拟南芥光周期敏感型多效突变体ldd1的表型及遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光周期作为植物最为重要的环境信号之一,能够诱导植物内源性生物节律的产生并影响植物生长发育的各个阶段。通过光周期条件的变化,我们筛选到一株对光周期敏感且具有多效表型的T-DNA插入突变体lightperiod dependent dwarf 1 (ldd1)。表型分析的结果表明,整体上ldd1突变体的株高下降、节间缩短、分枝增加、叶形改变、花期可变、营养器官生长缓慢。在全光照条件下,突变体幼叶发育迟缓、形态异常,叶表皮细胞的形态和组成发生明显变化,茎生节间和果荚节间显著缩短,花期推迟,植株生命周期延长。而在长日照和短日照条件下,这些表型消失、减缓或改变,说明这些表型的出现是光周期敏感和依赖的,能够被全光照条件诱导加剧。在遗传方面,ldd1突变体自交后代表型稳定,不会出现分离。其与野生型植株进行杂交后F1代杂合子均表现为野生型植株的表型,说明ldd1突变体为隐性突变。而F2代植株中具有ldd1亲本表型的约占1/4,说明ldd1突变体为单基因或多基因紧密连锁的突变体。
Lightperiod as one of the most important environment signals generate endogenous circadian rhythm and affect many aspects of plant development. We isolated an Arabidopsis lightperiod sensitive pleiotropic T-DNA insertion mutant lightperiod-dependant dwarf 1 (ldd1) by change of the lightperiod condition. In general, lddl shows reduced height, shortened internodes, increased branches, changed leaf shape, uncertain flowering time and slower grown of vegetative organs compared with WT. Under 24hours light condition, lddl has seriously changed shape of young leaves and pavement cells, dramatically shortened internodes between silique and cauline branches, later flowering time, and also prolonged life cycle. But when the lightperiod condition recovered to long-day or short-day, all of these abnormities disappeared, alleviated or even reversed, indicated the appearance of these phenotypes are lightperiod sensitive and dependant.24hours light condition could seriesly strength these mutant phenotypes. Genetic studies showed no phenotypical segregation in lddl selfcross progeny. When back crossed to WT, F1 progeny display a WT phenotype, and about 1/4 F2 progeny kept lddl's phenptypes, suggested lddl is a recessive, single gene or closely linkaged multiple genes mutant.
引文
Abe M., Kobayashi Y., Yamamoto S., Daimon Y., Yamaguchi A., Ikeda Y., Ichinoki H., Notaguchi M., Goto K., Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science (2005) 309:1052-1056.
    Ahmad M., Cashmore A.R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature (1993) 366:162-166.
    Blazquez M.A., Ahn J.H., Weigel D. A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nature Genetics (2003) 33:168-171.
    Briggs W.R., Beck C.F., Cashmore A.R., Christie J.M., Hughes J., Jarillo J.A., Kagawa T., Kanegae H., Liscum E., Nagatani A., Okada K., Salomon M., Rudiger W., Sakai T., Takano M., Wada M., Watson J.C. The phototropin family of photoreceptors. Plant Cell (2001) 13:993-997.
    Cashmore A.R., Jarillo J.A., Wu Y.J., Liu D. Cryptochromes:blue light receptors for plants and animals. Science (1999) 284:760-765.
    Cazzonelli C.I., Cuttriss A.J., Cossetto S.B., Pye W., Crisp P., Whelan J., Finnegan E.j., Turnbull C., Pogson B.J. Regulation of carotenoid compostion and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. Plant Cell (2009) 21:39-53.
    Christie J.M. and Briggs W.R. Blue light sensing in higher plants. JBiol Chem (2001) 276:11457-11460.
    Corbesier L., Vincent C., Jang S., Fornara F., Fan Q., Searle I., Giakountis A., Farrona S., Gissot L., Turnbull C. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science (2007) 316:1030-1033.
    Dodd A.N. Gardner M.J., Hotta C.T. Hubbard K.E., Dalchau N., Love J., Assie J.M., Robertson F.C., Jakobsen M.K., Goncalves J. The Arabidopsis circadian clock incorporates a cADPR-based feedback loop. Science (2007) 318:1789-1792.
    Finlayson S.A., Krishnareddy S.R., Kebrom T.H., Casal J.J. Phytochrome regulation of branching in Arabidopsis. Plant Physiology (2010) preview.
    Flint L.H. and McAlister E.D. Wave lengths of radiation in the visible spectrum promoting the germination of light-sensitive lettuce seed. Smithsonian Miscellaneous Collections (1937) 96:1-9.
    Fornara F., Panigrahi K.C., Gissot L., Sauerbrunn N., Ruhl M., Jarillo J.A., Coupland G. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell (2009) 17:75-86.
    Frankhauser C. and Staiger D. Photoreceptors in Arabidopsis thaliana:light perception, signal transduction and entrainment of the endogenous clock. Planta (2002) 216:1-16.
    Franklin K.A. and Quail P.H. Phytochrome functions in Arabidopsis development. Journal of Experimental Botany (2010) 61:11-24.
    Garner W.W. and Allard H.A. Effect of relative length of day and night and other factors of the environment on growth and reproduction in plants. JAgri Res (1920) 18:553-606.
    Gyula P., Schafer E., Nagy F. Light perception and signalling in higher plants. Curr Opin Plant Biol (2003) 6:446-452.
    Halliday K.J., Salter M.G., Thingnaes M.G., Whitelam G.C. The phyB-controlled flowering pathway is temperature sensitive and is mediated by the floral integrator FT. Plant Journal (2003) 33:875-885.
    Harad A. and Shimazaki K. Phototropins and blue light-dependent calcium signaling in higher plants. Photochemistry and Photobiology (2007) 83:102-111.
    Harmer S.L. and Kay S.A. Positive and Negative Factors Confer Phase-Specific Circadian Regulation of Transcription in Arabidopsis. Plant Cell (2005) Online published.
    Harmer S.L., Hogenesch J.B., Straume M., Chang H.S., Han B., Zhu T., Wang X., Kreps J.A. Kay S.A. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science (2000) 290:2110-2113.
    Heintzen C., Nater M., Apel K., Staiger D. AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana. Proc Natl Acad Sci USA (1997) 94:8515-8520.
    Hudson M.E. and Quail P.H. Identification of promoter motifs involved in the network of phytochrome A regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Physiol (2003) 133:1605-1616.
    Imaizumi T. Arabidopsis circadian clock and photoperiodism:time to think about location. Curr Opin Plant Biol (2009) 13:1-7.
    Imaizumi T., Schultz T.F., Harmon F.G., Ho L.A., Kay S.A. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science (2005) 309:293-297.
    James A.B., Monreal J.A., Nimmo G.A., Kelly C.L., Herzyk P., Jenkins G.I., Nimmo H.G. The circadian clock in Arabidopsis roots is a simplified slave version of the clock in shoots. Science (2008) 322:1832-1835.
    Kagan M.L., NovoPlansky N., Sachs T., Variable cell lineages form the functional pea epidermis. Ann Bot (1992) 69:303-312.
    Kang C.Y., Lian H.L., Wang F.F., Huang J.R., Yang H.Q. Cryptochromes, Phytochromes, and COP1 Regulate Light-Controlled Stomatal Development in Arabidopsis. Plant Cell (2009) 21:2624-2641.
    Kobayashi Y., Weigel D. Move on up, it's time for change-mobile signals controlling photoperiod-dependent flowering. Genes Dev (2007) 21:2371-2384.
    Li Q.H. and Yang H.Q. Cryptochrome signaling in plants. Photochemistry and Photobiology (2007) 83:94-101.
    Locke J.C., Kozma-Bognar L., Gould P.D., Feher B., Kevei E., Nagy F., Turner M.S., Hall A., Millar A.J. Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Mol Syst Biol (2006) 2:59.
    Locke J.C., Southern M.M., Kozma-Bognar L., Hibberd V., Brown P.E., Turner M.S., Millar A.J. Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol Syst Biol (2005) 1:0013.
    Love J., Dodd A.N., Webb A.A.R. Circadian and diurnal calcium oscillations encode photoperiodic information in Arabidopsis. Plant Cell (2004) 16:956-966.
    Lu Q., Li X. H., Guo D., Xu C. G., Zhang Q. F. Localization of pms3, a gene for photoperiod-sensitive genic male sterility, to a 28.4-kb DNA fragment. Mol Genet Genomics (2005) 273:507-518.
    Mas P. Circadian clock function in Arabidopsis thaliana:time beyond transcription. Trends in cell biology (2008) 18:273-281.
    Mas P., Kim W.Y., Somers D.E., Kay S.A. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature (2003) 426:567-570.
    Mei M.H., Chen L., Zhang Z.H., Li Z.Y., Xu C.G., Zhang Q.F.pms3 is the locus of the original photoperiod-sensitive male sterile mutation of ‘Nongken 58S’. Science in China (Series C)
    (1999)42:326-322.
    Michael T.P. and McClung C.R. Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis. Plant Physiology (2003) 132:629-639.
    Millar A.J. Input signals to the plant circadian clock. Journal of Experimental Botany (2004) 55:277-283.
    Nagatani A. Light-regulated nuclear localization of phytochromes. Current Opinion in Plant Biology (2004) 7:1-4.
    Nagy F., Schaefer E. Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annual Review of Plant Biology (2002) 53:329-355.
    Nakamichi N., Kita M., Niimura K., Ito S., Yamashino T., Mizoguchi T., Mizuno T. Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS dependent photoperiodic pathway. Plant Cell Physiol (2007) 48:822-832.
    OgiharaY., Kurihara Y., Futami K., Tsuji K., Murai K. Photoperiod-sensitive cytoplasmic male sterility in wheat:nuclear-mitochondrial incompatibility results in differential processing of the mitochondrial orf25 gene. Current Genetics (1999) 36:354-362.
    Quail P.H. Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol (2002) 3:85-93.
    Robertson F.C., Skeffington A.W., Gardner M.J., Webb A.A.R. Interactions between circadian and hormonal signaling in plants. Plant. Mol. Biol (2009) 69:419-427.
    Sawa M., Nusinow DA., Kay S.A., Imaizumi T. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science (2007),318:261-265.
    Shi M.S., Discovery and preliminary studies of the photoperiod-sensitive recessive male sterile rice (Oryza sativa L. subsp. japonica), Science Agriculture Sinica (in Chinses) (1986) 13:107.
    Shpak E.D., McAbee J. M., Pilliteri L.J. and Torri K.U. Stomatal patterning and differentiation by synergistic interaction of receptor kinases. Science (2005),309:290-293.
    Staiger D. RNA-binding proteins and circadian rhythms in Arabidopsis thaliana. Philos Trans R Soc Lond B Biol Sci (2001) 356:1755-1764.
    Sullivan J.A. and Deng X.Y. From seed to seed:the role of photoreceptors in Arabidopsis development. Development Biology (2003) 260:289-297.
    Tamaki S., Matsuo S., Wong H.L., Yokoi S., Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science (2007) 316:1033-1036.
    Wang Z.Y., Kenigsbuch D., Sun L., Harel E., Ong M.S. Tobin E.M. A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell (1997) 9:491-507.
    Wilczek A.M., Roe J.L., Knapp M.C., Cooper M.D., Lopez-Gallego C., Martin L.J., Muir CD., Sim S., Walker A., Anderson J. Effects of genetic perturbation on seasonal life history plasticity. Science (2009) 323:930-934.
    Yakir E., Hilman D., Harir Y., Green R.M. Regulation of output from the plant circadian clock. FEBSJ(2001) 274:335-345.
    Yang H.Q., Wu Y.J., Tang R.H., Liu D., Liu Y., Cashmore A.R. The C termini of Arabidopsis cryptochromes mediate a constitutivelight response. Cell (2000) 103:815-827.
    Zeevaart J.A.D. FT Protein, not mRNA, is the Phloem-Mobile Signal for Flowering. Plant Physiology (fourth edition). SINAUER (2007) essay 25.2
    Zhang J., Xu J.X., Kong Y.Z., Ji Z.D., Wang X.C., An F.Y., Li C., Sun J.Q., Zhang S.Z., Yang X.H., Mu J.Y., Liu X.F., Li J.Y., Xue Y.B., Zuo J.R. Generation of chemical-inducible activation tagging T-DNA insertion lines of Arabidopsis thaliana. Acta Genetica Sinnca (in Chinese) (2005)32:1082-1088.
    Ziemienowicz A., Haasen D., Staiger D., Merkle T. Arabidopsis transportinl is the nuclear import receptor for the circadian clock-regulated RNA-binding protein AtGRP7. Plant Mol Biol (2003) 53:201-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700