美洲黑杨雄性花芽cDNA文库构建及花发育相关基因的克隆与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
美洲黑杨(Populus deltoides Marsh.)属于杨柳科(Salicaceae)杨属(Populus),分布范围广,而且优良杨树品种多数含有美洲黑杨成分,因此美洲黑杨在杨树遗传育种中占有主要地位。但由于杨树的许多性状受多基因调控,杂合度高,且生长周期长,使得利用常规育种进行林木遗传改良变得非常困难;此外,转基因植株可能对非目标生物和环境产生潜在的影响;另外,作为绿化树种和转基因受体材料,却又存在花粉过敏及基因逃逸等问题。为了解决杨树育种周期长及转基因安全性等问题,本研究拟以美洲黑杨雄性花芽为试材,以cDNA文库构建及其质量鉴定为切入点,采用大规模随机EST测序,进而分离得到与花发育相关的基因。在此基础上,开展与花发育相关基因的正反义植物表达载体的构建及其农杆菌介导遗传转化烟草等研究,并对所获得的转基因烟草植株进行分子检测及表型观察。通过上述研究得到以下主要结果:
     1.首次以美洲黑杨雄性花芽为植物材料,采用SMART技术,构建了第一个美洲黑杨雄性花芽全长cDNA文库。质量检测结果表明,美洲黑杨雄性花芽cDNA文库的滴度为6.8x106pfu·mL-1,文库扩增后的滴度为7×1012pfu.mL-1。经过蓝白斑计数,文库的重组率可达95%。平均插入片段大小为1 kb左右,说明所构建的文库完全符合目的基因分离筛选和表达建库的要求,可为进一步开展与杨树花发育相关基因的克隆及林木花发育分子机理的探讨等研究方面奠定重要的基础。
     2.随机挑取经PCR检测过的4 200个单克隆进行5'端测序,共获得3 092条原始序列。去除插入片段小于150 bp和污染序列后,获得了3 086条高质量的EST序列,通过聚类分析获得416个簇(clusters),并对每个簇进行单独拼接,进而得到451个重叠群(contigs)和1104个单一序列(singletons)。通过对1555个单一基因(uniquesequences)与NCBI数据库的比对,结果显示,34.7%(540个单一基因)与核酸和蛋白数据库无序列同源性,由此可推测,34.7%为新基因,且可能与花发育相关。同时获得了8个MADS-box基因,其中3个是杨树中未见报道的基因,且均含有全长的CDS。
     3.对3个未见报道的杨树新基因的其中两个进行核酸序列比对分析,结果表明,PdPI基因序列与荔枝、桦树、黄瓜以及苹果的MADS基因序列的同源性极高(均达80%以上),但PdAGL与核酸数据库中的基因序列同源性较低。通过对蛋白序列进一步比对分析后发现,PdPI和PdAGL均含有高度保守的MADS、中度保守的K区以及非保守的I区和C区,其中PdPI基因在C区还含有极保守的PI基序(motif)。系统进化树分析结果表明,PdPI和PdAGL分别属于MADS基因家族中的PI亚家族和DEFH 7亚家族。
     4.运用实时定量PCR(Real time PCR)方法对PdPI和PdAGL基因在花芽发育各时期表达量测定,结果发现,PdPI基因在花序出苞片的过程中表达量急剧上升,且在根中的表达量也较高,因此可推测该基因可能与花粉成熟以及根的生长发育有关。这说明拟南芥PI同系物不仅能在生殖器官中表达,而且在营养器官中也表达。另外,PdAGL基因不仅在花器官中表达,而且也在形成层和叶中表达。虽然PdAGL基因与金鱼草DEFH 7基因的亲缘关系最近,但其表达方式不同于DEFH 7基因。
     5.在PdPI和PdAGL基因的正反义植物表达载体的成功构建以及高效稳定烟草转化体系建立的基础上,采用农杆菌介导的叶盘法转化烟草,以NPTⅡ基因为扩增目的基因,并对所获得的具有卡那抗性的转基因烟草植株进行PCR检测。结果表明,目的基因已整合到转基因烟草植株的基因组中。此外,通过转基因烟草植株的表型观察,结果发现,转正义PdPI基因烟草植株存在提前开花现象,而转反义PdAGL基因部分植株出现叶片畸形、花期晚、花量少等特点。
Populus deltoides Marsh., belonging to the family of Salicaceae, is distributed worldwide and plays an important role in the genetic improvement for the Populus. But the fact that many of the traits of poplars are controlled by multiple genes, pulsed high heterozygosity, and a long life cycle makes conventional breeding very difficult, moreover the risks associated with the use of engineered plants include the potential effects on non-target organisms and environment, and causing allergic reaction to human due to the escape of transgenes through pollen dispersion. In order to shorten the breeding cycle and to reduce the pollution derived from pollens, a cDNA library for the male buds of P. deltoides was constructed and several genes involved in flower development were isolated based on EST sequences in databases in this study. In addition, many transgenic tobaccos with sense and anti-sense genes were produced via Agrobacterium tumefaciens-mediated transformation. The results are as follows:
    1. A full-length cDNA library for the male floral buds of P. deltoides was constructed by using SMATR (the Switch Mechanism At the 5' end of RNA Templates) technique. The quality detection indicated that the library had a starting titer of 6.8×10~6 pfu·mL~(-1) and a final titer of 7×10~(12)pfu·mL~(-1) after amplification. It also had a high ratio of recombination (up to 95%) with the inserts at an average size of approximately 1 kb. These results showed that this library was highly quality, which is suitable for the isolation and expression of target genes and provide an important foundation for the studies on the molecular mechanisms involved in the flower development of forest trees.
    2. By large-scale ESTs sequencing of 4 200 randomly selected clones from the constructed library of male floral buds of P. deltoides, 3 092 raw sequences were obtained. About 3 086 valid ESTs were generated after cleaning of inserts that is shorter than 150 bp, and the contaminants were phylogenetically classified into 416 clusters. An assembly of sequences within independent clusters finally 451 contigs and 1 104 singletons were identified. BLAST analyses within these 1 555 unique sequences against NCBI database demonstrated that 540 unique sequences (34.7%) did not have homologous proteins or nucleotide sequences in the database, suggesting that they might be new genes involved in the floral development. In addition, eight MADS-box genes, including three full-length genes that have not been reported, were obtained.
    3. Multiple alignment analyses showed that PdPI gene of male floral buds of P. deltoides shared high similarity (over 80%) with the MADS genes from Litchi chinensis, Betula pendula, Cucumis sativus and Malus domestica, while PdAGL gene did not have homologous nucleotide sequences in the database. Further analyses indicated that there were a highly conserved MADS domain, a middle level of conserved K domain and the variable I and C domains present in both PdPI and PdAGL genes. In addition, a highly conserved PI motif was found in the C domain of PdPI gene. The results of phylogenetic analyses showed that PdPI and PdAGL genes were belonging to the subfamilies PI and DEFH 7 respectively.
    4. The expression pattern of PdPI and PdAGL was analyzed by using quantitative real-time PCR analyses. A dramatic increase in the expression of the PdPI gene was detected in a reproductive organ, including the catkins and roots, It can be suggested that PdPI gene might be involved in the processes of pollen maturation and root development of P. deltoides. The results showed that the PI homo log of Arabidopsis was expressed not only in reproductive organs, but also in vegetative organs Although PdAGL was closely related to the DEFH 7 from Antirrhinum, the expression pattern of PdAGL gene observed in P. deltoides was significant difference from that of DEFH 7.
    5. A sense and an anti-sense plant expression vectors for PdPl and PdAGL were constructed and were transferred into tobacco via Agrobacterium tumefaciens-mediated transformation based on the establishment of a high efficient genetic transformation system. PCR analysis with NPT II specific primers confirmed the integration of foreign genes into the genome of transgenic tobaccos. The observation of phenotype revealed the pre-mature transgenic tobaccos with sense gene and anti-sense-gene-containing tobaccos with abnormal leaf, delayed flowering and reduced amount of flowers.
引文
1.安新民.毛白杨开花关键基因的分离及其功能分析.北京:北京林业大学.博士后出站报告,2004
    2.曹国仪,唐锡华.烟草茎薄层培养直接形成花芽及其极性现象.植物生理学通讯,1988,3:47-49
    3.陈亮,赵丽萍,高其康.茶树新梢cDNA克隆测序和表达序列标签(ESTs)特性分析.农业生物技术学报,2005,13(1):21-25
    4.陈大明,金勇丰,张上隆.柑橘LEAFY同源基因片段分离及特性研究.园艺学报,2001,28(4):295-300
    5.段艳欣,郭文武.木本植物开花调节基因的分离克隆及其童期控制.中国生物工程杂志,2004,10:22-26
    6.冯斌,谢先芝.基因工程技术.北京:化学工业出版社,2000
    7.胡桂兵,徐昌杰,陈大成,郑启发,安新民,张上隆.毛叶枣APETALAl同源基因的克隆.华南农业大学学报,2001,22(3):43-46
    8.刘向国,谢国明.荧光定量PCR仪技术及其在医学中的应用.医疗卫生装备,2002,23(5):37-39
    9.孟繁静.植物花发育的分子生物学.北京:中国农业出版社,2000
    10.沈倍奋.分子文库.北京:科学出版社,2000
    11.苏晓华,张绮纹,郑先武,张香华.美洲黑杨(Populus deltoides Marsh.)×(P.cathayana Rehd.)分子连锁图谱的构建.林业科学,1998,34(6):29-37
    12.袁旭,王劲,李旭峰.利用SMART技术构建白菜型油菜cDNA文库.四川大学学报(自然科学版),2000,37(增刊):72-75
    13.曾燕如,黄敏仁,王明庥.杨树黑斑病感抗无性系eDNA文库的构建.南京林业大学学报(自然科学版),2004,28(3):83-85
    14.张建业.银杏LEAFY同源基因的分离克隆及其相关基础研究.浙江大学博士学位论文,2002
    15.张士璀,范晓,马军英.海洋生物技术原理和应用.北京:海洋出版社,1998
    16.张云,刘青林.植物花发育的分子机理研究进展.植物学通报,2003,20(5):589-601
    17. Acton T B, Mead J, Steiner A M, Vershon A K. Scanning Mutagenesis of Mcml: Residues Required for DNA Binding, DNA Bending, and Transcriptional Activation by a MADS-Box Protein. Molecular and Cell Biology, 2000, 20: 1-11
    18. Adams M D, Kelley J M, Gocayne J D, Dubnick M, Polymeropoulos M H, Xiao H, Merril C R, Wu A, Olde B, Moreno R F et al. Comlpementary DNA sequencing: expressed sequence tags and human genome project. Science, 1991, 252: 1651-1656
    19. Ainsworth C, Crossley S, Buchanan-Vollaston V, Thangavelu M, Parker J. Male and female flowers of dioecious plant sorrel show different patterns of MADS-box gene expression. Plant Cell, 1995, 7: 1583-1598
    20. Alvarez-Buylla E R, Liljegren S J, Palaz S, Gold S E, Burgeff C, Ditta G S, Vergara-Silva F, Yanofsky M F. MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant Journal, 2000, 24: 457-466
    21. Ambrose B A, Lerner D R, Ciceri P, Padilla C M, Yanofsky M F, Schmidt R J. Molecular and genetic analyses of the silkyl gene reveal conservation in floral organ specification between eudieots and monocots. Molecular Cell, 2000, 5(3): 569-579
    22. Angenent G C, Colombo L. Molecular control of ovule development. Trends Plant Science, 1996, 1: 228-232
    23. Audic S, Claverie J M. The significance of digital gene expression profiles. Genome Research, 1997, 7: 986-995
    24. Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune E Physiological signals that induce flowering. Plant Cell, 1993, 5: 1147-1155
    25. Blazquez M A, Soowal L N, Lee I, Weigel D. LFY expression and flower initiation in Arabidopsis. Development, 1997, 124: 3835-3844
    26. Blazquez M A, Green R, Nilsson O, Sussman M R, Weigel D. Gibberelline promote flowering of Arabidopsis by activiting the LEAFY promoter. Plant Cell, 1998, 10: 791-800
    27. Blazquez M A, Weigel D. Integration of floral inductive signals in Arabidopsis. Nature, 2000, 404: 889-892
    28. Bleecker A B, Estelle M A, Somerville C, Kende H. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science, 1988, 241: 1086-1089
    29. Boes T K, Strauss S H. Floral phenology and morphology of black cottonwood, Populus trichocarpa (Salicaceae). American Journal of Botany, 1994, 81: 562-567
    30. Bomer R, Kampmann G, Chandler J, Gleissner R, Wisman E, Apel K, Melzer S. A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant Journal, 2000, 24: 591-599
    31. Boss P K, Bastow R M, Mylne J S, Dean C. Multiple pathways in the decision to flower: Enabling, promoting, and resetting. Plant Cell, 2004, 16: S18-S31
    32. Bowman J L, Smyth D R, Meyerowitz E M. Genes directing flower development in Arabidopsis. Plant Cell, 1989, 1: 37-52
    33. Bowman J L, Smyth D R, Meyerowitz E M. Genetic interactions among floral homeotic genes of Arabidopsis. Development, 1991, 21: 1-20
    34. Bowman J L, Drews G N, Meyerowitz E M. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell type late in flower development. Plant Cell, 1991, 3: 749-758
    35. Bowman J L, Sakai H, Jack T, Weigel D, Mayer U, Meyerowitz E M. SUPERMAN, a regulator of floral homeotic genes in Arabidopsis. Development, 1992, 114: 599-615
    36. Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. Inflorescence commitment and architecture in Arabidopsis. Science, 1997, 275: 80-83
    37. Brunner A M, Rottmann W H, Sheppard L, Krutovskii K, DiFazio S P, Leonardi S, Strauss S H A. Structure and expression of duplicate AGAMOUS ortholoques in poplar. Plant Molecular Biology, 2000, 44: 619-634
    38. Brunner A M, Nilsson O. Revisiting tree maturation and floral initiation in the poplar functional genomics era. New Phytologist, 2004a, 164: 43-51
    39. Brunner A M, Yakovlevand I A, Strauss S H. Validating internal controls for quantitative plant gene expressionstudies. BMC Plant Biology, 2004b, 4: 14
    40. Buchner P, Boutin J P. A MADS box transcription factor of the AP1/AGL9 subfamily is also expressed in the seed coat of pea(Pisum sativum)during development. Plant Molecular Biology, 1998, 38: 1253-1255
    41. Busi M V, Bustamante C, D'Angelo C, Hidalgo-Cuevas M, Boggio S B, Valle E M, Zabaleta E. MADS-box genes expressed during tomato seed and fruit development. Plant Molecular Biology, 2003, 52: 801-815
    42. Bustin S A. Quantification of mRNA using real-time reverse transcription PCR(RT-PCR): trends and problems. Journal of Molecular Endocrinology, 2002, 29: 23-39
    43. Cahoon E B, Carlson T J, Ripp K G, Schweiger B J, Cook G A, Hall S E, Kinney A J. Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils intransgenic soybean embryos. Proceedings of the national academy of sciences of the united states of america, 1999, 96: 12935-12940
    44. Cerdan P D, Chory J. Regulation of flowering time by light quality. Nature, 2003, 423: 881-885
    45. Chasan R. Modeling flowers. Plant Cell, 1991, 2: 845-847
    46. Chung Y Y, Kim S R, Finkel D, Yanofsky M F, An G. Early flowering and reduced apical dominance result from ectopic expression of a rice MADS box gene. Plant Molecular Biology, 1994, 26: 657-665
    47. Chen X M. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, 303(5666): 2022-2025
    48. Claire G, Ammaick M, Benedicte C. Real-time PCR: what relevance to plant studies?. Journal of Experimental Botany, 2004, 55(402): 1445-1454
    49. Coen E S, Romero J M, Doyle S, Elliott R, Murphy G, Carpenter R. Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell, 1990, 63: 1311-1322
    50. Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353: 31-37
    51. Collins A J, Campbell M M. Eucalyptus genes implicated in the control of maturation and flowering. IUFRO/Molecular Biology of Forest Trees, Columbia River Gorge, United States of America, 2001
    52. Colombo L, Franken J, Koetje E, van Went J, Dons H J, Angenent G C, van Tunen A J. The Petunia Mads Box gene Fbp11 determines ovule identity. Plant Cell, 1995, 7: 1859-1868
    53. Crock J, Wildung M, Croteau R. Isolation and bacterial expression of a sesquiterpene syn thase cDNA clone from peppermint(Mentha×piperita, L.)that produces the aphid alarmpher -omone(E)-beta-farnesene. Proceedings of the national academy of sciences of the united s tates of america, 1997, 94: 12833-12838
    54. Cseke L J, Cseke S B, Ravinder N, Taylor L C, Shankar A, Sen B, Thakur R, Karnosky D F, Podila G K. SEP-class genes in Populus tremuloides and their likely role in reproductive survival of poplar trees. Gene, 2005, 358: 1-16
    55. Cseke L J, Sen B, Taylor L, Ravinder N, Kamosky D F, Podila G K. MADS-box genes from dioecious Aspen I: characterization of PTM1/2 MADS-box genes homologous to AP1/SQUA. Physiology and Molecular Biology of Plants, 2003, 9: 187-196
    56. De Bodt S, Raes J, Florquin K, Rombauts S, Rouzé P, Theiβen G, Van de Peer Y. Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants. Journal of Molecular Evolution, 2003, 56: 573-586
    57. Decroocq V, Zhu X, Kauffrnan M, Kyozuka J, Peacock W J, Dennis E S, Llewellyn D J. A TM3-1ike MADS-box gene from Eucalyptus expressed in both vegetative and reproductive tissues. Gene, 1999, 228: 155-160
    58. Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky M F. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biology, 2004, 14: 1935-1940
    59. Dong Y H, Yao J L, Atkinson R G, Putterill J J, Morris B, Gardner R C. MDHI: an apple homeobox gene belonging to the BELl family. Plant Molecular Biology, 2000, 42: 623-633
    60. Durfee T, Roe J L, Sessions R A, Inouye C, Serikawa K, Feldmann K A, Weigel D, Zambryski P C. The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis. Proceedings of the national academy of sciences of the united states of america, 2003, 100: 8571-8576
    61. Dye S J, Brunner A M, Skinner J S, Strauss S H. Isolation of TERMINAL FLOWER 1 homologs from Populus and expression analyses over a seasonal cycle and continuous maturation gradient. IUFRO/Molecular Biology of Forest Trees. Columbia River Gorge, United States of America. 2001
    62. Eckenwalder J E. Systematics and evolution of Populus. Biology of Populus and Its implication for Management and Conservation. In RF Stettler, HD Bradshaw, PE Heilman, TM Hinckley(eds). Canada: NRC Research Press, 1996, 7-32
    63. Egea-Cortines M, Saelder H, Sommer H. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. The EMBO Journal, 1999, 18: 5370-5379
    64. Elo A, Lemmetyinen J, Turunen M L, Tikka L, Sopanen T. Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula). Physiologia Plantarum, 2001, 112: 95-103
    65. Epple P, Apel K, Bohlmann H. ESTs reveal a multigene family for plant defensins in Arabidopsis thaliana. FEBS Letter, 1997, 400: 168-172
    66. Estruch J J, Grannell A, Hansen G, Prinsen E, Redig P, Van Onckelen H, Schwarz-Sommer Z, Sommer H, Spena A. Floral development and expression of floral homeotic genes are influenced by cytokinins. Plant Journal, 1993, 4(2): 379-384
    67. Ewing R M, Kahla A B, Poirot O, Lopez F, Audic S, Claverie J M. Large-scale statistical analysis of rice ESTs reveal correlated patterns of gene expression. Uenome Research, 1999, 9: 950-959
    68. Faccioli P, Pecchioni N, Cattivelli L, Stanca A M, Terzi V. Expressed sequence tags from cold-acclimatized barley can identify novel plant genes. Plant Breeding, 2001, 120: 497-502
    69. Fan H Y, Hu Y, Tudor M, Ma H. Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant Journal, 1997, 12: 999-1010
    70. Favaro R, Pinyopich A, Battaglia R, Kooikerc M, Borghic L, Dittab G, Yanofsky M F, Kater M M, Colombo L. MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell, 2003, 15: 2603-2611
    71. Ferrario S, Immink R G H, Shchennikova A, Busscher-Lange J, Angenent G C. The MADS box gene FBP2 is required for SEPLLLATA function in Petunia. Plant Cell, 2003, 15: 914-925
    72. Fillatti J J, Sellmer J, McCown B, Haissing B, Comai L. Agrobacterium-mediated transformation and regeneration of Populus. Molecular and General Genetics, 1987, 202: 192-199
    73. Fornara F, Marziani G, Mizzi L, Kater M, Colombo L. MADS-box genes controlling flower development in rice. Plant Biology, 2003, 5: 16-22
    74. Fredrik S., Rupali R B, Unneberg P, Segerman B, Nilsson P, Brunner A M, Charbonnel-Campaa L, Lindvall J J, Tandre K, Strauss S H, Sundberg B, Gustafsson P, Uhlen M, Bhalerao R P, Nilsson O, Sandberg G, Karlsson J, Lundeberg J, Jansson S. A Populus EST resource for plant functional genomics. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(38): 13951-13956
    75. Freeman W M, Walker S J, Vrana K E. Quantitative RT-PCR: pitfalls and potential. Biotechniques, 1999, 26: 112-125
    76. Frohlich M W, Parker D S. The mostly male theory of flower evolutionary origins: from genes to fossils. Systematic Botany, 2000, 25: 155-170
    77. Fukui M, Futamura N, Mukai Y, Wang Y, Nagao A, Shinohara K. Ancestral MADS box genes in sugi, Cryptomeria japonica D. Don(Taxodiaceae), homologous to the B function genes in angiosperms. Plant and Cell Physiology, 2001, 42: 566-575
    78. Galston A W, Kaur-Sawhney R. Polyamines in plant physiology. Plant Physiology, 1990, 94: 406-410
    79. Gocal G F W, King R W, Blundell C A, Schwartz O M, Andersen C H, Weigel D. Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiology, 2001, 125: 1788-1801
    80. Goto K, Meyerowitz E M. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes & Development, 1994, 8: 1548-1560
    81. Gustafson-Brown C, Savidge B, Yanofsky M F. Regulation of the arabidopsis floral homeotic gene APETALA1. Cell, 1994, 76: 131-143
    82. Guzman P, Ecker J R. Exploiting the triple response of Arabidopsis to identity ethylene-related mutants. Plant Cell, 1990, 2: 2513-2523
    83. Hardenack S, Ye D, Seadler H, Grant S. Comparison of MADS box gene expression in developing male and female flowers of the dioecious plant white campion. Plant Cell, 1994, 6: 1775-1787
    84. Hatey F, Tosser-Klopp G, Clouscard-Martinato C, Mulsant P, Gasser E Expressed sequence tags for genes: a review. Genetics Selection Evolution, 1998, 30: 521-541
    85. He Y H, Michaels S D, Amasino R M. Regulation of flowering time by histone acetylation in Arabidopsis. Science, 2003, 302: 1751-1754
    86. Hepworth S R, Valverde F, Ravenscroft D, Mouradov A, Coupland G. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO Journal, 2002, 21: 4327-4337
    87. Hertzberg M, Sievertzon M, Aspeborg H, Nilsson P, Sandberg G, Lundeberg J. cDNA microarray analysis of small plant tissue samples using a eDNA tag target amplification protocol. Plant Journal, 2001, 25(5): 585-591
    88. Hill J P, Lord E M. Floral development in Arabidopsis thaliana: a comparison of the wild type and the homeiotic pistillata mutant. Canadian Journal of Botany, 1989, 67: 2922-2936
    89. Hillier L D, Lennon G, Becker M, Bonaldo M F, Chiapelli B, Chissoe S, Dietrich N, DuBuque T, Favello A, Gish W, Hawkins M, Hultman M, Kucaba T, Lacy M, Le M, Le N, Mardis E, Moore B, Morris M, Parsons J, Prange C, Rifkin L, Rohlf'mg T, Schellenberg K, Marra M et al. Generation and analysis of 280,000 human expressed sequence tags. Genome Research, 1996, 6: 807-828
    90. Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 2001, 409: 525-529
    91. Huang H, Tudor M, Su T, Zhang Y, Hu Y, Ma H. DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimmer formation. Plant Cell, 1996, 8: 81-94
    92. Huijser P, Klein J, Lonnig W, Meijer H, Saedler H, Sommer H. Bracteomania, an in florescence anomaly, is case by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO Journal, 1992, 11: 1239-1249
    93. Immink R G, Theodorus W J, Gadella T W, Ferrario S, Busscher M, Angenent G C. Analysis of MADS box protein-protein interactions in living plant cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 2416-2421
    94. Ingrain G C, Goodrich J, Wilkinson M D, Simon R, Haughn G W, Coen E S. Parallels between UNUSUAL FLORAL ORGANS and Fimbriata, genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell, 1995, 7: 1501-1510
    95. Irish V F, Sussex I M. Function of the APETALA-1 gene during Arabidopsis floral development. Plant Cell, 1990, 2: 741-753
    96. Isabel A, Michelle Q, Elizabeth S, Swope K, St Cyr S, Carlis J, Riedl J, Retzel E, Campbell M M, Sederoff R, Whetten R W. Analysis of xylem formation in pine by eDNA sequencing. Plant Biology, 1998, 95(16): 9693-9698
    98. Isebrands J G, Karnosky D E Environmental benefits of poplar culture. Poplar Culture in North America. In: Dickmann D I, Isebrands J G, Eckenwalder J E, Richardson J(Eds). Canada: NRC Research Press, 2001, 207-218
    99. Jack T. Relearning our ABCs: New twists on an old model. Trends Plant Science, 2001, 6(7): 310-316
    100 Jack T. Molecular and genetic mechanisms of floral control. Plant Cell, 2004, 16: S1-S17
    101. Jack T, Brockman L L, Meyerowitz E M. The homeotic gene APETALA3 ofArabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens. Cell, 1992, 68: 683-697
    102. Jang S, An K, Lee S, An G. Characterization of tobacco MADS-box genes involved in floral initiation. Plant Cell Physiology, 2002, 43: 230-238
    103. Jang S, Hong M Y, Chung Y Y, An G. Eetopic expression of tobacco MADS genes modulates flowering time and plant architecture. Molecular Cells, 1999, 9: 576-586
    104. Jarvinen P, Lemmetyinen J, Savolainen O, Sopanen T. DNA sequence variation in BpMADS2 gene in two populations ofBetula pendula. Molecular Ecology, 2003, 12: 369-384
    105. Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science, 2000, 290: 344-347
    106. Kardailsky I, Shukla V K, Ahn J H, Dagenais N, Christensen S K, Nguyen J T, Chory J, Harrison M J, Weigel D. Activation tagging of the floral inducer FT. Science, 1999, 286: 1962-1965
    107. Kaufmann K, Melzer R, Theissen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 2005, 347: 183-198
    108. Kempin S A, Mandel M A, Yanofsky M F. Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG1. Plant Physiology, 1993, 103: 1041-1046
    109. Kotoda N, Wada M, Kato H, Iwanami H, Masuda T, Soejima J. The function analysis of MdMADS5 and MdTFL, apple homologues of APETALA1 and TERMINAL FLOWER1, in transgenic Arabidopsis. Hortscience, 2001, 36: 441
    110. Kotoda N, Wada M, Kusaba S, Kano M Y, Masuda T, Soejima J. Overexpression of MdMADS5, an APETALAI-like gene of apple, causes early flowering in transgenic Arabidopsis. Plant Science, 2002, 162: 679-687
    111. Kramer E M, Dorit R L, Irish V E Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics, 1998, 149: 765-783
    112. Krizek B A, Meyerowitz E M. Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 4063-4070
    113. Kurata N Y, Nagamura K, Yamamoto Y, Harushima Y, Sue N, Wu J, Antonio B A, Shomura A, Shimizu T, Lin S Yet al. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genetics, 1994, 8: 365-372
    114. Kyozuka J, Harcourt R, Peacock W J, Dennis E S.. Eucalyptus has functional equivalents of the Arabidopsis AP 1 gene. Plant Molecular Biology, 1997, 35: 573-584
    115. Lange B M, Wildung M R, Stauber E J, Sanchez C, Pouchnik D, Croteau R. Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proceedings of the National Academy of Sciences of the United States of America., 2000, 97: 2934-2939
    116. Lee I, Wolfe D S, Nilsson O, Weigel D. A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Current Biology, 1997, 7: 95-104
    117. Lee H, Sub S S, Park E, Cho E, Ahn J H, Kim S G, Lee J S, Kwon Y M, Lee 1. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Development, 2000, 14: 2366-2376
    118. Lee S, Jeon J S, An K, Moon Y H, Lee S, Chung Y Y, An G. Alteration of floral organ identity in rice through ectopic expression of OsMADS16. Planta, 2003, 217: 904-911
    119. Lemmetyinen J, Pennanen T, Lannenpaa M, Sopanen T. Prevention of flower formation in dicotyledons. Molecular Breeding, 2001, 7: 341-350
    120. Lemmetyinen J, Hassinen M, Elo A, Porali I, Keinonen K, Makela H, Sopanen T. Functional characterization of SEPALLATA3 and AGAMOUS orthologues in silver birch. Physiology Plantarum, 2004, 121,149-162
    121. Lenhard M, Bohnert A, Jurgens G, Laux T. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell, 2001, 105: 805-814
    122. Levin J Z, Meyerowitz E M. UFO: An Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell, 1995, 7: 529-548
    123. Levy Y Y, Dean C. The transition to flowering. Plant Cell, 1998, 10: 1973-1989
    124. Liang F, Holt I, Pertea G, Karamycheva S, Salzberg S L, Quackenbush J. Gene index analysis of the human genome estimates approximately 120 000 genes. Nature Genetics, 2000, 25: 239-240
    125. Lin C T. Photoreceptors and regulation of flowering time. Plant Physiology, 2000, 23: 39-50
    126. Liu J, Huang Y, Ding B, Tauer C G. cDNA cloning and expression of a sweetgum gene that shows homology with Arabidopsis AGAMOUS. Plant Science, 1999, 142: 73-82
    127. Liu J J, Podila G P. Characterization of a MADS box gene (Y09611) from immature female cone of red pine (PGR97-032). Plant Physiology, 1997, 113: 665
    128. Liu J Y, Hara C, Umeda M, Zhao Y, Okita T W, Uchimiya H. Analysis of Randomly Isolated cDNAs fi'om Developing Endosperm of Rice(oryza sativa L): Evalution of Expresses Sequence Tags and Expression Levels of mRNA. Plant Molecular Biology, 1995, 29: 685-689
    129. Lohmann J U, Weigel D. Building beauty: The genetic control of floral patterning. Developmental Cell, 2002, 2: 135-142
    130. Lohmann J U, Hong R L, Hobe M, Busch M A, Party F, Simon R, Weigel D. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell, 2001, 105: 793-803
    131. Ma H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annual Reviews in Plant Biology, 2005, 56: 393-434
    132. Ma H, Yanofsky M F, Meyerowitz E M. AGLI-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcfipton factor genes. Genes Development, 1991, 5: 484-495
    133. Mandel M A, Gustafson-Brown C, Savidge B, Yanofsky MF. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature, 1992, 360: 273-277
    134. Martinez-Garcia J F, Huq E, Quail P H. Direct targeting of light signals to a promoter element-bound transcription factor. Science, 2000, 288: 859-863
    135. Mayer K F X, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 1998, 95: 805-815
    136. Medford J I, Horgan R, EI-Sawi Z, Klee H J. Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell, 1989, 1: 403-413
    137. Mellerowicz E J, Horgan K, Walden A, Coker A, Walter C. PRFLL - a Pinus radiata homologue of FLORICAULA and LEAFY is expressed in buds containing vegetative shoot and undifferentiated male cone primordia. Planta, 1998, 206: 619-629
    138. Meyerowitz E M, Bowman J L, Brochman L L, Drews G N, Jack T, Sieburth L E, Weigel D. A genetic and molecular model for flower development in Arabidopsis thaliana. Development, 1991, 112(Suppl. 1): 157-167
    139. Meyerowitz E M, Running M P, Sakai H, Williams R W. Multiple modes of cell division control in Arabidopsis flower development. Symposia of the Society for Experimental Biology, 1998, 51: 19-26
    140. Michaels S D, Amasino R M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 1999, 11: 949-956
    141. Michaels S D, Amasino R M. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell, 2001, 13: 935-941
    142. Mimida N, Goto K, Kobayashi Y, Araki T, Alan J H, Weigel D, Murata M, Motoyoshi F, Sakamoto W. Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue. Genes to Cells, 2001, 6: 327-336
    143. Mizukami Y, Ma H. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell, 1992, 71: 119-131
    144. Mizukami Y, Huang H, Tudor M, Hu Y, Ma H. Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations. Plant Cell, 1996, 8: 831-845
    145. Mockler T, Yang H Y, Yu X H, Parikh D, Cheng Y C, Dolan S, Lin C. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 2140-2145
    146. Moon J, Suh S S, Lee H, Choi K R, Hong C B, Pack N C, Kim S G, Lee I. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant Journal, 2003, 35: 613-623
    147. Moon Y H, Kang H G, Jung J Y, Jeon J S, Sung S K, An G. Determination of the motifs responsible for interaction between the rice APETALA/AGL9 family proteins using a yeast two-hybrid system Plant Physiology, 1999, 120: 1193-1203.
    148. Moriyah Z, Irish V F. Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action. Plant Cell, 2003, 15: 207-222
    149. Mouradov A, Cremer F, Coupland G. Control of flowering time interacting pathways as a basis for diversity. Plant Cell, 2002, 14: S111-S130
    150. Mouradov A, Glassick T, Hamdorf B, Murphy L, Fowler B, Marla S, Teasdale R D. NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems. Proceedings of the National Academy of Science of the United States of America, 1998a, 95: 6537-6542
    151. Mouradov A, Glassick T V, Hamdorf B A, Murphy L C, Marla S S, Yang Y, Teasdale R D. Family of MADS-box genes expressed early in male and female reproductive structures of Monterey pine. Plant Physiology, 1998b, 117: 55-61
    152. Mouradov A, Hamdorf B, Teasdale R D, Kim J T, Winter K U, Theissen G.. A DEF/GLO-like MADSbox gene from a gymnosperm: Pinus radiata contains an ortholog of angiosperm B class floral homeotic genes. Developmental Genetetics, 1999, 25: 245-252
    153. Ng M, Yanofsky M F. Function and evolution of the plant MAd)S-box gene family. Nature Review Genetics, 2001, 2: 186-195
    154. Nilsson O, Lee I, Blazquez M A, Weigel D. Flowering-time genes modulate the response to LEAFY activity. Genetics, 1998, 150: 403-410
    155. Noh Y S, Amasino R M. PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis. Plant Cell, 2003, 15: 1671-1682
    156. Parcy F, Nilsson O, Busch M A, Lee I, Weigel D. A genetic framework for floral patterning. Nature, 1998, 395: 561-566
    157. Pear J R, Kawagoe Y, Schreckengost W E, Delmer D P, Stalker D M. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proceedings of the National Academy of Sciences of the United States of America., 1996, 93: 12637-12642
    158. Pelaz S, Ditta G S, Baumann E, Wisman E, Yanofsky M F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000, 405: 200-203
    159. Pelaz S, Gustafson-Brown C, Kohalmi S E, Crosby W L, Yanofsky M F. APETALA1 and SEPALLATA3 interact to promote flower development. Plant Journal, 2001, 26: 385-394
    160. Pena L, Martin-Trillo M, Juarez J, Pina J A, Navarro L, Martinez-Zapater J M. Constitutive expression of Arabidopsis LEAFY or APETALA1 gene in citrus reduces theirs generation time. Nature Biotechnology, 2001, 19(3): 263-267
    161. Perry S E, Lehti M D, Femandeze D E The MADS-domain protein AGAMOUS-like 15 accumulates in embryonic tissues with diverse origins. Plant Physiology, 1999, 120: 121-129
    162. Pillitter L J, Walling L L, Lovatt C A. Regulation of flowering in the Washington navel orange: floral genes. Proceedings IX Congress of the International Society of Citriculture, Orlando, Florida, 2003, 1: 201-204
    163. Pineiro M, Gomez-Mena C, Schaffer R, Martinez-Zapater J M, Coupland G. EARLY BOLTING IN SHORT DAYS is related to chromatin remodeling factors and regulates flowering in Arabidopsis by repressing FT. Plant Cell, 2003, 15: 1552-1562
    164. Pinyopich A, Ditta G S, Savidge B, Liljegren S J, Baumann E, Wisman E, Yanofsky M F. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 2003, 424: 85-88
    165. Putterill J, Robson F, Lee K, Simon R, Coupland G. The CONSTANS gene of Arabidopsis promotes fowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, 80: 847-857
    166. Quail P H. Phytochrome photosensory signalling networks. Nature Reviews Molecular Cell Biology, 2002, 3: 85-93
    167. Reed J W, Nagatani A, Elich T D, Fagan J. Phytochrome-A and Phytochrome-B have overlapping but distinct functions in Arabidopsis development. Plant Physiology, 1994, 104: 1139-1149
    168. Reeves P H, Coupland G. Analysis of flowering time control in Arabidopsis by comparison of double and triple mutants. Plant Physiology, 2001, 126: 1085-1091
    169. Reeves P H, Murtas G, Dash S, Coupland G. early in short days 4, a mutation in Arabidopsis that causes early flowering and reduces the mRNA abundance of the floral repressor FLC. Development, 2002, 129: 5349-5361
    170. Riechmarm J L, Krizek B A, Meyerowitz E M. Dimerization specificity of Arabidopsis MADS domain homeotic proteins, APETALA1, APETALA3, PISTILLATA and AGAMOUS. Proceedings of the National Academy of Sciences of the United States of America., 1996, 93: 4793-4798
    171. Riechmann J L, Meyerowitz E M. MADS domain proteins in plant development. Biological chemistry, 1997, 378: 1079-1101
    172. Rigola D, Pe M E, Fabrizio C, Me G, Sari-Goda M. CaMADS1, a MADS box gene expressed in the carpel of hazelnut. Plant Molecular Biology, 1998, 38: 1147-1160
    173. Ronning C M, Stegalkina S S, Ascenzi R A, Bougri O, Hart A L, Utterbach T R, Vanaken S E, Riedmuller S B, White J A, Cho J, Pertea G M, Lee Y, Karamycheva S, Sultana R, Tsai J, Quackenbush J, Griffiths H M, Restrepo S, Smart C D, Fry W E, Van Der Hoeven R, Tanksley S, Zhang P, Jin H, Yamamoto M L, Baker B J, Buell C R. Comparative analyses of potato expressed sequence tag libraries. Plant Physiology, 2003, 131: 419-429
    174. Rottmann W H, Meilan R, Sheppard L A, Brunner A M, Skinner J S, Ma C, Cheng S, Jouanin L, Pilate G, Strauss S H. Diverse effects of overexpression of LEAFY and PTLF, a poplar(Populus)homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant Journal, 2000, 12: 235-245
    175. Rutledge R, Regan S, Nicolas O, Fobert P, Cote C, Bosnich W, Kauffeldt C, Sunohara G, Seguin A, Stewart D. Characterization of an AGAMOUS homologue from the conifer black spruce(Picea mariana)that produces floral homeotic conversions when expressed in Arabidopsis Plant Journal, 1998, 15: 625-634
    176. Sambrook J, Fritsh E F, Maniatis T. 分子克隆实验指南(第2版). 金科雁等译. 北京: 科学出版社, 1992
    177. Schuler G D. Pieces of the puzzle: expressed sequence tags and the catalog of human genes. Journal of Molecular Medicine, 1997, 75: 694-698
    178. Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science, 1990, 250: 931-936
    179. Sedgley M. Flowering of deciduous perennial fruit crops. Horticultural Reviews, 1990, 12: 223-264
    180. Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, Sakurai T, Nakajima M, Enju A, Akiyama K, Oono Y, Muramatsu M, Hayashizaki Y, Kawai J, Caminci P, Itoh M, Ishii Y, Arakawa T, Shibata K, Shinagawa A, Shinozaki K. Functional annotation of a full-length Arabidopsis cDNA collection. Science, 2002, 296: 141-145
    181. Sen B. Molecular characterization and functional analysis of MADS Box family genes from dioecious Aspen. Michigan Technological University, 1999
    182. Shchennikova A V, Shulga O A, hnmink R Skryabin KG, Angenent GC. Identification and characterization of four Chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiology, 2004, 134: 1632-1641
    183. Sheldon C C, Bum J E, Perez P P, Metzger J, Edwards J A, Peacock W J, Dennis E S. The FLF MADS box gcne: A repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell, 1999, 11: 445-458
    184. Sheldon C C, Rouse D T, Finnegan E J, Peacock W J, Dennis E S. The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC). Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 3753-3758
    185. Sheppard L A, Brunner A M, Krutovskii K V, Rottmann W H, Skinner J S, Vollmer S S, Strauss S H. A DEFICIENS homolog from the dioecious tree black cottonwood is expressed in both female and male floral meristems of the two-whorled, unisexual flowers. Plant Physiology, 2000, 124: 627-639
    186. Shinohara K. Growth control of woody plants through genetic engineering. The International Forestry Review, 2005, 7(5): 49
    187. Shore P, Sharrocks A D. The MADS-box family of transcription factors. European Journal of Biochemistry, 1995, 229: 1-13
    188. Silverstone A L, Mark P Y, Martinez E C, Sun T P. The new RGA locus encodes a negative regulator of gibereline response in Arabidopsis thaliana. Genetics, 1997, 146: 1087-1099
    189. Simpson G G, Dean C. Arabidopsis, the Rosetta stone of flowering time? Science, 2002, 296: 285-289
    190. Skinner J S, Meilan R, Brunner A M, Strauss S H.2000. Options for genetic engineering of floral sterility in forest trees. Jain SM and Minocha SC (Eds). Molecular Biology of Woody Plants. The Netherlands. 2000, 1: 135-153
    191. Southerton S G, Strauss S H, Olive M R, Harcourt R L, Decroocq V, Zhu X, Llewellyn D J, Peacock W J, Dennis E S. Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY. Plant Molecular Biology, 1998a, 37: 897-910.
    192. Southerton S G, Marshall H, Mouradov A, Teasdale R D. Eucalytp MADS-box genes expressed in developing flowers. Plant Physiology, 1998b, 118: 365-372
    193. Southerton S G, Uren T, Yang Y, Watson J, Furbank B, Dennis L, Peacock J, Moran G. Flowering control in eucalypts. IUFRO/Molecular Biology of Forest Trees, Columbia River Gorge, United States of America, 2001
    194. Stahlberg A, Aman P, Ridell B, Mostad P, Kubista M. Quantitative real-time PCR method for detection of B-lymphocyte monoclonality by comparison of kappa and lambda immunoglobulin light chain expression. Clinical Chemistry, 2003, 49: 51-59
    195. Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A, Holmberg A, Amini B, Bhalerao R, Larsson M, Villarroel R, Van Montagu M, Sandberg G, Olsson O, Teeri T T, Boerjan W, Gustafsson P, Uhlen M, Sundberg B, Lundeberg J. Gene Discovery in the Wood-forming Tissue of Poplar: Analysis of 5, 692 Expressed Sequence Tags. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(22): 1330-1335
    196. Soltis O S, Soltis D E, Chase M W. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature, 1999, 402: 402-404
    197. Soltis D E, Soltis P S, Albert V A, Oppenheimer D G, dePamphilis C W, Ma H, Frohlich M W, Theissen G. Missing links: the genetic architecture of flower and floral diversification. Trends in Plant Science, 2002, 7: 22-31
    198. Strauss S H, Rottmann W H, Brunner A M, Sheppard L A. Genetic engineering of reproductive sterility in forest trees. Molecular Breeding, 1995, 1: 5-26
    199. Strauss S H, Martin F M. Poplar genomics comes of age. New Phytologist, 2004, 164: 1-4
    200. Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410: 1116-1120
    201. Sundstrom J, Carlsbecker A, Svensson M E, Svenson M, Johanson U, Theissen G, Engstrom P. MADS-box genes active in developing pollen cones of Norwav spruce(Picea abies)are honmologous to the B-class floral homeotic genes in angiosperms. Developmental Genetics, 1999, 25: 253-266
    202. Sundstrom J, Engstrom P. Conifer reproductive development involves B-type MADS-box genes with distinct and different activities in male organ primordial. Plant Journal, 2002, 31: 161-169
    203. Sung S K, An G. Molecular cloning and characterization ofa MADS-box cDNA clone of the Fuji apple. Plant and Cell Physiology, 1997, 38: 484-489
    204. Sung S K, Yu G H, An G. Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiology, 1999, 120: 969-978
    205. Sung S K, Yu G H, Nam J, Jeong D H, An G. Developmentally regulated expression of two MADS box genes, MdMADS3 and MdMADS4, in the morphogenesis of flower buds and fruits in apple. Planta, 2000, 210: 519-528
    206. Sung Z R, Chen L, Moon Y H, Lertpiriyapong K. Mechanisms of floral repression in Arabidopsis. Current Opinion in Plant Biology, 2003, 6: 29-35
    207. Tandre K, Albert V A, Sundas A, Engstrom P. Conifer homologues to genes that control floral development in angiosperms. Plant Molecular Biology, 1995, 27: 69-78
    208. Tandre K, Svenson M, Svensson M E, Engstrom E Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. Plant Journal, 1998, 15: 615-623
    209. Taylor, G. Populus: Arabidopsis for forestry: do we need a model tree? Annals of Botany, 2002, 90: 681-689
    210. Theissen G, Kim J, Saedler H. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. Journal of Molecular Evolution, 1996, 43: 484-516
    211. Theissen G, Saedler H. The golden decade of molecular floral development(1990-1999): a cheerful obituary. Developmental Genetics, 1999, 25: 181-193
    212. Theissen G, Becker A, Di Rosa A, Kanno A, Kim J T, Munster T, Winter K U, Saedler H. A short history of MADS-box genes in plants. Plant Molecular Biology, 2000, 42: 115-149
    213. Theissen G. Development of floral organ identity: stories from the MADS house. Current Opinion in Plant Biology, 2001, 4: 75-85
    214. Theissen G, Saedler H. Plant Biology. Floral quartets. Nature, 2001, 409: 469-471
    215. Tran Thanh Van K M. Control of Morphogenesis in in vitro cultures. Annual Review of Plant Physiology, 1981, 32: 291-311
    216. Tzeng T Y, Hsiao C C, Chi P J, Yang C H. Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis. Plant Physiology, 2003, 133: 1091-1101
    217. Van de Loo F J, Broun P, Turner S, Somerville C. An oleatel2-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog. Proceedings of the National Academy of Science of the United States of America, 1995, 92: 6743-6747
    218. Van de Loo F J, Turner S, Somerville C. Expressed sequence tags from developing castor seeds. Plant Physiology, 1995, 108: 1141-1150
    219. Vahala T, Oxelman B, von Arnold S. Two APETALA2-like genes of Picea abies are differentially expressed during development. Journal of Experimental Botany, 2001, 52: 1111-1115
    220. Vasmatzis G, Essand M, Brinkmann U, Lee B, Pastan I. Discovery of three genes specifically expressed in human prostate by expressed sequence tag database analysis. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(1): 300-304
    221. Venglat S P, Sawhney V K. Benzylaminopurine induces phenocopies of floral meristem and organ identity mutants in wild-type Arabidopsis Plants. Planta, 1996, 198: 480-487
    222. Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor(tin)locus. Science, 2002, 296: 343-346
    223. Walden A R, Wang D Y, Walter C, Gardner R C..A large family of TM3 MADS-box cDNAs in Pinus radiata includes two members with deletions of the conserved K domain. Plant Science, 1998, 138: 167-176
    224. Walker N J. Real-time and quantitative PCR: applications to mechanism based toxicology. Journal of Biochemical and Molecular Toxicology, 2001, 15(3): 121-127
    225. Weigel D, Alvarez J, Smyth D R, Yanofsky M F, Meyerowitz E M. LEAFY controls floral meristem identity in Arabidopsis. Cell, 1992, 69: 843-859
    226. Weigel D, Meyerowitz E M. Activation of floral homeotic genes in Arabidopsis. Science, 1993, 261: 1723-1726
    227. Weigel D, Meyerowitz E M. The ABCs of floral homeotic genes. Cell, 1994, 78: 203-209
    228. Weigel D. The genetics of flower development: from floral induction to ovule morphogenesis. Annual Review of Genetics, 1995, 29: 19-39
    229. Weigel D, Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature, 1995, 377: 495-500
    230. Whitfield L S, Lovell-Badge R, Goodfellow P N. Rapid sequence evolution of the mammalian sex-determining gene SRY. Nature, 1993, 364: 713-715
    231. Wilkinson M D, Haughn G W. UNUSUAL FLORAL ORGANS controls meristem identity and organ primordia fate in Arabidopsis. Plant Cell, 1995, 7: 1485-1499
    232. Wilson R N, Heckman J W, Somerville C R. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiology, 1992, 100: 403-408
    233. Wu J, Maehara T, Shimokawa T, Yamamoto S, Harada C, Takazaki Y, Ono N, Mukai Y, Koike K, Yazaki J, Fujii F, Shomura A, Ando T, Kono I, Waki K, Yamamoto K, Yano M, Matsumoto T, Sasaki T. A comprehensive rice transcript map containing 6 591 expressed sequence tag sites. Plant Cell, 2002, 14: 525-535
    234. Yang Y Z, Fanning L, Jack T. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant Joural, 2003, 33: 47-59
    235. Yanofsky M F, Ma H, Bowman J L, Drews G N, Feldmann K A, Meyerowitz E M. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 1990, 346: 35-39
    236. Yanofsky M F. Floral meristems to floral organs: Genes controlling early events in Arabidopsis flower development. Annual review of plant physiology and plant molecular biology, 1995, 46: 167-188
    237. Yao J L, Dong Y H, Kvamheden A, Morris B. Seven MADS-box genes in apple are expressed in different parts of the fruit. Journal of the American Society for Horticultural Science, 1999, 124: 8-13
    238. Yao J L, Dong Y H, Morris B. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proceedings of the National Academy of Science of the United States of America, 2001, 98: 1306-1311
    239. Yu H, Ito T, Zhao Y, Peng J, Kumar P, Meyerowitz EM. Floral homeotic genes are targets of gibberellin signaling in flower development. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 7827-7832
    240. Zachgo S, Silva E A, Motte E Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sentitive mutant. Development, 1995, 121: 2861-2875
    241. Zhang H, van Nocker S. The VERNALIZATION INDEPENDENCE 4 gene encodes a novel regulator of FLOWERING LOCUS C. Plant Journal, 2002, 31: 663-673
    242. Zhao D Z, Yu Q L, Chen M, Ma H. The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis anther. Development, 2001, 128: 2735-2746

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700