外源开花素基因FT对安祖花遗传转化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在花卉的基因工程育种中,花期调控是重要的一个研究方向。
     本研究的主要目标是利用农杆菌介导的基因转化方法,采用热激诱导的组成型表达载体,将大豆热激蛋白启动子连接拟南芥或杨树的FT基因对安祖花进行转化,获得转化植株,待转化植株生长到一定阶段后诱导FT基因的表达,从而对外源FT基因对安祖花开花的影响进行研究,并探索利用FT基因控制花卉开花时间的方法。
     主要研究结果:建立了根癌农杆菌介导的安祖花遗传转化体系。以安祖花叶柄为转化受体,在OD600=0.6的菌液中浸染15min,再在黑暗条件下于含100μmol/L乙酰丁香酮的共培养基中培养3d可获得最佳的T-DNA转化效率。利用此优化的转化系统进行农杆菌的浸染,并在含卡那霉素100mg/L和头孢霉素300mg/L的筛选培养基上进行筛选,得到抗性愈伤组织,待其增殖到一定大小,分化成苗,再进行生根壮苗培养,最后对这些抗性苗进行PCR及GFP荧光检测。本实验分别获得了pJCGLOX-AtFT转化植株8个细胞系,pJCGLOX-PttFT1转化植株1个细胞系,为进一步的研究奠定了基础。
Genetic engineering in the breeding of flowers, the flowering control is an important research direction.
     The main objective of this study is the use of Agrobacterium-mediated genetic transformation methods, the use of heat-shock-induced constitutive expression vector, soybean heat shock protein promoter of Arabidopsis thaliana or poplar to connect the FT gene conversion andraeanum flowers, was transformed into plants, applied to convert to a certain stage of plant growth after the induction of the expression of FT, FT exogenous gene which andraeanum flowers bloom on the impact of research, and to explore the use of FT genes control flower flowering time.
     The main findings: The establishment of the Agrobacterium tumefaciens-mediated genetic transformation system andraeanum flowers. Petiole to spend for the conversion andraeanum receptors, OD600 = 0.6 in the bacteria in the dip 15min, and then under the conditions in the dark with 100μmol/L AS were cultured in 3d the best available T-DNA transformation efficiency. Using this optimized transformation system of Agrobacterium tumefaciens disseminated and containing Km 100 mg/L and Cef 300 mg/L of the filter medium should be screened for resistant calli have been proliferating to a certain size, differentiate into seedlings and then cultured seedling root, the last of these resistant seedlings for PCR and GFP fluorescence detection. Respectively in this experiment pJCGLOX-AtFT plants into eight lines, pJCGLOX-PttFT1 strain into a plant for further research laid the foundation.
引文
[1] Pittendrigh CS, Circadian rhythms and the circadian organization of living systems, Cold spring Harbor Symp Quant Biol ,1960,25:159~184
    [2] Vaz Nunes M, Saunders D, Photoperiodic time measurement in insects: a review of clock mdels, J Biol Rhythms, 1999,14:84~104
    [3] Hamer SL, Panda S, Kay SA, Molecular bases of circadian rhythms, Annu Rev Cell Dev Biol ,2001,17:215~253
    [4] Quail PH, Phytochrome photosensory signaling networks, Nat Rev Mol cell Biol, 2002,3(2):85~93
    [5] Cashmore AR, Jarillo JA, Wu Y, et al, Cryptochromes: blue light receptors for plants and animals, Science ,1999, 284:760~765
    [6] Briggs WR, Christie JM, Phototropins 1 and 2: versatile plant blue light receptors, Trends Plant Sci, 2002,7(5):204~210
    [7] Hayama R, Coupland G, The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice,Plant Physiology, 2004,135:677~684
    [8] McWatters HG, Bastow RM, Hall A, et al, The ELF3 zeitnehmer regulates light signalling to the circadian clock, Nature ,2000,408:716~720
    [9] Liu X L, Covington MF, Fankhauser C, et al, ELF3 encodes a circadian clock regulated nuclear protein that functions in an Arabidops-PHYB sigrlal–ansduction pathway, Plant Cell ,200l,13:1293~1304
    [10] Somers DE, Schultz TF, Milnamow M, et al, ZEITLUPE encodes a novel clock–associated PAS protein from Arabidopsis, Cell 2000,101:319~329
    [11] Jarillo JA, Capel J, Tang RH, et al, An Arabidopsis circadian clock component interacts with both CRY1 and phyB, Nature 2001,410:487~490
    [12] Mas P, Alabadi D, Yanovsky MJ, et al, Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis, Plant Cell 2003,15:223~236
    [13] Suarez–Lopez P, Wheatley K, Robson F , et al, CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis, Natrue 2001,410:1116~1120
    [14]刘玉平,李建平,兰素缺等,光周期迟钝基因对小麦农艺性状的影响,华北农学报,2001,16(4):59~64
    [15] Izawa T, Takahashi Y,Yano M , Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis, Curt, Opin, Plant, Biol, 2003,6(2):l13~120
    [16] Michaels SD, He Y, Scortecci K C, et al, Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer–annual flowering behavior in Arobidopsis, Proc, Natl, Acad, Sci, USA 2003,100(17):10102~10107
    [17] Johanson U, West J, Lister C, M ichaels SD, Amasino RM, and Dean C, Molecular analysis of FRIGIDA a major determinant of natural variation in Arabidopsis flowering time, Science, 2000,290:344~347
    [18] Michaels SD, and Amasino RM, Loss of FLOWERING LOCUS C activity eliminates the late–flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization, Plant Cell ,2001,13,935~941
    [19] Michaels SD, and Amasino RM, FLOWERlNG LOCUS C encodes a novel MADs domain protein that acts as a repressor of flowering, Plant Cell, 1999,11:949~956
    [20] Sheldon CC, Burn JE, Perez PP, et al, The FLF MADS box gene: A repressor of flowering in Arabidopsis regulated by vernalization and methylation, Plant Cell ,1999,11: 445~458
    [21] Sheldon CC, Rouse DT, Finnegan EJ, et al, The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC), Proc, Natl, Acad, Sci, USA ,2000,97,3753~3758
    [22] Zhang H, and van Nocker S, The VERNALIZATIONIND EPENDENCE 4 gene encodes a novel regulator of FLOWERING LOCUS C, Plant J ,2002,31,663~673
    [23] He Y, Doyle MR, and Amasino RM, PAF 1 complex–mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization–responsive winter–annual habit in Arabidopsis, Gene,2004,Dev 18, 2774~2784
    [24] Betz JL, Chang M, Washburn TM, et al, Phenotypic analysis of Pafl/RNA polymerase II complex mutations reveals connections to cell cycle regulation, protein synthesis and lipid and nucleic acid metabolism, Mol, Genet, Genomics ,2002,268, 272~285
    [25] Krogan NJ, Kim M, Ahn SH, et al, RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach, Mol, Cell, Biol ,2002,22:6979~6992
    [26] Squazzo SL, Costa PJ, Lindstrom D L, et al, The Pafl complex physically and functionally associates with transcription elongation factors in vivo, EMBO J ,2002,21:1764~l774
    [27] Soppe WJ, Bentsink L, and Koornneef M,The early flowering mutant efs is involved in the autonomous Promotion Pathway of Arabidopsis thaliana,1999, Development 126,4763~4770
    [28] Roguev A, Schaft D, Shevchenko A, Pijnappel WW, Wilm M, Aasland R,, and Stewart AF, The Saccharomyces cerevisiae Set1 complex includes and Ash 2 homologue and methylates histone 3 lysine 4, EMBO J ,2001,20,7137~7148
    [29] He Y, and Amasino RM, Role of chromatin modification in flowering–time control, Trends Plant Sci ,2005,10,30~35
    [30] Gendall AR,, Levy YY, Wilson A, and Dean C, The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis, Cell , 2001,107:525~535
    [31] Levy YY, Mesnage S, Mylne JS, Gendall AR, and Dean C, Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control, Science , 2002,297:243~246
    [32] Sung S, and Amasino RM, Vernalization and epigenetics: How plants remember winter, Curr, Opin, Plant Biol ,2004,7:4~10
    [33] Yan L, Loukoianov A, Tranquilli G, et al, Positional cloning of the wheat Verna1ization gene VRN1, Proc, Nat1, Acad, Sci, USA ,2003,100:6263~6268
    [34] Mural K, Miyamae M, Kato H, et al, WAP1, a wheat APETALA 1 homolog, plays a central role in the phase transition from vegetative to reproductive growth, Plant Cell Physiol ,2003,44(1):255~265
    [35] Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, and Dennis ES, MADS box genes control vernalization–induced flowering in cereal, Proc, Natl, Acad, Sci, USA ,2003,100:13099~13104
    [36] Mandel MA, and Yanofsky MF, A gene triggering flower development in Arabidopsis, Nature ,1995,377:522~524
    [37] Yan L, Loukoianov A, Blechl A, Tranquilli G, Ram akrishna, W, San MigueI P, Bennetzen JL, Echenique V, and Dubcovsky J, The wheat VRN2 gene is a flowering repressor down–regulated by vernalization, Science , 2004,303(1):640~1644
    [38] Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y et al, FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex, Science, 2005,309:1052~1056
    [39] Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU et al,, Integration of spatial and temporal information during floral induction in Arabidopsis, Science ,2005,309:1056~1059
    [40] Huang T, Bohlenius H, Eriksson S, et al, The mRNA of the Arabidopsis geneFT moves from leaf to shoot apex and induces flowering, Science ,2005,309:1694~1696
    [41] Yanovsky MJ, Kay SA, Living by the calendar: How plants know when to flower, Nat Rev Mol Cell Biol ,2003,4:265~275
    [42] Komeda Y, Genetic regulation of time to flower in Arabidopsis thaliana, Annu Rev Plant Physiol Plant Mol Biol ,2004,55:521~535
    [43] Searle I, Coupland G, Induction of flowering by seasonal changes in photoperiod, EMBO J ,2004,23:1217~1222
    [44] Putterill J, Robson F, Lee K, Simon R, Coupland G, The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors, Cell ,1995,80:847~857
    [45] Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, et al, Activation tagging of the floral inducer FT, Science ,1999,286:1962~1965
    [46] Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T, A pair of related genes with antagonistic roles in mediating flowering signals, Science ,1999,286:1960~1962
    [47] Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G, Antagonistic regulation of flowering–time gene SOC1 by CONSTANS and FLC via separate promoter motifs, EMBO J , 2002,21:4327~4337
    [48] Yanovsky MJ, Kay SA, Molecular basis of seasonal time measurement in Arabidopsis, Nature , 2002,419:308~312
    [49] Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G, Photoreceptor regulation of CONSTANS protein in photoperiodic flowering, Science ,2004,303:1003~1006
    [50] An H, Roussot C, Suarez–Lopez P, Corbesier L, Vincent C, Pineiro M, et al,, CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis, Development ,2004,131:3615~3626
    [51] Ayre BG, Turgeon R, Graft transmission of a floral stimulant derived from CONSTANS, Plant Physiol ,2004,135:2271~2278
    [52] Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z et al,, The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli, Proc, Natl, Acad, Sci, USA, 2006,103:6398~6403
    [53] Corbesier L, Vincent C, Jang S, et al, FT protein movement contributes to long–distance signaling in floral induction of Arabidopsis, Science, 2007,316:1030~1033
    [54] Jaeger KE, Wigge PA, FT protein acts as a long–range signal in Arabidopsis, Curr, Biol, 2007,17:1050~1054
    [55] Lin MK, Belanger H, Lee YJ, Varkonyi–Gasic E, Taoka K, Miura E et al, FLOWERING LOCUS T protein may act as the longdistance florigenic signal in the cucurbits, Plant Cell ,2007,19:1488~1506
    [56] Mathieu J, Warthmann N, Kuttner F, Schmid M, Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis, Curr, Biol,2007,17:1055~1060
    [57] Lloyd AM, Schena M, Walbot V, Davis RW, Epidermal cell fate determination in Arabidopsis: patterns defined by a steroid–inducible regulator, Science ,1994,266:436~439
    [58] Imlau A, Truernit E, Sauer N, Cell–to–cell and long–distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues, Plant Cell ,1999,11:309~322
    [59] Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K, Hd3a protein is a mobile flowering signal in rice, Science ,2007,316:1033~1036
    [60] Wu X, Weigel D, Wigge PA, Signaling in plants by intercellular RNA and protein movement, Genes, Dev,2002(16):151~158
    [61] Lucas WJ, Lee JY, Plasmodesmata as a supracellular control network in plants, Nat, Rev, Mol, Cell Biol,2004,5:712~726
    [62]吴晓梅,杨盛昌,缪颖等,花卉基因工程研究进展,,福建农林大学学报(自然科学版),2003(9)32:3
    [63]雍伟东,谭克辉,许智宏等,高等植物开花时间决定的基因调控研究[J],,科学通报,2000,45(5):455~466
    [64]安利忻,李毅,刘荣维等,高等植物开花的基因调控[J],高技术通讯,1998,8(9):59~62
    [65]王云祎,张启翔,高亦珂,转基因技术在观赏植物育种中的应用,北京林业大学学报,2004,26(2):102~108
    [66]熊华斌,程在全,王玲仙等,国内外转基因花卉的研究进展[J],西南农业学报,2004,(17):340~347
    [67]孙昌辉,邓晓建,方军等,高等植物开花诱导研究进展,遗传HEREDITAS(Beijing)2007,29(10):1182~1190
    [68] Pittendrigh CS, Minis DH, The entrainment of circadian oscillations by light and their role as photoperiodic clocks, Am Nat 1964,108:261~295
    [69] Levy YY, Dean C, Control of flowering time, Curr Opin Plant Biol, 1998,1:49~54
    [70] Lang A, Physiology of flowering, Annu Rev Piant Physiol, 1952,3:265~306
    [71] Evans LT flower induvtion and the thorigen concept, Annu Rev Physiol Mol Biol, 1971,22:365~394
    [72] Bernier G, The coataul of floral evocation and morphogenesis, Annu Rev Plant physiol Plant Mol Biol,1988,39:175~219
    [73]汤青林,王小佳等,与拟南芥春化作用相关的基因及其春化记忆模型,植物生理学通讯,2007,43(5):805~810
    [74] Sung S, Amasino R M , Vernalization and epigenetics: how plants remember winter, Curr Opin Biol, 2004a,7(1):4~10
    [75] Chailakhyan M H, Concerning the hormonal Nature of plant development process, C,R, (Dok1), Acad Sci URSS, 1937,16:27~230
    [76]张素芝,左建儒,拟南芥开花时间调控的研究进展,生物化学与生物物理进展,2006,33(4):301~309
    [77] Guo H, Yang H, Mockder TC, et al, Regulation of flowering time by Arabidopsis photoreceptors, Science,1998, 279:1360~1363
    [78] Bagnall DJ, King RW, Whitdlam GC, et al, Flowering responses to altered expression of phytochrome in mutants and transgenic lines of Ardbidopsis thaliana(L,)Heynh, Plant Phusiol,1995,108:1495~1503
    [79] Wang Z Y, Tobing E M, Conscitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1(CCA1) gene disrupts circadian rhythms and suppresses its own expression,Cell,1998,93:1207~1217
    [80] Park DH, Somers DE, Kim YS, et al, Control of circadicon rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene, Science, 1999,285:1579~1582
    [81] Ma H, To be, or not to be, a flower, control of floral meristem identity, Trends in Genetics,1998,14(1):26~32
    [82] Laurie DA, Comparative genetics of flowering time, Plant Mol Biol, 1997,35:167~177
    [83] Curtis OF, Chang HT, The relative effectiveness of the temperature of the crown as contrasted with that of the rest of the plant upon the flowering of celery plants, Am J Bot,1930,17:1047~1048
    [84] Chouard P, Vernalization and its relation to dormancy, Annu Rev Plant Physiol,1960,11:191~238
    [85]谭克辉,张玉竹,胰蛋白酶在冬小麦春花过程中的作用,植物学报,1982,24(3):241~246
    [86]谭克辉,低温诱导植物开花的机理,植物生理生化进展,1983, 2:90~107
    [87]谭克辉,春化过程中特异蛋白质的合成,植物学集刊,1992,3:13~16
    [88] Kuzmichev A, Reinberg D, Nishioka K, Histone methyhransferaseac-tivity associated with a human multiprotein complex containing the enhancer of Zests protein, Genes, 2002,Dev,16:2893~2905
    [89] Reyes JC, Henning L, Gruisem W, Chromation-remodeling and memory factors, New regulators of plant development, Plant Physiol, 2002,130:1090~1101
    [90] Schultz DC,Ayyanathan K,Negorev D,Maul GG,Rauscher FJ, SETDB 1,a novel KAP-1-associated histone H3,lysine 9-speckfic methyltransferase that contributes to HP 1-mediated silencing of euchromatin genes by KRAB zinc-finger proteins, Genes , 2002, Dev,16:919~932
    [91] Greb T, Mylne JS, Crevillen P, Geraldo N, An H, Gendall AR, Dean C, The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC, Curr Biol ,2007,17:73~78
    [92] Mouradov A, Cremer F, Coupland G, Control of flowering time: interacting pathways as a basis for diversity, Plant Cell, 2002,14(Supp1): S111~S130
    [93] Ausin I, Alonso~Blanco C, Jarillo J A, eta1, Regulation of flowering time by FVE, aretinoblastoma-associateglprotein, Nat Genet, 2004, 36(2):l62~166
    [94] Magome H, Yamaguchi S, Hanada A, et ,Dwarf and delayed-flowering l, a novel Arabidopsis mutant deficient in gibbcrellin biosynthesis because of over expression of a putative AP2 transcription factor, Plant J, 2004,37(5):720~729
    [95] Schomburg FM, BizzellC M, LeeD J, et al, Overexpression of a novel class of gibberellin 2-oxidascs decreases gibbcrellin levels and creates dwarf , Plant Cell, 2003,15(1):l51~160
    [96] Wen C K, Chang C, Arabidopsis RGL1 encodes anegativeregu lator of gibbcrellin responses, Plant Cell, 2002,14(1):87~100
    [97] Jacobsen S E, Olszewski N E, Mutations at the SPINDLY locus of Arabidopsis alter gibbcrellin signal transduction, Plant Cell, 1993,5(8):887~896
    [98] He Michaels S D, Amasino R M, Regulation of flowering time by histone acetylation in Arabidopsis, Science, 2003,302(5651):1751~1754
    [99] Macknight R, Bancroft I, Page T, Lister C, Schmidt R, Love K, Westphal L, Murphy G, Sherson S, Cobbett C, FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-Binding domains, Cell, 2003,4(1):53~66
    [100] Lim M H, Kim J, Kim Y S, Chung K S, Seo Y H, Lee I, Kim J, Hong C B, Kim H J, Park C M,A new Arabidopsis gene, FLK encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C, Plant Cell, 2004,16(3):73l~740
    [101] Mockler TC, Yu X, Shalitin D, Parikh D, Michael T P, Liou J, Huang J, Smith Z, Alonso JM, Ecker JR, Regulation of flowering time in Arabidopsis by K homology domain proteins, Proc Natl Acad Sci USA, 2004,101(34):12759~12764
    [102] Quesada V, Macknight R, Dean C, Simpson GG, Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time, EMBO J, 2003,22(12):3142~3152
    [103] Simpson GG, Dean C, Arabidopsis, the Rosetta stone of flowering time? Science, 2002,296(5566):285~289
    [104] Lee I, Aukerman M J, Gore SL, Lohman KN, Michaels SD, Weaver LM , John M C, Feldmann KA, Amasino RM , Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis, Plant Cell, 1994,6(1):75~83
    [105] Corbesier L, Coupland G Photoperiodic flowering of Arabidopsis: integrating genetic and physiological approaches to characterization of the floral stimulus, Plant Cell, 2005,28(1):54~66
    [106] Koornneef M, Alonso~Blanco C, Peeters A J M, et al, Genetic control of flowering time in Arabidopsis, Annu Rev Plant Physiol Plant Mol Biol, 1998,49:345~370
    [107] Weigel D, Nilsson O, A developmental switch sufficient for flower lactation in diverse plants, Nat, 1995,377:495~500
    [108] Weigel D, Ratcliffe J, Wincent C, et al, Inflorescence commitment and archicecture in Arabidopsis, Science, 1997,275:80~83
    [109] Yanofsky M F, Ma H, Bowman J L, et al, The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors, Nat, 1990,346:35~39
    [110] Yanofsky M F, Floral meristerns to floral organs: Annu Rev Plant Physiol Plant Mol Biol, 1995,46:167~188
    [111] Busch M A, Bombites K, Weigel D, Activation of a floral homeotic gene in Arabidopsis , Sci, 1999,285: 85~587
    [112] Sung Z R, Belachew A, Bai S~N, et al, EMF, an Arabidopsis gene required for vegetacive shoot development, Sci, 1992,258:1645~1647
    [113] Castie LA, Sung AR, The EMBRYONIC FLOWER genes of Arabidopsis control shoot maturation, Flowering Newsletter, 1995,19:12~19
    [114] Chen L J, Cheng J C, Castle L, et al, EMF genes regulate Arabidopsis inflorescence development, Plant Cell, 1997,9:2011~2024
    [115] Martinez-Zapater J M, Coupland G, Dean C, et al, The transition to flowering in Arabidopsis, In: Meyerowis E M, Somervill C R, eds, Arabidopsis, New York: Cold Spring Harbor Laboratory Press, 1994:403~433
    [116] Goodrich J, Puang somlee P, Martin M, et al, A polycomb-group gene regulates homeotic gene expression in Arabidopsis, Nature,1997,386:44~51
    [117] Mizukami Y, Ma H, Determination of Arabidopsis floral meristem identity byAGAMOUS, Plant Cell, 1997,9:393~408
    [118] Bird A, The essentials of DNA methylation, Cell, 1992,70:5~8
    [119] Martienssen R A, Richards E J, DNA methylation in eukaryotes, Curr Opin, Genet Dev, 1995,5:234~242
    [120] Finnegan E J, Genger R K, Kovac K, et al, DNA methylation and the promotion of flowering by verbalization, Proc Natl Acad Sci USA, 1998,95:5824~5829
    [121] Finnegan E J, Peacock W J, Dennis E S, Reduced DNA methylation in Arabidopsis thaliana results in adnormal plant development, Proc Natl Acad Sci USA, 1996,93:8449~8454
    [122] Koornneef M, Hanhart C J, Vander Veen J H, A genetic and physiological analysis of late-flowering mutants in Arabidopsis thaliana, Mol Gen Genet, 1991,229:57~66
    [123] Pineiro R P, Coupland G, The control of flowering time and floral indenting in Arabidopsis, Plant Physiol,1998,117:1~8
    [124] Martinez-Zapater J M, Somerville C L, Effects of light quality and vernalization on late-flowering mutants of Arabidopsis thaliana, Plant Physiol, 1990,92:770~775
    [125] Page T, Macknight R, Yang C, et al, Genetic interaction of the Arabidopsis flowering time gene FCA, with genes regulating floral initiation, Plant J,1999,17:231~239
    [126] Simon R, Igeno M I, Coupland G, Activation of floral meristem identity genes in Arabidopsis, Nature,1996,382:59~62
    [127] Pidkowich M S, Klenz J E, Hanghn G W, The making of a flower: control of floral meristem identity in Arabidopsis, Trends in Plant Science,1999,4 (2):64~70
    [128]徐勤明,王国良,李晓征等,微型月季研究进展综述,江苏林业科技,2001,28(6):34~38
    [129] Marchant R, Davey M R, Lucas J A, et al, Expression of a chitinase transgene in rose (Rosa hybrida L) reduces development of blackspot disease (Diplocarpon rosae Wolf), Molecular Breeding, 1998,4(3): l87~194,
    [130] Kiyokawa S, Kikuchi Y, Kamada H, et al, Genetic transformation of Begonia tuber hybrida by Rirol genes, Plant Cell Reports, 1996,15(8):606~609
    [131] Kuehnle A R, Sugii N. Induction of tumours in Anthurium andraearum by Agrobatorrium tumefactiens [J]. Hortscience, 1991,26(10):1325~l328
    [132] Chert F C, Kuehnle A R, Sugii N. Anthurium root for micropropagation and Agrobacterium tumefaciens-mediated genetransfer [J]. Plant cell, 1997,49(1):7l~74
    [133] Gek-Lan Chi, Hedy K Coh, Therry Legavre. Gus gene expression in Anthurium andraeanum, Oncidium go werramssey and Brassolaelio-cattleya orange glory express after particle bombardemt [J]. Act Hort, 1998:379~383
    [134] Koon-Hui, Sipes-B S, Kuehrde-A R. Radopholus simillis in anthurium shoot tissue [J]. Hortscienee1999, 34(2):296~297
    [135]王萍,王罡,吴颖等,影响大豆基因枪遗传转化因子的研究.,农业生物技术学报,2002,10(3):66~67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700