甘肃鼢鼠(Myospalax cansus)昼夜节律调节研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节律性是生命的基本特征之一,昼夜节律是哺乳动物最常见的一种生物节律,是生物界的各种功能为了适应地球自转的昼夜环境周期性的变化而产生的。经过长期进化,生物机体内发育分化出一个特殊的结构一生物钟,用来协调各种不同组织和器官的昼夜节律。在哺乳动物中,控制昼夜节律的主要生物钟位于下丘脑视交叉上核,可节律性地释放多种神经肽,并将节律性信号传递给松果腺,使之有节律地合成与释放褪黑素。很多研究已经证明,光周期是影响生物钟基因表达进而调控生物节律的主要环境因子,它们对生物钟基因表达的调控机制存在着保守性和特异性。
     由于长期生活在地下黑暗环境中,地下鼠视觉系统已严重退化,但是有关感受光周期的“非成像”视觉通路结构却高度发达,仍然能够感光和感知外界光周期并产生与外界昼夜循环同步的生物节律现象。这意味着,地下鼠的视觉系统在退化过程中保留了有功能的生物钟系统对其自身有重要的意义。对地下鼠的昼夜节律以及与昼夜节律有关的视觉系统进行研究,不仅有助于阐明地下啮齿类视觉系统的功能、生物进化与环境的关系,同时为地下鼠的昼夜节律调节机制以及与节律行为有关的其它行为研究提供参考。甘肃鼢鼠是我国黄土高原地区特有的地下鼠种类,前期研究发现,甘肃鼢鼠能识别明暗环境,且能区分不同波长的光,在笼养条件下夏秋季节具有明显的行节律。但对其昼夜节律的调节尚未深入研究。本文对实验室饲养和人工控制光照条件下的甘肃鼢鼠,利用行为学分析和免疫组织化学方法相结合,对其昼夜节律调节功能做了探讨,得到结论如下:
     1.用行为学方法观察到在LD(L:6:00-18:00,D:18:00-6:00)光照模式下,甘肃鼢鼠表现出明显的夜间活动偏好,在24 h内行为节律出现两个高峰,并且能维持稳定,说明甘肃鼢鼠虽生活在地下黑暗洞道中,但其活动具有明显的昼夜节律。意味着能够感受光信号并且能调节自己活动与之相应。
     2.观察到在DL(L:18:00-6:00,D:6:00-18:00)光照模式下,甘肃鼢鼠能调节自己的活动节律与LD光周期保持一致。光照模式的改变引起行为活动节律的改变也证实了甘肃鼢鼠能识别明暗环境,并且证明甘肃鼢鼠具有有功能的生物钟,能对周期性光刺激做出反应。
     3.用免疫组化方法检测到甘肃鼢鼠下丘脑视交义上核褪黑素受体的表达具有明显节律性。在LD光照模式下峰谷出现在夜中期即24点,峰值出现在日中期即12点,与褪黑素含量水平夜间高白昼低相符合。意味着甘肃鼢鼠能辨识明暗周期。
     4.在DL光照模式下,褪黑素受体表达也具有明显节律性,表现出峰值出现在24点,即主观日中期12点。峰谷出现在12点,即主观夜中期24点。该节律与标准LD光照模式下致,说明甘肃鼢鼠能够调节其生物钟。
     5.由于甘肃鼢鼠是独居种类,排除了群居性社会因素对节律调节的因素,在实验室条件下,无降雨量和温度的影响,因此,光照周期是影响生物钟节律的重要因子。
     总之,对甘肃鼢鼠昼夜节律调节的研究结果表明,甘肃鼢鼠虽然眼睛已经极度退化,可能不具有将视觉信息转变成视觉图像的能力,但有关感受光周期的“非成像”视觉通路结构却依然存在,仍然具有感光和感知外界光周期并产生与外界昼夜循环同步的生物节律现象。甘肃鼢鼠具有有功能性的生物钟,可以在明暗周期中调节昼夜节律,意味着节律振荡器能够接收光信号,因而光是一种潜在的振荡因子。但是否是一种主要因子仍需考证。
Rhythm is one of the basic characteristics of life. Circadian rhythm is the most common type of mammalian circadian rhythm.It is one biological function of the day and night in order to adapt to Earth's rotation changes in the environment. After a long evolution, a special organ-the biological clock developed in the body to coordinate the circadian rhythm of a variety of tissues and organs. In mammals, the main biological clock controlling circadian rhythms is the hypothalamic suprachiasmatic nucleus, which can release a variety of neuropeptides, and transfer the signal to the pineal gland, so that synthesis and release melatonin rhythmicity. Many studies have shown that the photoperiod is the main environmental factors which affect the expression of circadian clock gene regulation.Their mechanism of circadian clock gene expression in the existence is conservative and specificity.
     As a result of living in the dark long time, the visual system of subterranean rodents has degraded seriously.But the "non-imaging" visual pathway structures that can feel light cycle are highly developed.It is still able to fell light cycle and produce day and night cycle synchronization with the outside biological rhythmicity. It suggested that the functional biological clock system may be important to the subterranean rodents. Studing the circadian rhythm and visual system of underground rodent will help to know more about the visual system functions and to further clarify the relationship between biological evolution and the environment,at the same time,provid for reference about regulatory mechanisms of the circadian rhythm of underground rats and behavior with the rhythm of the other acts. Myospalax cansus is an unique subterranean rodents in Loess Plateau.Preliminary laboratory study found that Myospalax cansus can identify light and dark and distinguish the different wavelengths of light.Their behavior in captive has obvious rhythm in summer and autumn. However, the regulation of its circadian rhythm has not been studied deeply. In this paper,we discussed the function of its circadian rhythm regulation who were reared under laboratory conditions in artificial control on light,by behavior analysis and immunohistochemistry combined.the conclusions are as follows:
     1.With the observed behavior in the LD(L:6:00~18:00, D:18:00~6:00) illumination mode, Myospalax cansus showed significant nocturnal preferences, appeared two behavior peaks in 24h rhythm and can maintain stability.It indicates that though Myospalax cansus living in the underground dark tunnel,its activities have significant circadian rhythm.It means that Myospalax cansus are able to feel the light signal and adjust their activities in the corresponding.
     2.Observed behavior in the DL(L:18:00-6:00,D:6:00-18:00)illumination mode, Myospalax cansus can adjust their activity rhythm consistent with the LD photoperiod. Activity rhythm of behavior change with illumination model change also proves they are able to identify light and dark environments and have a functional biological clock to respond to the periodic light stimulation.
     3.There is obvious rhythm in expression of melatonin receptor in SCN detected by immunohistochemistry. In LD light mode the valley in the middle of the night and the peak appears in the mid-day consistent with the melatonin concentration levels who shows high in dark and low in the day. It means that light inhibits melatonin concentration in plasma.Myospalax cansus can identify light and dark cycle.
     4.1n the DL light mode, the expression of melatonin receptors also has obvious rhythm, showing peak in mid-night, or mid-subjective day,and valley in the mid day, or mid-subjective night.This rhythm consistent with standard mode LD light shows Myospalax cansus able to adjust their biological clock.
     5.As Myospalax cansus is the single lifestyle,social factors regulation circadian rhythm is unuseful.In laboratory conditions, no precipitation and temperature changes,thus,photoperiod is the important factor affecting biological clock rhythm.
     6. Myospalax cansus is seasonal breeding animal and there were significant differences in rhythm between summer season and autumn,suggesting the retention of functional circadian system is useful for its seasonal breeding activities.
     In conclusion,one all account results above show that although the eyes of Myospalax cansus has been extremely degraded and may not have the capacity of imaging,the feeling of light cycle and "non-imaging" visual pathway structures still have function,and have the phenomenon of biological rhythms that produce day and night cycle synchronization with the outside. Myospalax cansus have a functional clock so that can adjust circadian rhythm to the light and dark cycle.It means that oscillator can receive optical signals, and thus light is a potential shock factor.But it is still unkown if it is a major factor.
引文
[1]S.Begall,H.Burda, C.E.Schleich.Subterranean Rodents:News from Underground [M].Berlin:Springer,2007:129-155
    [2]R,Rado,H.Gev, B.D.Goldman,J.Terke.Light and:circadian activity in the blind mole-rat. In:Riklis E (ed) Photobiology. Plenum Press, New York, pp.1991, (7)581-589.
    [3]R.Ben-Shlomo,U.Ritte, E.Nevo.Activity pattern and rhythm in the subterranean mole rat superspecies Spalax ehrenbergi. Behav Gen.1995,(25):239-245.
    [4]B.D.Goldman,S.L.Goldman,A.P,Riccio,J.Terkel.Circadian patterns of locomotor activity and body temperature in blind mole-rats, Spalax ehrenbergi.J Biol Rhythms.1997,(14):348-361.
    [5]I.Tobler,M.Herrmann,H.M.Cooper, J, Negroni.Rest-activity rhythm of the blind mole rat Spalax ehrenbergi under different lighting conditions.Behav Brain Res.1998,(96):173-183.
    [6]金观源,相嘉嘉.现代时间医学—生物钟与临床[M].长沙:湖南科学技术出版社,1993:45-57.
    [7]蔡理全,李庆芬.啮齿类动物的昼夜节律器及光周期对其影响机制[J].生态学杂志,1998,17(6)40-43.
    [8]D.M.Berson, F.A. Dunn,M. Takao.Phototransduction by retinal ganglion cells that set the circadian clock.J.Science.2002,295(5557):1070-1073.
    [9]P.T.Decoursey, T.Buggy.Restoration of locomotor rhythmicity in SCN-lesioned hamsters bytransplantation of fetal SCN.Neurosci Abstrs,1986,12(3):210-224.
    [10]N.Ibuka, H.Kawamura. Loss of circadian rhythm in sleep-wakefulness cycle in the rat by suprachiasmatic nucleus lesions.Brain Res,1975,96(1):76-82.
    [11]R.Y.Moore,V.B.Eichler.Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res,1972,42(1):201-217.
    [12]D.J.Earnest, C.D.Sladek.Circadian rhythms of vasopressin release from individual rat suprachiasmatic explants vitro containing the SCN, Brain Res,1986,382 (1):129-131.
    [13]N.Murakami,M.Takamure,K.Takahashi.Long-term cultured neurons from rat suprachiasmatic nucleus retain the capacity for circadian oscilation of vasopressin release. Brain Res,1991,545(1-2):347-350.
    [14]M.R.Ralph, R.G.Foster, F.C.Davis.Transplanted suprachia-smaticnucleus determines circadian period. Science,1990,247(4945):975-783.
    [15]H.Abe, S.Horuna,M.Namihira.Phase-dependent induction by light of rat Cloek gene expression in the supraehiasmatie nueleus.Brain Res Mol Brain Res.1999,Mar,66(12):104-109.
    [16]R.Y.Moore, N.J. Lenn.A retinohypothalamic projection in the rat.J.J Comp Neurol,1972,146(1):1-14.
    [17]M.S.Freedman,R.J.Lucas,B.Soni.Regulation of mammalian circadian behavior by non-rod,non-cone,ocular photoreceptors. Science 1999,284(5413):502-504.
    [18]D.M.Berson,F.A.Dunn,M.Takao.Phototransduction by retinal ganglion cells that set the circadian clock.J.Science,2002,295 (5557):1070-1073.
    [19]D.M.Berson.Strange vision:ganglion cells as circadian photore-ceptors.J.Trends Neurosci.2003,Jun,26(6):314-320.
    [20]H.C.Lee.Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers.J. Annu Rev Pharmacol Toxicol,2001,41:317-345.
    [21]I.Provencio,H.M. Cooper, R.G. Foster. Retinal projections in mice with inherited retinal degeneration:implications for circadian photoentrainment.J.J Comp Neurol,1998,395(4):417-439.
    [22]C.A.Czeisler,T.L, Shanahan,E.B.Klerman,et al.Suppression of melatonin secretion in some blind patients by exposure to bright light.J.N Engl J Med, 1995,332(1):6-11.
    [23]Foster R G, Hankins M W. Non-rod,non-cone photoreception in the vertebrates[J].Prog Retina Eye Res,2002,21(6):507-527
    [24]Refinetti R.Circadian Physiology[J].CRC Press LLC,2000,61-69
    [25]Balsalobre A,damiola f,schibler u.a serum shoch induces circadian gene expression in mammalian tissue culture cells[see coments]Cell 1998 Jun;93(6):929-37
    [26]dingJM FaimanIE hurstWJ.Resetting the biological clock:Mediation of noeturnal CREB phosphorylation via light,glutamate,and nitric oxidc,J Neurosei 1997 Jan;17(2):667-75.
    [27]Fujiwara s Ishida N Tsuzuk,M Circadian expression of the carbonic anhydrase gene,Cahl,in Chlamydomonas relnhardtii. Plant Mol boil 1996 Nov;32(4):745-9.
    [28]Bondarenko L A. Role of Met hionine in Nocturnal Melatonin Peak in the Pineal Gland[J].Bulletin of Experimental Biology and Medicine,2004,137 (5):431-432,
    [29]Cagnacci A. Influences of melatonin on human circadian rhyt hms[J].Chronobiol Int,1997,14(2):205-220.
    [30]Pang S F,Pang C S,Poon A M,et al.Melatonin:a chemical phot2operiodic signal wit h clinical signifiCance in humans [J].chin Med J(Engl),1998,111 (3):197-203.
    [31]尹毅青,罗爱伦.褪黑素的生理作用与认知功能[J].中华麻醉学杂志,2005,25(6):478-480.
    [32]裴小英,郭定宗,郭锐.松果体和褪黑素的生物学作用研究进展[J].中国畜牧兽医,2007,34(7):06-36.
    [33]柳建昌.松果腺的分泌功能与生殖[J].动物学杂志,1989,241(1):46-53.
    [34]Williams L M, Hanah L T. High-affinity melatonin recep tors ard p resent on the ep ididymis of the immature rat.77 th Annual meeting of the Endocrinology Society, Washington 1995,3:40-41.
    [35]S.F.Pang.褪黑素及其受体的研究现状和展望[J].第二军医大学学报,2001,22(1):5-7.
    [36]thomas L,drew E,Abramovich dr,etal,the role of melatonie in the human fetus.int j mol med.1998,l(3):539-543.
    [37]Korf hw,innervation of the pineal gland.in "autonomic-endocrine interactions"k.unsicker,ed.harwood academic publishers,chur.1993,25-51.
    [38]Zh Y, Yuan H,Pang S F,et al. [125 I]iodomelatonin binding sites in spleens of birds and mammals[J].Neurosci Lett,1991,125(2):175-178.
    [39]赵瑛,刘志民,彭树勋.鸟类及鼠类的胸腺、腔上囊、及脾脏褪黑素受体的鉴定意义[J].上海免疫学杂志,1998,18(2):94-97.
    [40]Lopez Gonzalez M A,Calvo J R,Osuna C,et al.Interaction of melatonin wit h human lymphocytes:evidence for binding sites coupled to potentiation of cyclic AMP stimulated by vasoactive intestinal peptide and activation of cyclic GMP [J].J Pineal Res,1992,12(3):97-104.
    [41]Maest roni GJ.T2helper22 lymphocytes as a peripheral target of melatonin[J].J Pineal Res,1995,18(2):84-89.
    [42]Dubocovich M L. Melatonin receptors:are t here multiple sub2 types[J].Trends Pharmacol Sci,1995,16(2):50-56.
    [43]Bronchti G, Rado R, Terkel J, Wollberg Z.Retinal projections in the blind mole rat:aWGA-HPR tracing study of a natural degeneration. Dev Brain Res,1991, 58:159-170
    [44]Rado R, Bronchti G, Wollberg Z, Terkel J.Sensitivity to light of the blind mole rat: behavioural and neuroanatomical study. Isr J Zool,1992,38:323-331
    [45]Cooper HM, Herbin M, Nevo E.Ocular regression conceals adaptive progression ofthe visual system in a blind subterranean mammal.Nature,1993a,361:156-159.
    [46]Cooper HM, Herbin M, Nevo E(1993b) Visual system of a naturally microphthalmic mammal:the blind mole rat, Spalax ehrenbergi.J, Comp Neurol,1993b,328:313-350.
    [47]Negroni J, Bennett NC, Cooper HM.Organization of the circadian system in the subterranean mole rat, Cryptomys hottentotus (Bathyergidae) [J].Brain Res,2003,967:48-62
    [48]Nemec P,Burda H, Peichl L.Subcortical visual system of the African mole-rat Cryptomys anselli:to see or not to see[J].Eur Neurosci,2004,20:757-768.
    [49]Crish SD,Dengler-Crish CM, Catania KC.Central visual system of the naked mole-rat(Heterocephalus glaber)[J].Anst Rec,2006,288:205-212.
    [50]Herbin M, Rep'erant J,Cooper HM(1994) Visual system of the fossorial mole-lemmings,Ellobius talpinus and Ellobius lutescens. J Comp Neurol 346:253-275.
    [51]李金钢,,何建平,王廷正.笼养条件下甘肃鼢鼠夏秋季行为活动节律[J].西北大学学报,2003,33(2):217-222.
    [52]Rado R, Bronchti G, Wollberg Z, Terkel J(1992) Sensitivity to light of the blind mole rat:behavioural and neuroanatomical study; Isr J Zool 38:323-331.
    [53]Cernuda-Cernuda R, DeGrip WJ, Cooper HM.The retina of Spalax ehrenbergi: novel histologic features supportive of a modified photosensory role[J].Invest Ophthalmol Vis Sci,2002,43:2374-2383.
    [54]David-Gray ZK, Bellingham J,MunozM, Avivi A, Nevo E, Foster RG Adaptive loss of ultraviolet-sensitive/violet-sensitive (UVS/VS) cone opsin in the blind mole rat(Spalax ehrenbergi)[J].Eur Neurosci,2002,16:1186-1194.
    [55]Janssen JWH.A fully functional rod visual pigment in a blind mammal-A case for adaptive functional recognization [J].Biological Chemistry,2000,275(49):38674-386791.
    [56]Hetling JR, Baig-Silva MS, Comer CM.Features of visual function in the naked mole-rat Heterocephalus glaber[J].Comp Physiol,2005,191:317-730.
    [57]Wegner RE, Begall S,Burda H.Light perception in "blind" subterranean Zambian mole-rats[J].Anim Behav,2006,72:1021-1024
    [58]Oosthuizen MK, Bennett NC, Cooper HM.Fos expression in the suprachiasmatic nucleus in response to light stimulation in a solitary and social species of African mole-rat (family Bathyergidae) [J].Neuroscience,2005,133:555-560
    [59]Oelschlager HHA, Nakamura M, Herzog M, Burda H (2000) Visual system labeled by c-Fos immunohistochemistry after light exposure in the 'blind' subterranean Zambian molerat(Cryptomys anselli).Brain Behav Evol 55:209-220.
    [60]Oosthuizen MK, Cooper HM, Bennett NC (2003)Circadian rhythms of locomotor activity in solitary and social species of Africanmole-rats(Family:Bathyergidae). J Biol Rhythm 18:481-490
    [61]Richter TA, Malpaux B,Fleming PA, Molteno AJ, Bennett NC (2003) Melatonin secretionin a strictly subterranean mammal, the Damaraland mole-rat (Cryptomys damarensis).J Zool Lond 261:313-319
    [62]Hart L, Bennett NC,Malpaux B,Chimimba CT, Oosthuizen MK (2004) The chronobiology of the Natal mole-rat, Cryptomys hottentotus natalensis.Physiol Behav 82:563-569
    [63]Gutjahr GH, van Rensburg LJ, Malpaux B.The endogenous rhythm of plasma melatonin secretion and its regulation by light in the Highveld molerat(Cryptomys hottentotus pretoriae):a microphthalmic, seasonally breeding rodent[J].Pineal Res,2004,37:185-192
    [64]Vasicek CA,MalpauxB,FlemingPA,BennettNC.Melatonin secretionintheMashona mole-rat,Cryptomys darlingi-influence of light on rhythmicity[J].Physiol Behav,2005,83:689-697
    [65]Lovegrove BG, Muir A(1996) Circadian body temperature rhythms of the solitary Cape mole rat Georychus capensis (Bathyergidae).Physiol Behav 60:991-998
    [66]RiccioAO,GoldmanBD.Circadian rhythms of locomotor activity in naked mole-rats(Heterocephalus glaber)[J].Physiol Behav.2000,71:1-13
    [67]Vasicek CA, Oosthuizen MK, Cooper HM, Bennett NC,Circadian rhythms of locomotor activity in the-subterranean Mashona mole rat, Cryptomys darlingi[J].Physiol Behav,2005,84:181-191
    [68]Schottner K, Oosthuizen MK, Broekman M, Bennett NC (2006) Circadian rhythms of locomotor activity in the Lesotho mole-rat, Cryptomys hottentotus subspecies from SaniPass, South Africa. Physiol Behav 89:205-212
    [69]Ronrad schottner,Maria R.Oocthuizen,Mama Broekman.Circadian rhythms of locomotor activity in the Lesotho mole-rat,Cryptomys hottentotus subspecies from Sani Pass, South Africa[J].Physiology& Behavior,2006,89,205-212
    [70]Alexandra P.Riccio,et al. Circadian rhythms of body temperature and metabolic rate in naked mole-rats[J].Physiology & Behavior,2000,71:15-22
    [71]Wassle H.Parallel processing in the mammalian retina[J].Nature Rev Neurosci,2004,5:747-757
    [72]杜央威,李金钢,赵新全.地下啮齿动物视觉系统的形态结构与机能进化[J].兽类学报,2006,26(1):76-83.
    [73]Negroni J, Bennett NC, Cooper HM (2003)Organization of the circadian system in thesubterranean mole rat, Cryptomys hottentotus (Bathyergidae).Brain Res 967:48-62
    [74]Beltramino C, Taleisnik S.1980.Dual action of electrochemical stimulation of the bed nucleus of the stria terminalis on the release of LH.N euroendocrinoligy,30: 238-242.
    [75]Emery D E, Sachs B D.1976. Copulatory behavior in male ratswith lesions in the bed nucleus of the stria terminalis.Physiol B ehav,17:803-806.
    [76]Novotny G E K.1911.A ventral tract from the bed nucleus of the stria terminalis to the amagdaloid complex in themonkeyMacaca fascicularis:A possible pathway in the regulation of ovulation. J physiol,225:13-14.
    [77]Valcourt R J, SanchsB D.1979. Penile reflexes and copulatory behavior in male rats following lesions in the bed nucleus of the stria terminalis. B rain Res Bull,4: 131-133.
    [78]Levine J D,Weiss,M L,RosenwasserA M,Miselis R Rl 1991. Retinohypothalamic tract in the female albino rat:A study using horseradish peroxidase conjugated to cholera toxin. J Com p N eurol,306:344-360.
    [79]Youngstrom T G, WeissM L, NunezA Al 1991.Retinofugal p rojections to the hypothalamus, anterior thalamus and basal forebrain in hamsters 1 B rain Res B ull,26:403-411.
    [80]Dunlap J. CMo lecular bases fo r circadian clock s[J].Cell,1999,96:271-290.
    [81]Hall J C.T ripp ing along the trail to the mo lecular mechanism s of bio logical clock s[J].T rends N euro sci,1995,18:230-240.
    [82]Caldelas I,Po irelV J,Sicard B,et al. Circadian p rofile and pho tic regulation ofclockgenes in the sup rach iasmatic nucleus of a diurnalmam2mal A rv icanth is ansorg ei [J].J N euro sci,2003,23:583-591.
    [83]Shun Y, H irom ilsejima. Synch ronization of cellular clock s in the sup rach iasmatic nucleus[J].Science,2003,302:1408-1427.
    [84]Albrecht U. Invited review:regulation of mammalian circadian clock genes.J Appl Physiol,2002,92(3):1348-1355
    [85]W righ t K P J,Czeisler C A.A bsence of circadian phase resetting in response to brigh t ligh t beh ind the knee[J].Science,2002,297:571-579.
    [86]赵亚军.根田鼠(microtus oeconomu)社会行为策略及其适合度[J].北京师范大学研究生院,1997
    [87]Riccio AP, Goldman BD.Circadian rhythms of locomotor activity in naked mole-rats (Heterocephalus glaber).Physiol Behav 2000;71:1-13.
    [88]Oosthuizen MK, Cooper HM, Bennett NC.Circadian rhythms of locomotor activity in solitary and social species of African mole-rats(family:Bathyergidae). J Biol Rhythms 2003;18:481-90.
    [89]Vasicek CA, Oosthuizen MK, Cooper HM, Bennett NC. Circadian rhythms of locomotor activity in the subterranean Mashona mole rat, Cryptomys darlingi. Physiol Behav 2005;84:181-91.
    [90]Sharma VK, Chandrashekaran MK. Zeitgebers (time cues) for biological clocks. Curr Sci;2005,89:1136-46.
    [91]Bennett NC, Faulkes CG. African mole-rats;ecology and eusociality.Cambridge: Cambridge University Press;2000,77:231-243.
    [92]Bennett NC. The locomotory activity patterns of a functionally complete colony of Cryptomys hottentotus hottentotus (Rodentia:Bathyergidae).J Zool 1992,228:435-43.
    [93]Lovegrove BG, Heldmaier G,Ruf T.Circadian activity rhythms in colonies of 'blind'mole-rats,Cryptomys damarensis (Bathyergidae).S Afr J Zool 1993,28:46-55.
    [94]Gutjahr GH, Janse van Rensburg L, Malpaux B, Richter TA, Bennett NC.The endogenous rhythm of plasma melatonin and its regulation by light in the highveld mole-rat (Cryptomys hottentotus pretoriae):a microphthalmic, seasonally breeding rodent. J Pineal Res 2004,37:185-192.
    [95]Huchon D, Douzery EJP.From the Old World to the New World:a molecular chronicle of the phylogeny and biogeography of hystricognath rodents.Mol Phylogenet Evol 2001,20:238-51.
    [96]Reppert SM, Weaver DR. Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 2001,63:647-676.
    [97]Goldman BD.The circadian timing system and reproduction in mammals.Steroids 1999,46:679-685.
    [98]Redlin U, Cooper HM, Mrosovsky N. Increased masking response to light after ablation of the visual cortex in mice. Brain Res 2003,965:1-8.
    [99]Arendt J. Melatonin and the mammalian pineal gland. London7 Chapman and Hall;,1995,7:7-11.
    [100]Bartness TJ, Goldman BD.Mammalian pineal melatonin:a clock for all seasons. Experientia 1989;45:939-45.
    [101]Vanecek J. Cellular mechanisms of melatonin action.Physiol Rev 1998;78:687-721
    [102]Wehr TA, Melatonin and seasonal rhythms. J Biol Rhythms 1997,12:518-527.
    [103]Maywood ES,Hastings MH, Max M, Ampleford E, Menaker M, Loudon ASI. Circadian and daily rhythms of melatonin in the blood and pineal gland of free-running and entrained Syrian hamsters. J Endocrinol 1993,136:65-73.
    [104]Elliott JA, Tamarkin L. Complex circadian regulation of pineal melatonin and wheel-running activity in Syrian hamsters.J Comp Physiol,A 1994,174:469-84.
    [105]Richter TA, Malpaux B,Fleming PA, Molteno AJ, Bennett NC.Melatonin secretion in a strictly subterranean mammal, the Damaraland mole-rat (Cryptomys damarensis).J Zool 2003,261:1-7.
    [106]Reiter RJ, Reiter MN,Hattori A, Yaga K, Herbert DC, Barlow-Walden L. The pineal melatonin rhythm and its regulation by light in a subterranean rodent, the valley pocket gopher (Thomomys bottae).J Pineal Res 1994,16:145-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700