene evolution beyond flowerRs: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24:1-11
    Amador V, Monte E, Garcia-Martinez JL, Prat S (2001) Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo. Cell 106:343-354
    Ampomah-Dwamena C, Morris BA, Sutherland P, Veit B, Yao JL (2002) Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol 130:605-617
    Angenent GC, Busscher M, Franken J, Mol JNM, van Tunen AJ (1992) Differential expression of two MADS box genes in wild type and mutant petunia flowerRs. Plant Cell 4:983-993
    Angenent GC, Franken J, Busscher M, Weiss D, van Tunen AJ (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J 5: 33-44
    Aoki S, Uehara K, Imafuku M, Hasebe M, Ito M (2004) Phylogeny divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes. J Plant Res 117:229-244
    Araki T (2001) Transition from vegetative to reproductive phase. Curr Opin Plant Biol 4:63-68
    Aubert D, Chen L, Moon YH, Martin D, Castle LA, Yang CH,Sung ZR (2001) EMF1, a novel protein involved in the control of shoot architecture and flowerRing in Arabidopsis. Plant Cell 13:1865-1875
    Aukerman MJ, Sakai H (2003). Regulation of flowerRing time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15:2730-2741
    Ausin I, Alonso-Blanco C, Jarillo JA, Ruiz-Garcia L, Martinez- Zapater JM (2004). Regulation of flowerRing time by FVE, a retinoblastoma-associated protein. Nat Genet 36: 162-166
    Baird WV, Estager AS, Wells J (1994) Estimating nuclear DNA content in peach and related diploid species using laser flow cytometry and DNA hybridization. J Am Soc Hortic Sci 119:1312-1316
    Ballester J, Socias I Company R, Arus P, de Vicente MC (2001) Genetic mapping of a major gene delaying blooming time in almond. Plant Breed 120:268-270
    Bannister A J, Zegerman P, Partridge J F, Miska E A, Thomas J O, Allshire R C, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120-124
    Bastow R, Mylne J S, Lister C, Lippman Z, Martienssen R A, Dean C (2004)Vernalization requires epigenetic silencing of FLC by histone methylation.Nature 427:164-167
    Batschauer A (1999) Light perception in higher plants. Cell Mol. Life Sci 55: 153-166
    Battey NH (2000). Aspects of seasonality. J. Exp. Bot. 51:1769-1780.
    Baurle I, Dean C (2006) The timing of developmental transitions in plants. Cell.125(4):655-64
    Becker A, Kaufmann K, Freialdenhoven A, Vincent C, Li MA, Saedler H, Theissen G,(2002) A novel MADS-box gene subfamily with a sistergroup relationship to class B floral homeotic genes. Mol Genet Genomics 266:942-950
    Becker A, Saedler H, Theissen G (2003) Distinct MADS-box gene expression patterns in the reproductive cones of the gymnosperm Gnetum gnemon. Dev Genes Evol 213:567-572
    Becker A, Winter KU, Meyer B, Saedler H, Theissen G (2000) MADS box gene diversity in seed plants 300 million years ago. Mol Biol Evol 17:1425-1434
    Bielenberg DG, Wang Y, Fan S, Reighard GL, Scorza R, Abbott AG (2004) A deletion affecting several gene candidates is present in the Evergrowing peach mutant. J Hered 95:436-444
    Bielengerg D, Wang Y, Reighard G, Scorza R, Abbott A (2003) Sequencing and analysis of the peach evg locus. Hort science 38:738
    Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16, 6-21
    Blazquez MA (2000) Flower development pathways. J Cell Sci 113: 3547-3548
    Blazquez MA, Soowal LN, Lee I, Weigel D (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124: 3835-3844
    Blazquez MA, Trenor M, Weigel D (2002) Independent control of gibberellin biosynthesis and flowering time by the circadian clock in Arabidopsis. Plant Physiol 130:1770-1775
    Blazquez MA, Weigel D (2000) Integration of floral inductive signals in Arabidopsis. Nature 404: 889-892
    Blazquez MA, Green R, Nilsson O, Sussman M R, Weigel, D (1998) Gibberellins promote flowerRing of Arabidopsis by activating the LEAFY promoter. Plant Cell 10:791-800
    Blazquez MA, Ahn JH, Weigel D (2003) A thermosensory pathway controlling flowerRing time in Arabidopsis thaliana. Nat Genet 33:168-171
    Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowerRing and seasonal growth cessation in trees. Science 312:1040-1043
    Boile C, Koncz C, Chua NH. (2000) PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes Dev 14: 1269-1278
    Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flowerR: enabling, promoting, and resetting. Plant Cell 16:S18-S31
    Bradley DJ, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80-83
    Bradley D, Carpenter R, Sommer H, Hartley N, Coen E (1993) Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the PLENA locus of Antirrhinum. Cell 72:85-95
    Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275: 80-83
    Brown T, Wareing PF (1965) The genetic control of the everbearing habit and three other characters in varieties of Fragaria vesca. Euphytica 14:97-112
    Busch MA, Bomblies K, Weigel D (1999) Activation of a floral homeotic gene in Arabidopsis.Science 285:585 - 587
    Canales C, Bhatt AM, Scott R, Dickinson H (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol 12:1718-1727
    Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones R S, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing.Science 298: 1039-1043
    Cashmore AR, Jarillo JA, Wu YJ, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284: 760-765
    Castillejo C, Romera-Branchat M, Pelaz S (2005) A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression. Plant J 43(4):586-596
    Causier B, Castillo R, Zhou J, Ingram R, Xue Y, Schwarz-Sommer Z, Davies B (2005) Evolution in action following function in duplicated floral homeotic genes. Curr Biol 15.1508-1512
    Cerdan PD and Chory J (2003) Regulation of flowerRing time by light quality. Nature 423: 881-885
    Chandler J, Wilson A, Dean C (1996) Arabidopsis mutants showing an altered response to vernalization. Plant J 10: 637-644
    Chen LJ, Cheng JC, Castle L, Sung ZR (1997) EMF genes regulate Arabidopsis inflorescence development. Plant Cell 9:2011-2024
    Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis fR development. Science 303:2022-2025
    Chouard P (1960) Vernalization and its relations to dormancy. Ann. Rev Plant Physiol 11:191-237
    Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735-743
    Colcombet J, Boisson-Dernier A, Ros-Palau R, Vera CE, Schroeder JI (2005) Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES 1 and 2 are essential for tapetum development and microspore maturation.Plant Cell.17:3350-3361
    Coles JP, Phillips AL, Croker SJ, Garcia-Lepe R., Lewis MJ, Hedden P (1999) Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J 17:547-558
    Colombo L, Franken J, Koetje E, van Went J, Dons H, Angenent G, van Tunen A (1995) The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7:1859-1868
    Corbesier L, Coupland G (2005) Photoperiodic flowering of Arabidopsis: integrating genetic and physiological approaches to characterization of the floral stimulus.Plant Cell and Environment 28: 54-66
    Cseke LJ, Cseke SB, Ravinder N, Taylor LC (2005) SEP-class genes in Populus tremuloides and their likely role in reproductive survival of poplar trees. Gene 358:1-16
    Davies B, Motte P, Keck E, Saedler H, Sommer H, Schwarz-Sommer Z (1999) PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J 18,4023-4034
    Debener T (1999) Genetic analysis of horticulturally important morphological and physiological characters in diploid roses. Gartenbauwissenschaft 64:14 - 20
    Debener T, von Malek B, Mattiesch L, Kaufinann H (2001) Genetic and molecular analysis of important characters in roses. Acta Hort 547:45 - 49
    Dill A, Jung HS, Sun T P (2001) The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci 98: 14162-14167
    Dill A, Sun TP (2001) Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159: 777-785
    Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arus P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci 101(26):9891-9896
    Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batch). Theor Appl Genet 98:18-31
    Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935-1940
    Dugo ML, Satovic Z, Millan T, Cubero JI, Rubiales D, Cabrera A, Torres AM (2005) Genetic mapping of QTLs controlling horticultural traits in diploid roses. Theor Appl Genet 111:511-520
    Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, and Colombo L (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15:2603-2611
    Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127: 725-734
    Ferrandiz C, Liljegren SJ, Yanofeky MF (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development.Science 289:436-438
    Ferrario S, Immink RG, Shchennikova A, Busscher-Lange J, Angenent GC (2003)
    The MADS box gene FBP2 is required for SEPALLATA function in petunia.Plant Cell 15:914-925
    Finnegan E J, Genger R K, Kovac K, Peacock W J, Dennis E S (1998) DNA methylation and the promotion of flowerRing by vernalization. Proc Natl Acad Sci 95: 5824-5829.
    Fischle W, Wang Y, Allis C D (2003) Binary switches modification cassettes in histone biology and beyond. Nature 425: 475-479.
    Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J18: 4679-4688
    Franco-Zorrilla JM, Cubas P, Jarillo JA, Fernandez-Calvin B, Salinas J,Martinez-Zapater JM (2002) AtREM1, a member of a new family of B3 domain-containing genes, is preferentially expressed in reproductive meristems.Plant Physiol 128:418-27
    Fukui M, Futamura N, Mukai Y, Wang Y, Nagao A, Shinohara K (2001) Ancestral MADS box genes in Sugi, Cryptomeria japonica D. Don (Taxodiaceae),homologous to the B function genes in angiosperms. Plant Cell Physiol 42:566-575
    Furuya M, Schafer E (1996) Photo perception and signaling of induction reactions by different phytochromes. Trends Plant Sci 1: 301-307
    Gaudin V, Limbault M, Pouteau S, Juul T, Zhao G, Lefebvre D, Grandjean O (2001) Mutations in LIKE HETEROCHROMATIN PROTEIN 1 affect flowerRing time and plant architecture in Arabidopsis. Development 128: 4847-4858
    Gazzani S, Gendall AR, Lister C Dean C (2003) Analysis of the molecular basis of flowerRing time variation in Arabidopsis accessions. Plant Physiol 132:1107-1114
    Gendall AR, Levy YY, Wilson A Dean C (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107:525-535
    Georgi LL,Wang Y,Reighard GL,Mao L,Wing RA,Abbott AG (2003) Comparison of peach and Arabidopsis genomic sequences: fragmentary conservation of gene neighborhoods. Genome 6:268-76
    Gomez-Mena C, de Folter S, Costa MM, Angenent GC, Sablowski R (2005) Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132(3):429-38
    Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz EM, Coupland G (1997) A polycomb-group gene regulates homeotic gene expression in Arabidopsis.Nature 386:44-51
    Greco R, Stagi L, Colombo L, Angenent GC, Sari-Gorla M, Pe ME (1997) MADS box genes expressed in developing inflorescences of rice and sorghum. Mol Gen Genet 253:615-623
    Gu Q, Ferrandiz C, Yanofsky M.F, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125: 1509-1517
    Halliday KJ, Salter MG, Thingnaes E ,Whitelam G C (2003) Phytochrome control of flowerRing is temperature sensitive and correlates with expression of the floral integrator FT. Plant J 33: 875-885
    Hama E, Takumi S, Ogihara Y, Murai K (2004) Pistillody is caused by alterations to the class-B MADS-box gene expression pattern in alloplasmic wheats. Planta 218:712-720
    Hartmann U, Hohmann S, Nettesheim K, Wisman E, Saedler H, Huijser P (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J 21: 351-360
    He Y, Michaels SD, Amasino RM (2003) Regulation of flowering time by histone acetylation in Arabidopsis. Science 302:1751-1754
    Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819-832
    Henderson IR, Dean C (2004) Control of Arabidopsis flowerRing: the chill before the bloom. Development 131:3829-38
    Hepworth S R, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002) Antagonistic regulation of flowerRing-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J 21: 4327-4337
    Hibrand-Saint Oyant L, Crespel L, Rajapakse S. Zhang L, Foucher F (2007) Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowerRing traits. Tree Genetics & Genomes Published online
    Higginson T, Li SF, Parish RW (2003) AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J 35:177-192
    Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J 34:733-739
    Hong M (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowerRing time Annu. Rev Plant Biol 56:393-434
    Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525-529
    Horn R, Lecouls A, Callahan AM, Dandekar A, Garay L, Mccord P, Howad W, Chan H, Verde I, Ramaswamy K, Main D, Jung S, Georgi L, Forrest S, Mook J, Zhebentyayeva T, Yu Y, Kim H, Jesudurai C, Sosinski B, Arus P, Baird V, Parfitt D, Reighard G, Scorza R, Tomkins J, Wing R, Abbott A (2005) Candidate gene data base and transcript map for peach: a model species for fruit trees. Theor Appl Genet 110:1419-1428
    Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arus P.(2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map.Genetics 171(3):1305-1309
    Huang H, Mizukami Y, Hu Y, Ma H (1993) Isolation and characterization of the bindingsequences or the product of the Arabidopsis floral homeotic gene AGAMOUS. Nucleic Acids Res 21: 4769-4776
    Huang H, Tudor M, Su T, Zhang Y, Hu Y, Ma H (1996) DNA binding properties of two Arabidopsis MADS domain proteins: Binding consensus and dimer formation. Plant Cell 8:81-94
    Huang H, Tudor M, Weiss C A, Hu Y, Ma H. (1995) The Arabidopsis MADS-box gene AGL3 is widely expressed and encodes a sequence-specific DNA-binding protein. Plant Mol Biol 28: 549-567
    Huang SS, Raman AS, Ream JE, Fujiwara H, Cerny RE, Brown SM (1998) Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol 118: 773-781
    Huang T, Bohlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309:1694-1696
    Ito T, Wellmer F, Yu H, Das P, Ito N, et al. (2004) The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 430:356-360
    Izawa T, Takahashi Y, Yano M (2003) Comparative biology comes into bloom: genomic and genetic comparison of flowerRing pathways in rice and Arabidopsis.Curr Opin Plant Biol 6:113-120
    Jackson J P, Johnson L, Jasencakova Z, Zhang X, PerezBurgos L, Singh P B, Cheng X, Schubert I, Jenuwein T, Jacobsen, S E (2004) Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112:308-315
    Jang S, An K, Lee S, An G (2002) Characterization of tobacco MADS-box genes involved in floral initiation. Plant Cell Physiol 43,230-238
    Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH, Chung YY, Kim SR, Lee YH, Cho YG, An G (2000) leafy hull sterilel is a homeotic mutation in a rice MADS box gene affecting rice flowerR development. Plant Cell 12:871-884
    Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGID A, a major determinant of natural variation in Arabidopsis flowerRing time. Science 290: 344-347
    Jung S, Main D, Staton M, Cho I, Zhebentyayeva T, Arus P, Abbott A(2006)Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. BMC Genomics 7:81
    Kang H, Jang S, Chung J, Cho Y, An G (1997) Characterization of two rice MADS box genes that control flowerRing time. Mol Cells 7:559-566
    Kania T, Russenberger D, Peng S, Apel K, Melzer S (1997) FPF1 promotes flowering in Arabidopsis. Plant Cell 9: 1327-1338
    Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ and Weigel D (1999)
    Keck E, McSteen P, Carpenter R, Coen E (2003) Separation of genetic functions controlling organ identity in owers. EMBO Journal 22:1058-1066.
    Kester DE (1965) Inheritance of time of bloom in certain progenies of almond. Proc Am Soc Hortic Sci 87:214-221
    Kinoshita T, Harada JJ, Goldberg RB, Fischer RL (2001) Polycomb repression of flowerRing during early plant development. Proc Natl Acad Sci 98,14156-14161
    Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286: 1960-1962
    Komeda Y (2004) Genetic regulation of time to flower in Arabidospis thaliana. Annu. Rev. Plant Biol 55:521-535
    Koornneef M, Blankestijn-de Vries H, Hanhart C, Soppe W, Peeters T (1994). The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type. Plant J 6: 911-919
    Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57-66
    Koornneef M, van der Veen J H (1980) Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (1) Heynh. Theor Appl Genet 58: 257-263
    Koornneef M, Alonso-Blanco C, Blankestijn-de Vries H, Hanhart CJ, Peeters AJ (1998) Genetic interactions among late-flowering mutants of Arabidopsis.Genetics 148: 885-892
    Koornneef M, Hanhart C J, Van der Veen J H (1991) A genetic and physiological, analysis of late flowerRing mutants in Arabidopsis thaliana. Mol Gen Genet 229:57-66
    Kotake T, Takada S, Nakahigashi K, Ohto M, Goto K (2003)Arabidopsis TERMINAL FLOWERR2 gene encodes a HETEROCHROMATIN PROTEIN1 homolog and represses both FLOWERRING LOCUS T to regulate flowering time and several floral homeotic genes Plant Cell Physiol 44:555-564
    Kotilainen M,Elomaa P,Uimari A, Albert VA,Yu D,Teeri TH (2000) GRCD1, an AGL2-like MADS Box gene, participates in the C function during stamen development in Gerbera hybrida. Plant Cell 12: 1893-1902
    Kramer EM, Jaramillo MA, Di Stilio VS (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166:1011-1023
    Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein.Genes Dev 16: 2893-2905
    Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH(2007)Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21:397-402
    Lee H, Suh S S, Park E, Cho E, Ahn J H, Kim S G, Lee J S, Kwon Y M, Lee I (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14:2366-2376
    Lee I, Michaels S D, Masshardt A S Amasino R M (1994) The late-flowering phenotype of FRIGID A and mutations in LUMINIDEPENDENS is suppressed in the Landsberg erecta strain of Arabidopsis. Plant J 6: 903-909
    Lemmetyinen J, Hassinen M, Elo A, Porali I, Keinonen K, Makela H, Sopanen T (2004) Functional characterization of SEPALLATA3 and AGAMOUS orthologues in silver birch. Physiol Plant 121: 149-162
    Lenhard M, Bohnert A, Jurgens G, Laux T (2001) Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105:805-814
    Lenhard M, Bohnert A, Jurgens G, Laux T. (2001). Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell105:805-814
    Levy YY, Mesnage S, Mylne JS, Gendall AR, Dean C (2002) Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297:243-246
    Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWERR1 specify meristem fate. Plant Cell 11:1007-1008
    Lim MH, Kim J, Kim Y.-S, Chung K.-S, Seo Y.-H, Lee I, Kim I,Kim J, Hong C B, Kim H.-J (2004) A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowerRing via FLOWERRING LOCUS C.Plant Cell 16: 731-740
    Lin C (2000) Plant blue-light receptors. Trends Plant Sci 5: 337-342
    Lin C (2000) Photoreceptors and regulation of flowering time. Plant Physiol 123:39-50
    Lin C (2002) Blue light receptors and signal transduction. Plant Cell 14 (suppl.):S207-S225
    Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, Simon R, Weigel D (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis.Cell 105:793-803
    Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151-1155
    Lynch M, Force A (2000)The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459-473
    Ma H, Yanofsky MF, Meyerowitz EM (1991) AGL1AGL6, an Arabidopsis gene family with similarity to floral hometic and transcription factor genes. Genes Dev 5:484-495
    Macknight R, Bancroft I, Page T, ListerC, Schmidt R, LoveK,Westphal L, Murphy G, Sherson S, Cobbett C . (1997) FCA, a gene controlling flowerRing time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89:737-745.
    Macknight R, Duroux M, Laurie R, Dijkwel P, Simpson G, Dean C (2002) Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA. Plant Cell 14: 877-888
    Malcomber ST, Kellogg EA (2004) Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses. Plant Cell 16:1692-1706
    Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky M F (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273-277
    Mandel MA, Yanofsky MF (1995) A gene triggering flower formation in Arabidopsis. Nature 377:522-524
    Mandel MA, Yanofsky MF (1998) The Arabidopsis AGL9 MADS box gene is expressed in young flowerR primordia. Sex Plant Reprod 11:22-28
    Mao L, Begum D, Chuang HW, Budiman MA, Szymkowiak EJ, Irish EE, Wing RA, 2000. JOINTLESS is a MADS-box gene controlling tomato flowerR abscission zone development. Nature 406:910-913.
    Markel H, Chandler J, Werr W (2002) Translational fusions with the engrailed repressor domain efficiently convert plant transcription factors into dominant-negative functions. Nucleic Acids Res 30:4709-4719
    Martinez-Garcia JF, Huq E, Quail PH (2000) Direct targeting of light signals to a promoter element-bound transcription factor. Science 288: 859-863
    Melzer S, Kampmann G., Chandler J, Apel K. (1999) FPF1 modulates the competence to flowering in Arabidopsis. Plant J 18: 395-405
    Michaels SD, He Y, Scortecci KC, Amasino RM.(2003)Attenuation of FLOWERRING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci 100:10102-10107
    Michaels SD, Amasino RM (2001) Loss of FLOWERRING LOCUS C activity eliminates the late-flowerRing phenotype of FRIGID A and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13: 935-941
    Michaels SD, Amasino RM (1999) FLOWERRING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11: 949-956
    Michaels SD, Bezerra IC, Amasino RM (2004) FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis. Proc Natl Acad Sci 101: 3281-3285
    Michaels S D, He Y, Scortecci K C Amasino R M (2003) Attenuation of FLOWERRING LOCUS C activity as a mechanism for the evolution of summer-annual flowerRing behavior in Arabidopsis. Proc Natl Acad Sci 100:10102-10107
    Millar AJ, Carre LA Strayer CA, Chua NH, Kay SA (1995) Circadian clock mutants in Arabidopsis identified by luciferase imaging Science. 267: 1161-1163
    Moon J, Suh S S, Lee H, Choi K R, Hong C B, Paek N C, KimS G, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35: 613-623
    Moon YH, Chen L, Pan RL, Chang HS, Zhu T, Maffeo DM Sung ZR (2003) EMF genes maintain vegetative development by repressing the flower program in Arabidopsis. Plant Cell 15: 681-693
    Mouradov A, Cremer F, Coupland G (2002) Control of flowerRing time: interacting pathways as a basis for diversity. Plant Cell 14:S11 l-s130
    Mouradov A, Hamdorf B, Teasdale RD, Kim JT, Winter KU, Theissen G (1999) A DEF/GLO-like MADS-box gene from a gymnosperm: Pinus radiata contains an ortholog of angiosperm B class floral homeotic genes. Dev Genet 25:245-252
    Muller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, Miller EL, O'Connor MB, Kingston RE , Simon JA (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111: 197-208
    Munster T, Deleu W, Wingen LU, Cacharron J, Ouzunova M, Faigl W, Werth S, Kim,JTT, Saedler H, Theissen G (2002) Maize MADS-box genes galore Maydica 47:287-301
    Murai K, Takumi S, Koga H, Ogihara Y (2002) Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat. Plant J 29:169-181
    Murtas G, Reeves P H, Fu Y F, Bancroft I, Dean C, Coupland G (2003) A nuclear protease required for flowerRing-time regulation in Arabidopsis reduces the abundance of SMALL UBIQUITIN-RELATED MODIFIER conjugates. Plant Cell 15: 2308-2319
    Mylne JS, Barrett L, Tessadori F, Mesnage S, Johnson L,MBematavichute YV, Jacobsen SE, Fransz P, Dean C (2006) LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN 1, is required for epigenetic silencing of FLC.Proc Natl Acad Sci 103: 5012-5017
    Nam J, Kim J, Lee S, An G, Ma H, Nei M (2004) Type Ⅰ MADSbox genes have experienced faster birth-and-death evolution than type Ⅱ MADS-box genes in angiosperms. Proc Natl Acad Sci 101:1910-1915
    Nelson DC, Lasswell J, Rogg LE, Cohen M A, Bartel B (2000) FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101: 331-340
    Ng M, Yanofsky MF (2001) Function and evolution of the plant MADS-box genes. Nat Rev Genet 2:186-195
    Nilsson O, Lee I, Blazquez MA, Weigel D (1998) FlowerRing time enes modulate the response to LEAFY activity. Genetics 150:403-410
    Noh Y-S Amasino R M (2003) PIE 1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis. Plant Cell 15: 1671-1682
    Page RDM (1996) TREEVIEW: An application to display phylogenetic trees on personal computers Comput Appl Biosci 12: 357-358
    Pandey R, Muller A, Napoli CA, Selinger DA, Pikaard CS, Richards EJ, Bender J, Mount DW, Jorgensen RA (2002)Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatinmodification among multi cellular eukaryotes. Nucl Acids Res 30: 5036-5055
    Parcy F, Bomblies K, Weigel D (2002) Interaction of LEAFY, AGAMOUS and TERMINAL FLOWERR1 in maintaining floral meristem identity in Arabidopsis.Development 129:2519-2527
    Parcy F, Nilsson O, Busch MA, Weigel D (1998) A genetic framework for floral patterning. Nature 395:561-566
    Park DH, Somers D E, Kim YS, Choy Y H, Lim H. K., Soh MS, Kim HJ, Kay SA,Nam HG (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA Gene. Science 285:1579-1582
    Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200-203
    Pelaz S, Gustafson-Brown C, Kohalmi SE, Crosby WL, Yanofsky MF (2001) APETALA1 and SEPALLATA3 interact to promote flowerR development. Plant J 26:385-394
    Pena L, Martin-Trillo M, Juarez J, Pina JA, Navarro L, Martinez-Zapater JM (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnol 19: 263-267
    Pineiro M, Gomez-Mena C, Schaffer R, Martinez-Zapater JM, Coupland G (2003) EARLY BOLTING IN SHORT DAYS is related to chromatin remodeling factors and regulates flowerRing in Arabidopsis by repressing FT. Plant Cell 15:1552-1562.
    Pinyopich A, Ditta D.S, Savidge B, Liljergren SJ, Baumann E,Wisman E, Yanofsky MF(2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424: 85-88
    Pnueli L, Hareven D, Broday L, Hurwitz C, Lifschitz E (1994)The Tm5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6:175-186
    Poduska B, Humphrey T, Redweik A, Grbic V(2003) The synergistic activation of FLOWERRING LOCUS C by FRIGIDA and a new flowering gene AERIAL ROSETTE 1 underlies a novel morphology in Arabidopsis. Genetics 163,1457-1465
    Poethig R S (1990) Phase change and the regulation of shoot morphogenesis in plants. Science 250: 923-930
    Porter S E., Washburn T M., Chang M, Jaehning JA (2002) The yeast Pafl-RNA polymerase Ⅱ complex is required for full expression of a subset of cell cycle-regulated genes. Eukaryot Cell 1: 830-842
    Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80: 847-857
    Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18: 111-119
    Qiao F (2003) Construction of a genetic linkage group with RAPD and AFLP markers and location of a pistil abortion trait in peach. Master Thesis (in Chinese) Quail PH (2002) Phytochrome photosensory signaling networks. Nat Rev Mol Cell Biol 3: 85-93
    Quesada V, Macknight R, Dean C, Simpson GG (2003) Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowerRing time. EMBO J 22:3142-3152
    Ramos A, Perez-Solis E, Ibanez C, Casado R, Collada C, Gomez L, Aragoncillo C, ,Allona, I (2005) Winter disruption of the circadian clock in chestnut Proc Natl Acad Sci 102, 7037-7042
    Ratcliffe OJ, Kumimoto RW, Wong B J Riechmann JL (2003) Analysis of the Arabidopsis MADS AFFECTING FLOWERRING gene family: MAF2 prevents vernalization by short periods of cold Plant Cell 15: 1159-1169
    Ratcliffe OJ, Nadzan GC, Reuber TL, Riechmann JL (2001) Regulation of flowerRing in Arabidopsis by an FLC homologue Plant Physiol 126:122-132
    Reeves PH, Murtas G, Dash S, Coupland G (2002) early in short days 4, a mutation in Arabidopsis that causes early flowerRing and reduces the mRNA abundance of the floral repressor FLC Development 129: 5349-5361
    Rijpkema A, Royaert S, Zethof J, van der Weerden G, Gerats T, Vandenbussche M (2006) Functional divergence within the DEF/AP3 lineage: An analysis of PhTM6 in Petunia hybrida Plant Cell Rodriguez J, Sherman WB, Scorza R, Wisniewski M, and Okie WR (1994) Evergreen peach, its inheritance and dormant behavior. J Am Soc Hort Sci 119:789-792
    Rosin FM, Hart JK, Van Onckelen H, and Hannapel DJ(2003) Suppression of a vegetative MADS box gene of potato activates axillary meristem development. Plant Physiol 131:1613-1622
    Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7:1259-1269
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406-425
    Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF and Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613-1616
    Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z,Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613-1616
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York Sanda SL, Amasino RM (1996) Ecotype-specific expression of a flowering mutant phenotype in Arabidopsis thaliana. Plant Physiol 111: 641-644
    Savidge B, Rounsley SD, Yanofsky MF (1995) Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7:721-733
    Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz K. 1999. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesisduring sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci 96:11664-69
    Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, Weigel D, Lohmann JU (2003) Dissection of floral induction pathways using global expression analysis. Development 130: 6001-6012
    Schomburg FM, Patton DA, Meinke DW, Amasino RM (2001) FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell 13: 1427-1436
    Schultz EA, Haughn G W (1991) LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3: 771-781
    Scortecci KC, Michaels S D, Amasino R M(2001) Identification of a MADS-box gene, FLOWERRING LOCUS M, that represses flowerRing.Plant J. 26, 229-236.
    Scott RJ, Spielman M, Dickinson HG ( 2004) Stamen structure and function. Plant Cell 16(Suppl.): S46-60
    Shchennikova AV, Shulga OA, Immink R, Skryabin KG (2004) Identification and characterization of four Chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiol 134:1632-1641
    Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ , Dennis ES (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation Plant Cell 11: 445-458
    Sheldon CC, Conn AB, Dennis ES, Peacock WJ (2002) Different regulatory regions are required for the vernalization-induced repression of FLOWERRING LOCUS C and for the epigenetic maintenance of repression Plant Cell 14: 2527-2537
    Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis E S (2000) The molecular basis of vernalization: the central role of FLOWERRING LOCUS C (FLC) Proc Natl Acad Sci 97: 3753-3758
    Shiio Y, Eisenman R N (2003) Histone sumoylation is associated with transcriptional repression Proc Natl Acad Sci 100:13225-13230
    Shindo S, Ito M, Ueda K, Kato M, Hasebe M (1999) Characterization of MADS genes in the gymnosperm Gnetum parvifolium and its implication on the evolution of reproductive organs in seed plants. Evol Dev 1:180-190
    Silva C, Garcia-Mas J, Sanchez AM, Anis P, Oliveira M M (2005) Looking into flowering time in almond (Prunus dulcis (Mill) D. A. Webb): the candidate gene approach. Theor Appl Genet (2005) 110: 959-968
    Silverstone AL, Ciampaglio CN, Sun TP (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway.Plant Cell 10:155-169
    Silverstone AL, Jung HS, Dill A, Kawaide H, Kamiya Y, Sun TP (2001) Repressing a repressor: Gibberellininduced rapid reduction of the RGA protein in Arabidopsis.Plant Cell 13: 1555-1565
    Simon R, Igeno MI, Coupland G (1996) Activation of floral meristem identity genes in Arabidopsis. Nature 384, 59-62
    Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296:285-289
    Simpson GG, Gendall AR, Dean C (1999) When to switch to flowerRing. Annu Rev Cell Dev Biol 15:519-550
    Simpson G G, Dijkwel P P, Quesada V, Henderson I, Dean C (2003) FY is an RNA 3C-end processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 13:777-787
    Socias I Company R, Felipe AJ, Gomez Aparisi J (1998) Genetics of late blooming in almond. Acta Hortic 484:261-266
    Somers DE, Schultz TF, Milnamow M, Kay S A (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101: 319-329
    Sorensen A, Guerineau F, Canales-Holzeis C, Dickinson HG, Scott RJ.(2002) A novel extinction screen in Arabidopsis thaliana identifies mutant plants defective in early microsporangial development. Plant J 29:581-94
    Sorensen AM, Krober S, Unte US, Huijser P, Dekker K, Saedler H (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J 33:413-23
    Sridhar V V, Surendrarao A, Liu Z (2006) APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flowerR development. Development 133:3159-3166
    Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116-1120
    Sudol M, Hunter T (2000) New wrinkles for an old domain. Cell 103:1001-1004
    Sun T P and Karniya Y (1994) The Arabidopsis gal locus encodes the cyclase ent-kaurene synthetase-A of gibberellin biosynthesis. Plant Cell 6:1509-1518
    Sundstrom J, Carlsbeeker A, Svensson ME, Svenson M, Johanson U, Theissen G, Engstrom P (1999) MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-class floral homeotic genes in angiosperms. Dev Genet 25:253-266
    Sung ZR, Belachew A, Shunong B, Bertrand-Garcia R(1992) EMF, an Arabidopsisgene required for vegetative shoot development. Science 258: 1645-1647
    Sung S and Amasino RM (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427, 159-164
    Sung SK, Moon YH, Chung JE, Lee SY, Park HG. and An G (2001) Characterization of MADS box genes from hot pepper. Mol. Cells 11: 352-359
    Theiβen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75-85
    Theiβen G, Saedler H (2001) Plant biology. Floral quartets. Nature 409:469-471
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876-4882
    Tian L, Chen ZJ (2001) Blocking histone deacetylation in Arabidopsis induces pleiotropic effects on plant gene regulation and development. Proc Natl Acad Sci 98: 200-205
    Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ and Dennis ES (2003) MADS box genes control vernalization-induced flowerRing in cereals. Proc Natl Acad Sci 100:13099-13104
    Tzeng TY, Hsiao CC, Chi PJ, Yang CH (2003) Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis. Plant Physiol. 133:1091-1101
    Uimari A, Kotilainen M, Elomaa P,Yu D, Albert VA,Teeri TH (2004) Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene. Proc Natl Acad Sci 101:15817-15822.
    Valverde F, Mouradov A, Soppe W J, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering.Science 303: 1003-1006
    van der Linden CG, Vosman B, and Smulders MJM (2002) Cloning and characterization of four apple MADS box genes isolated from vegetative tissue. J Exp Bot 53:1025-1036
    Vandenbussche M, Zethof J, Souer E, Koes R, Tornielli GB, Pezzotti M, Ferrario S, Angenent GC, Gerats T (2003) Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches:B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. Plant Cell 15:2680-2693
    Verde I, Quarta R, Cedrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hortic 592:291-297
    Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi.Science 297:1833-1837
    Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343-346
    Wada M, Cao QF, Kotoda N, Soejima J, Masuda T (2002) Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Mol Biol 49:567-577
    Wang Y, Georgi LL, Reighard GL, Scorza R, and Abbott AG (2002) Genetic mapping of the evergrowing gene in peach Prunus persica (L.) Batsch. J Hered 93:352-358
    Wei gel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377: 495-500
    Weigel D, Alvarez J, Smyth DR, Yanofsky M F, Meyerowitz E M (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843-859
    Wellmer F, Riechmann JL, Alves-Ferreira M, Meyerowitz EM.(2004)Genome-wide analysis of spatial gene expression in Arabidopsis flowers.Plant Cell 16:1314-1326
    Wen CK, Chang C (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14: 87-100
    Wigge PA, Kim MC, Jaeger K.E, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056-1059
    Wilson RN, Heckman JW, Somerville CR (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol 100: 403-408
    Wilson ZA, Morroll SM, Dawson J, Swamp R, Tighe PJ(2001). The Arabidopsis MALE STERILITY 1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors.Plant J 28:27-39
    Winter KU, Becker A, Munster T, Kim JT, Saedler H, Theissen G (1999) MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc Natl Acad Sci 96:7342-7347
    Winter KU, Saedler H, Theissen G (2002) On the origin of class B floral homeotic genes: functional substitution and dominant inhibition in Arabidopsis by expression of an orthologue from the gymnosperm Gnetum. Plant J 31:457-475
    Winter KU, Weiser C, Kaufmann K, Bohne A, Kirchner C, Kanno A, Saedler H, Theissen G (2002) Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization. Mol Biol Evol 19:587-596
    Xu Y, Ma RC, Xie H, Liu J, Cao M (2004).Development of SSR markers for the phylogentic analysis of almond trees from China and the Mediterranean region.Genome 47:1091-1104
    Xu Y, Teo LL, Zhou J, Kumar PP and Yu H. (2006) Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J 46:54-68
    Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J(2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci 100:6263-6268
    Yang SL, Jiang L, Puah CS, Xie LF, Zhang XQ, Chen LQ, Yang WC, Ye D (2005) Overexpression of TAPETUM DETERMINANT1 alters the cell fates in the Arabidopsis carpel and taperum via genetic interaction with excess microsporocytesl/extra sporogenous cells. Plant Physiol 39:186-91
    Yang WC, Ye D, Xu J, Sundaresan V (1999) The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev13:2108-17
    Yanovsky M J, Kay S A (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419: 308-312
    Yao J, Dong Y, Morris BA (2001) Parthenocarpic apple fruit production conferred by transposon insertionmutations in a MADS-box transcription factor. Proc Natl Acad Sci 98:1306-1311
    Yoshida N, Yanai Y, Chen L, Kato Y, Hiratsuka J, Miwa T, Sung Z R,Takahashi S (2001) EMBRYONIC FLOWERR2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis.Plant Cell 13: 2471-2481
    Yu H, Ito T, Zhao Y, Peng J, Kumar P, Meyerowitz EM (2004) Floral homeotic genes are targets of gibberellin signaling in flower development.Proc Natl Acad Sci 101:7827-7832.
    Yu H, Xu YF, Tan EL, and Kumar PP (2002) AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowerRing signals. Proc Natl Acad Sci 99:16336-16341
    Yu H, Ito T, Wellmer F, Meyerowitz E M (2004) Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flowerR development. Nat.Genet 36:157-162
    Zahn LM, Kong HZ, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, dePamphilis CW, Ma H (2005) The evolution of the SEPALLATA subfamily of MADS-box genes: a pre-angiosperm origin with multiple duplications throughout angiosperm history. Genetics 169:2209-2223
    Zahn L M, Leebens-Mack J, dePamphilis C W, Ma H, Theissen G (2005) To B or not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. J Hered 96:225-240
    Zhang H, van Nocker S (2002) The VERNALIZATION INDEPENDENCE 4 gene encodes a novel regulator of FLOWERRING LOCUS C. Plant J 31: 663-673
    Zhang H, Ransom C, Ludwig P van Nocker S (2003) Genetic analysis of early flowering mutants in Arabidopsis defines a class of pleiotropic developmental regulator required for expression of the flowering-time switch FLOWERRING LOCUS C. Genetics 164:347-358
    Zhao DZ, Wang GF, Speal B, Ma H (2002) The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev 16:2021-2031
    Zhao XY, Cheng ZJ, Zhang XS (2006) Overexpression of TaMADS1, a SEPALLATA-like gene in wheat, causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta. 223:698-707
    Zik M, Irish VF (2003) Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action.Plant Cell. 15:207-22
    Zilberman D, Cao X, Jacobsen S E (2003) ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation.Science 299:716-719

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700