小麦TaTOC1-A、TaTOC1-B和TaTOC1-D基因的遗传转化和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开花是高等植物完成生活周期的必需过程,光周期途径是一条重要的开花调控途径,与昼夜节律钟密切相关。我们实验室从同源六倍体小麦中克隆了拟南芥昼夜节律钟重要基因AtTOC1的三个同源基因TaTOC1-A、TaTOC1-B和TaTOC1-D。我们首先将它们转化模式植物拟南芥,结果表明它们的过表达在短日照条件下能够延迟拟南芥开花,而在长日照条件下对拟南芥开花没有显著影响。并且能够恢复拟南芥toc1-1突变体的早花表型。我们对开花关键基因GI、CO、FT和SOC1在拟南芥toc1-1突变体中的表达模式进行了分析,发现较野生型对照,GI、CO和FT基因在突变体中的表达量升高,SOC1基因的变化不明显。为了进一步研究TaTOC1-A、TaTOC1-B和TaTOC1-D在小麦中的生物学功能,我们利用它们的同源区段构建了RNAi表达载体,利用农杆菌侵染幼胚的小麦遗传转化技术将其转化至小麦CB037中,得到1053株再生植株,经过筛选最终获得了13株阳性转基因植株。转基因植株比对照抽穗时间提早5-7天。半定量RT-PCR(semi-quantitative reverse transcription PCR)以及实时定量PCR(real-time quantitative PCR)结果显示,转基因植株中TaTOC1-A、TaTOC1-B和TaTOC1-D的表达量均有不同程度的降低。为了进一步了解TaTOC1基因在小麦抽穗过程中的作用机制,我们对抽穗关键基因TaGI1、TaHd1、TaFT和TaSOC1在转基因小麦中的表达模式进行了分析。实时定量PCR结果显示,较对照小麦,长日照的转基因小麦中,TaGI1、TaHd1和TaFT基因的表达水平有所提高,TaSOC1基因表达变化不明显;短日照的转基因小麦中,TaGI1和TaFT的表达峰值高于对照,其他基因的表达变化不明显。我们推测,TaTOC1-A、TaTOC1-B和TaTOC1-D基因是通过调控下游TaGI1、TaHd1和TaFT等基因的表达来调节小麦的成花转变。同时,对TaTOC1-A、TaTOC1-B和TaTOC1-D基因进行的组织特异性表达发现,三个部分同源基因在被检测的小麦组织和器官中的表达量不同,在叶片组织中有表达优势。而在叶中,我们原位杂交结果显示,TaTOC1 mRNA被定位于叶片维管束组织中,在韧皮部的杂交信号最明显。
The timing of the change from vegetative to reproductive growth is critical for higher plant. Photoperiodic pathway is an important flowering regulatory pathway that is one of flowering regulatory pathways. In previous studies, three nearly full-length cDNA of homolog genes TaTOC1-A, TaTOC1-B and TaTOC1-D were isolated from homologous hexaploid wheat. Here, to investigate their function, we constructed overexpression vectors and transformated them into Arabidopsis. Under short-day conditions, the transgenic plant overexprssing TaTOC1 genes delayed flowering. But it had no visible effect on flowering under long-day conditions. The results of genetic complementation experiments indicated that the early flowering phenotype of toc1-1 were recovered by overexprssion of TaTOC1 genes. Then we analyzed the expression patterns of key regulate flowering genes such as GI, CO, FT and SOC1 in toc1-1 mutant. Compared with the wild-type control, we found that the expression of GI, CO and FT genes increased in toc1-1 mutant, while SOC1 gene's expression was not significantly changed. To further study their function in wheat (Triticum astivum L.), an RNAi vector was constructed to knock down there genes including TaTOC1-A, TaTOC1-B and TaTOC1-D. Then it was transformed into the wheat (cv. CB037) mediated Agrobacterium tumefaciens. And we obtained 1053 regenerate seedings. After molecular identification, we selected 13 positive transgenic plants from the resistant seedlings. And the heading time of transgenic plants is 5-7 days earlier than that of control. Semi-quantitative reverse transcription polymerase chain reaction and real-time quantitative polymerase chain reaction results showed that the expression of TaTOC1-A, TaTOC1-B and TaTOC1-D genes were reduced in transgenic plants. This suggests that the reduction of TaTOC1-A, TaTOC1-B and TaTOC1-D gene in transcript levels promote heading earlier in wheat. Further, we analyzed the expression patterns of key regulate flowering genes such as TaGI1, TaHd1, TaFT and TaSOC1. Compared with the wild-type wheat, we found that the expression of TaGI1, TaHd1 and TaFT genes increased in transgenic wheat under long-days. TaGI1 and TaFT genes’ expression had a higher peak in transgenic wheat under short-day conditions. And the other gene's expression was not significantly changed. These genes' expressions were changed by reducing the expression of TaTOC1 gene. Meanwhile, semi-quantitative reverse transcription PCR and real-time quantitative PCR results showed that TaTOC1-A, TaTOC1-B and TaTOC1-D gene had different expression in detected tissues and organs. And their expression had an higher levels in the leaves. In the leaves, TaTOC1 mRNA was localized in the leaf vascular bundle tissue and the most obvious hybridization signals was detected in the phloem.
引文
黄益洪,周淼平,叶兴国,唐克轩,程红梅,陆维忠。农杆菌介导法获得小麦转基因植株的研究。作物学报,2002,28(4):510-515
    王宏芝,魏建华,李瑞芬。农杆菌介导的小麦生殖器官的整体转化。中国农业科技导报,2004,6(3):22-26
    Razzaq A,张艳敏,杨帆,游颜杰,赵和,马峙英,王海波。小麦茎生长转化研究初报。华北农学报,2005,20(1):17-22
    Abe M., Kobayashi Y., Yamamoto S., Daimon Y., Yamaguchi A., Ikeda Y., Ichinoki H., Notaguchi M., Goto K. and Araki T.. FD: a bZIP Protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 2005, 309(5737): 1052-1056
    AlabadíD., Yanovsky M.J., Más P., Harmer S.L. and Kay S.A.. Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr. Biol., 2002, (12): 757-761
    AlabadíD., Oyama T., Yanovsky M.J., Harmon F.G., Mas P. and Kay S.A.. Reciprocal regulation between TOC1 and LHY/CCA1 within the arabidopsis circadian clock. Science, 2001, (293): 880-883
    An H., Roussot C., Suarez-Lopez P., Corbesier L., Vincent C., Pineiro M., Hepworth S., Mouradov A., Justin S., Turnbull C.G. and Coupland G.. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of arabidopsis. Development, 2004, (131): 3615-3626
    Amasino R.M.. Seasonal and developmental timing of flowering. Plant J., 2010, (61): 1001-1003
    Ayre B. and Turgeon R.. Graft transmission of a floral stimulant derived from CONSTANS. Plant Physiol., 2004, (135): 1-8
    Bastow R., Mylne J.S., Lister C., Lippman Z., Martienssen R.A. and Dean C. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature, 2004, 427(6970): 164-167
    Blazquez M.A., Green R., Nilsson O., Sussman M.R. and Weigel D.. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell, 1998, (10): 791 -800
    Boxall S.F., Foster J.M., Bohnert H.J., Cushman J.C., Nimmo H.G. and Hartwell J.. Conservation and divergence of circadian clock operation in a stress-inducible crassulacean acid metabolism species reveals clock compensation against stress. Plant Physiol., 2005, (137): 969-982
    Bretzl H.. Botanische Forschungen des Alexanderzuges. Teubner Leipzig, 1903
    Burn J.E., Bagnall D.J., Metzger J.D., Dennis E.S. and Peacock W.J.. DNA methylationvernalization and the initiation of flowering. Proc. Natl. Acad. Sci. U.S.A., 1993, 90(1): 287-291
    Chandler J.D.. Factors influencing the vernalization response and flowering time of late flowering mutants of Arabidopsis thaliana (L.) Heynh. J. Exp. Bot., 1994, (45): 1279-1288
    Chen L., Cheng J.C., Castle L. and Sung Z.R.. EMF genes regulates Arabidopsis inflorescence development. Plant cell, 1997, (9): 2011-2024
    Cheng H.T. and Layton J.. Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell. Dev. Biol., 2003, (39): 595-604
    Cheng M., Fry J.E., Pang S., Zhou H., Hironaka C.M., Duncan D.R., Conner T.W. and Wan Y.. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol, 1997, (115): 971-980
    Chouard P.. Vernalization and its relations to dormancy. Annual Review of Plant Physiology. 1960, 11(1): 191-238
    Chumakov M.I., Kurbanova I.V. and Solovova G.K.. Agrobacterial transformation of uninjured plants. Russian Journal of Plant Physiology, 2002, 49(6): 799-803
    Chuang C.F. and Meyerowitz E.M.. Specific and heritable genetic interference by double-strand RNA in arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A., 2000, 97(9): 4985-4990
    Clive J.. Global Status of Commercialized Biotech/GM Crops: 2009. ISAAA., 2009, (41): 1-36
    Clarke J.H. and Dean C.. Mapping FRI a locus controlling flowering time and vernalization response in Arabidopsis thaliana. Mol. Gen. Genet., 1994, 242(1): 81-89
    Cockram J., Jones H., Leigh F.J., O’Sullivan D., Powell W., Laurie D.A. and Greenland A.J.. Control of flowering time in temperate cereals: genes domestication and sustainable productivity. J. Exp. Bot., 2007, (58): 1231-1244
    Colasanti J., Yuan Z. and Sundaresan V.. The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell, 1998, (93): 593-603
    Corbesier L. and Coupland G.. The quest for florigen: a review of recent progress. J. Exp. Bot., 2006, 57(13): 3395-3403
    Corbesier L.C.. Photoperiodic flowering of arabidopsis: integrating genetic and physiological approaches to characterization of the floral stimulus. Plant Cell Environ., 2005, 28(1): 54-66
    Cuesta-Marcos A.C., Hayes P.M., Gracia M.P., Lasa J.M., Ciudad F., Codesal P., Molina-Cano J.L. and Igartua E.. Yield QTL affected by heading date in mediterranean grown barley.Plant Breed, 2009, (128): 46-53
    Dai S., Wei X., Pei L., Thompson R.L., Liu Y., Heard J.E., Ruff T.G. and Beachy R.N.. BROTHER OF LUX ARRHYTHMO is a component of the arabidopsis circadian clock. Plant Cell, 2011, 23(3): 961-972
    De L.F., Crevillen P., Jones A.M., Greb T. and Dean C.. A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc. Natl. Acad. Sci. U.S.A., 2008, 105(44): 16831-16836
    Deng W., Chen L., Wood D.W., Metcalfe T., Liang X., Gordon M.P., Comai L. and Nester E.W.. Agrobacterium VirD2 protein interacts with plant hostcyclophilins. Proc. Natl. Acad. Sci. U.S.A., 1998, 95(12): 7040-7045
    Devlin P.F.. Signs of the time: environmental input to the circadian clock. J. Exp. Bot., 2002, (53): 1535-1550
    Ding L., Li S., Gao J., Wang Y., Yang G. and He G.. Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat. Molecular Biology Report, 2007, (37): 104-109
    Distelfeld A., Li C. and Dubcovsky J.. Regulation of flowering in temperate cereals. Curr. Opin. Plant Biol., 2009, 12(2): 178-184
    Dunlap J.C.. Molecular bases for circadian clocks. Cell, 1999, (96): 271-290
    FarréE.M., Harmer S.L., Harmon F.G., Yanovsky M.J. and Kay S.A.. Overlapping and distinct roles of PRR7 and PRR9 in the arabidopsis circadian clock. Curr. Biol., 2005, (15): 47-54
    Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E. and Mello C.C.. Potent and specific genetic inteference by double-stranded RNA in caenorhabditis elegans. Nature, 1998, 391(6669): 806-811
    Fowler S., Lee K., Onouchi H., Samach A., Richardson K., Coupland G. and Putterill J.. GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO Journal, 1999, (18): 4679-4688
    Fraley H.R.. A Simple and general method for transferring genes into plants. Science, 1985, (227): 1229-1231
    Green R.M., Tingay S., Wang Z.Y. and Tobin E.M.. Circadian rhythms confer a higher level of fitness to arabidopsis plants. Plant Physiol., 2002, (129): 576-584
    Gupta P.K., Mohan A. and Kumar J.. Wheat genomics: present status and future prospects. Int. J. Plant Genomics, 2008, (2008): 8964-8951
    Harmer S.L., Hogenesch L.B., Straume M., Chang H.S., Han B., Zhu T., Wang X., Kreps J.A. and Kay S.A.. Orchestrated transcription of key pathways in arabidopsis by the circadianclock. Science, 2000. (290): 2110-2113
    Hayama R. and Coupland G.. Shedding light on the circadian clock and the photoperiodic control of flowering. Curr. Opin. Plant Biol., 2003, (6): 13-19
    He Y., Michaels S.D. and Amasino R.M.. Regulation of flowering time by histone acetylation in Arabidopsis. Science, 2003, 302(5651): 1751-1754
    He Y., Doyle M.R. and Amasino R.M.. PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is requied for the vernalization-responsive winter-annual habit in arabidopsis. Genes. Dev., 2004, (18): 2774-2784
    Hess D., Dressler K. and Nimnrichter R.. Transformation experiments by pipetting Agrobacterium into the spikelets of wheat. Plant Sci., 1990, 72(20): 233-244
    Hicks K.A., Millar A.J., Carre′I.A., Somers D.E., Straume M., Meeks-Wagner D.R. and Kay S.A.. Conditional circadian dysfunction of the arabidopsis early-flowering 3 mutant. Science, 1996, (274): 790-792
    Hiei Y., Ohta S., Komari T. and Kumashiro T.. Efficient transformation of rice (Oryza sativa L.) mediated by agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant Journal, 1994, (6): 271-282
    Hu T., Metz S., Chay C., Zhou H.P., Biest N., Chen G., Cheng M., Feng X., Radionenko M., Lu F. and Fry J.. Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep., 2003, (21): 1010-1019
    Ishida Y., Saito H. and Ohta S.. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnol., 1996, (14): 745-750
    Izawa T., Oikawa T., Tokutomi S., Okuno K. and Shimamoto K.. Phytochromes confer the photoperiodic control of flowering in rice(a short-day plant). Plant Journal, 2000, 22(5): 391 -399
    Islam-Faridi M.N., Worland A.J. and Law C.N.. Inhibition of ear-emergence time and sensitivity to day-length determined by the group 6 chromosomes of wheat. Heredity, 1996. (77): 572-580
    Johanson U., West J., Lister C., Michaels S., Amasino R. and Dean C.. Molecular analysis of FRIGIDA a major determinant of natural variation in Arabidopsis flowering time. Science, 2000, 290(5490): 344-347
    Jung L. and Euller A.. Flowering time control and applications in plant breeding. Trends Plant Sci., 2009, (14): 563-573
    Kane N.A., Agharbaoui Z., Diallo A.O., Adam H., Tominaga Y., Ouellet F. and Sarhan F.. TaVRT2 represses transcription of the wheat vernalization gene TaVRN1. Plant Journal, 2007, 51(4): 670-680
    Kim S.Y., Yu X. and Michaels S.D.. Regulation of CONSTANS and FLOWERING LOCUS Texpression in response to changing light quality. Plant Physiol., 2008, (148): 269-279
    Kikis E.A., Khanna R. and Quail P.H.. ELF4 is a phytochrome-regulated component of a negative feedback loop involving the central oscillator components CCA1 and LHY. Plant Journal, 2005, (44): 300-313
    Komeda Y.. Genetic regulation of time to flower in Arabidopsis thaliana. Annu. Rev. Plant Biol., 2004, 55(5): 521-535
    Koornneef M., Alonso-Blanco C., Blankestijn-de Vries H., Hanhart C.J. and Peeters J.M.. Genetic interactions among late-flowering mutants of arabidopsis. Genetics, 1998, (148): 885-892
    Koornneef M. and Blankestijndevries H.. The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type. Plant J., 1994, 6(6): 911-919
    Koornneef M., Hanhart C.J. and vanderVeen J.H.. A genetic and physiological analysis of late-flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet., 1991, (229): 57-66
    Kreps J.A., Wu Y.J., Chang H.S., Zhu T., Wang X. and Harper J.F.. Transcriptome changes for Arabidopsis in response to salt osmotic and cold stress. Plant Physiol., 2002, (130): 2129- 2141
    Law C.N., Suarez M. and Worland A.J..The influence of the group chromosomes of wheat on ear-emergence times and their involvement with vernalization and day length. Heredity, 1998, (80): 83-91
    Levy Y.Y. and Dean C.. Control of flowering time. Curr. Opin. Plant Biol., 1998a, 1(1): 49-54
    Levy Y.Y. and Dean C.. The transition to flowering. Plant Cell, 1998b, 10(12): 1973-1990
    Lin C.T.. Photoreceptors and regulation of flowering time. Plant Physiol., 2000, (123): 39-50
    Liu H., Wang H., Gao P., Xu J., Xu T., Wang J., Wangd B., Lin C. and Fu Y. F.. Analysis of clock gene homologs using unifoliolates as target organs in soybean (Glycine max). Plant Physiol., 2008, (166): 278-289
    Más P., Yanovsky M.J., Oyama T. and Kay S.A.. Dual role of TOC1 in the control of circadian and photomorphogenic responses in arabidopsis. Plant Cell, 2003a, (15): 223- 236
    Más P., Somers D.E. and Kay S.A.. Targeted degradation of TOC1 by ZTL modulates circadian function in arabidopsis thaliana. Nature Biotechnol., 2003b, (426): 567-570
    Makino S., Kiba T., Imamura A., Hanaki N., Nakamura A., Suzuki T., Taniguchi M., Ueguchi C., Sugiyama T. and Mizuno T.. Genes encoding pseudo-response regulators: Insight into His-to-Asp phosphorelay and circadian rhythm in arabidopsis thaliana. Plant Cell Physiol., 2000, (41): 791-803
    Makino S., Matsushika A., Kojima M., Yamashino T. and Mizuno T.. The APRR1/ TOC1 quintet implicated in circadian rhythms of arabidopsis thaliana: I. characterization withAPRR1-overexpressing plants. Plant Cell Physiol., 2002, (43): 58-69
    Martinez-Zapater J.M., Dean C. and Koornneef M.. The transition to flowering in arabidopsis. New York: Cold Spring Harbor Laboratory Press., 1994, 413-433
    McClung C.R.. Circadian rhythms in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001, (52): 139-162
    Meagher R.B., McKinney E.C. and Kandasamy M.K.. Isovariant dynamics expand and buffer the responses of complex systems: the diverse plant actin gene family. Plant Cell, 1999, 11: 995-1006
    Michaels S.D. and Amasino R.M.. Memories of winter vernalization and the competence to flower. Plant Cell Environ., 2000, (23): 1145-1153
    Millar A.J., Short S.R., Chua N.H. and Kay S.A.. A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell, 1992, (4): 1075-1087
    Mizoguchi T., Wheatley K., Hanzawa Y., Wright L., Mizoguchi M., CarréI.A. and Coupland G.. LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in arabidopsis. Dev. Cell, 2002, (2): 629-641
    Mizuno T.. Plant response regulators implicated in signal transduction and circadian rhythm. Curr. Opin. Plant Biol., 2004, (7): 499-505
    Millar A.J. and Kay S.A.. Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in arabidopsis. Proc. Natl. Acad. Sci. U.S.A., 1996, (93): 15491-15496
    Mooney P.A.. Adherence of agrobacterium tumefaciens to the cells of immature wheat embryos. Plant Cell Tissue and Organ Culture, 1991, (25): 199-208
    Mouradov A., Cremer F. and Coupland G.. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell, 2002, (14): 111-130
    Murakami M., Ashikari M., Miura K., Yamashino T. and Mizuno T.. The evolutionarily conserved OsPRR quintet: rice pseudo-response regulators implicated in circadian rhythm. Plant Cell Physiol., 2003, (44): 1229-1236
    Murakami M., Tago Y., Yamashino T. and Mizuno T.. Characterization of the rice circadian clock-associated pseudo-response regulators in Arabidopsis thaliana. Biosci. Biotechnol. Biochem., 2007, (71): 1107-1110
    Nakamichi N., Kita M., Ito S., Yamashino T. and Mizuno T.. PSEUDO-RESPONSE REGULATORS PRR9 PRR7 and PRR5 together play essential roles close to the circadian clock of arabidopsis thaliana. Plant Cell Physiol., 2005, (46): 686-698
    Napp-Zinn K. and Atherton. J.G.. Vernalization: environmental and genetic regulation manipulation of flowering. London: Butterworths Butterworths, 1987, 123-132
    Nemoto Y., Kisaka M., Fuse T., Yano M. and Ogihara Y.. Characterization and functionalanalysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. Plant Journal, 2003, 36(1): 82-93
    Nilsson O., Lee I., Bla′zquez M.A. and Weigel D.. Flowering-time genes modulate the response to LEAFY activity. Genetics, 1998, (150): 403-410
    Norihito N., Takatoshi K., Rossana H., Takeshi M., Nam-Hai C. and Hitoshi S.. PSEUDO-RESPONSE REGULATORS 9 7 and 5 are transcriptional repressors in the arabidopsis circadian clock. Plant Cell, 2010, (22): 594-605
    Ohshima S., Murata M., Sakamoto W., Ogura Y. and Motoyoshi F.. Cloning and molecular analysis of the arabidopsis gene teminal flower. Mol. Gen. Genet., 1997, (254): 186-194
    Patnaik D. and Khurana P.. Genetic transformation of indian bread (T. aestivum L) and pasta (T.durum L) wheat by particle bombardment of mature embryo-derived calli. BMC. Plant Biology, 2003, (3): 5-15
    Peters N.R. and Davis E.A.. A modular vector for Agrobacterium-mediated transformation of wheat. Plant Mol. Biol. Reptr., 2000, 17(4): 323-331
    Putterill J., Laurie R. and Macknight R.. It's time to flower: the genetic control of flowering time. Bioessays, 2004, (26): 363-373
    Putterill J., Robson F., Lee K., Simon R. and Coupland G.. The CONSTANS gene of arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, (80): 847-857
    Quailph.. Phytochrome photosensory signalling networks. Nat. Rev. Mol. Cell Biol., 2002, 3(2): 85-93
    Quesada V., Macknight R., Dean C. and Simpson G.G.. Autoregulation of FCA pre-mRNA processing controls arabidopsis flowering time. EMBO. Journal, 2003, 22(12): 3142-3152
    Rédei G.P.. Supervital mutants of Arabidopsis. Genetics, 1962, (47): 443-460
    Richard A.. Seasonal and developmental timing of flowering. Plant Journal, 2010, (61) 1001-1013
    Ruiz-García L., Madue?o F., Wilkinson M., Haughn G., Salinas J. and Martínez-Zapater J.M.. Different roles of flowering-time genes in the activation of folral initiation genes in arabidopsis. Plant Cell, 1997, 9(11): 1921-1934
    Salter M.G., Franklin K.A. and Whitelam G.C.. Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature Biotechnol, 2003, (426): 680-683
    Saunders D. S.. An introduction to biological rhythms. Blackie and Son. Ltd. Glasgow and London U.K. 1977
    Schaffer R., Ramsay N., Samach A., Corden S., Putterill J., Carre′I. and Coupland G.. The late elongated hypocotyl mutation of arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell, 1998, (93): 1219-1229
    Schaffer R., Landgraf J., Accerbi M., Simon V., Larson M. and Wisman E.. Microarray analysis of diurnal and circadian-regulated genes in arabidopsis. Plant Cell, 2001, (13): 113-123
    Schaffer R., Ramsay N., Samach A., Corden S., Putterill J., CarréI.A. and Coupland G.. The late elongated hypocotyl mutation of arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell, 1998, (93): 1219-1229
    Sheldon C.C., Burn J.E., Perez P.P., Metzger J., Edwards J.A., Peacock W.J. and Dennis E.S..The FLF MADS box gene: a repressor of flowering in arabidopsis regulated by vernalization and methylation. Plant Cell, 1999, 11(3): 445-458
    Sheldon C.C., Finnegan E.J., Peacock W.J. and Dennis E.S.. Mechanisms of gene repression by vernalization in Arabidopsis. Plant Joumal, 2009, 59(3): 488-498
    Simon R., Igen?o M.I. and Coupland G.. Activation of floral meristem identity genes in arabidopsis. Nature Biotechnol, 1996, (384): 59-62
    Somers D.E., Webb A.A., Pearson M. and Kay S.A.. The short-period mutant toc1-1 alters circadian clock regulation of multiple outputs throughout development in arabidopsis thaliana. Development, 1998, (125): 485-494
    Strayer C., Oyama T., Schultz T.F., Raman R., Somers D.E., Más P., PandaS.Kreps J.A. and Kay S.A.. Cloning of the arabidopsis clock gene TOC1 an autoregulatory response regulator homolog. Science, 2000, (289): 768-771
    Sung S. and Amasino R.M.. Vernalization and epigenetics: how plants remember winter. Curr. Opin. Plant Biol., 2004, 7(1): 4-10
    Sung S. and Amasino R.M.. Remembering winter: toward a molecular understanding of vernalization. Annu. Rev. Plant Biol., 2005, (56): 491-508
    Sung Z.R., Belachew A., Shunong B. and Bertrand-Garcia R.. EMF an arabidopsis gene required for vegetative shoot development. Science, 1992, (258): 1645-1647
    Supartana P., Shimizu T., Nogawa M., Shioiri H., Nakajima T., Haramoto N., Nozue M. and Kojima M.. Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. Journal of Bioscience and Bioengineering, 2006, 102(3): 162-170
    Takada S. and Goto K.. TERMINAL FLOWER 2 an arabidopsis homolog of HETEROCHROMATIN PROTEIN1 counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell, 2003, (15): 2856-2865
    Takano M., Inagaki N., Xie X., Yuzurihara N., Hihara F., Ishizuka T., Yano M., Nishimura M., Miyao A., Hirochika H. and Shinomura T.. Distinct and cooperative functions of phytochromes A B and C in the control of deetiolation and flowering in rice. Plant Cell, 2005, 17(12): 3311-3325
    Thomas B. and Vince-Prue B.. Photoperiodism in Plants. 2nd San Diego. C.A.: Academic Press. 1997
    Trevaskisa B., Hemming M.N., Dennisa E.S. and Peacocka W.J.. The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci., 2007, 12(8): 352-357
    Turner A., Beales J., Faure S., Dunford R.P. and Laurie D.A.. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science, 2005, 310(5750): 1031-1034
    Vasil. V., Castillo A. M. and Frommm M E.. Herbicide resistant fertile transgenic wheat plant obtained by bombardment of regenerable embryogenic callus. Bio. Technology, 1992, (10): 667-674
    Wang Z.Y. and Tobin E.M.. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell, 1998, (93): 1207-1217
    Wang Y.L., Xu M.X., Yin G.X., Tao L.L., Wang D.W. and Ye X.G.. Transgenic wheat plants derived from Agrobacterium-mediated transformation of mature embryo tissues. Cereal Research Communications, 2009, 37(1): 1-12
    Wang X.T., Wu L.J., Zhang S.F., Wu L.C., Ku L.X., Wei X.M., Xie L.L. and Chen Y.H.. Robust expression and association of ZmCCA1 with circadian rhythms in maize. Plant Cell Rep., 2010, (10): 1-12
    Weigel D., Alvarez J., Smyth D.R., Yanofsky M.F. and Meyerowitz E.M.. LEAFY controls floral meristem identity in arabidopsis. Cell, 1992, (69): 843-857
    Wilson R.N., Heckman J.W. and Somerville C.R.. Gibberellin is requered for flowering in arabidopsis thaliana under short days. Plant Physiol., 1992, (100): 403-408
    Wood C.C., Robertson M., Tanner G., Peacock W.J., Dennis E.S. and Helliwell C.A.. The arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc. Natl. Acad. Sci. U.S.A, 2006, 103 (39): 14631-14636
    Wu H., Sparks C., Amoah B. and Jones H.D.. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep., 2003, (21): 659 -668
    Xia G.M., Li Z.Y. and He C.X.. Transgenic plant regeneration from wheat (Triticum aestivum L.) mediated by agrobacterium tumefaciens. Acta Phytophysiologica Sinica, 1999, 25(1): 22-28
    Xing L., Li J., Xu Y., Xu Z. and Chong K.. Phosphorylation modification of wheat lectin VER2 is associated with vernalization-induced O-GlcNAc signaling and intracellular motility. PLoS ONE, 2009, 4(3): e4854
    Yakir E., Hilman D., Harir Y. and Green R.M.. Regulation of output from the plant circadianclock. FEBS J., 2007, (274): 335-345
    Yan L., Fu D., Li C., Blechl A., Tranquilli G., Bonafede M., Sanchez A., Valarik M., Yasuda S. and Dubcovsky J.. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. U.S.A., 2006, 103(51): 19581-19586
    Yan L., Loukoianov A., Blechl A., Tranquilli G., Ramakrishna W., SanMiguel P., Bennetzen J.L., Echenique V. and Dubcovsky J.. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303(5664): 1640-1644
    Yan L., Loukoianov A., Tranquilli G., Helguera M., Fahima T. and Dubcovsky J.. Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci U.S.A., 2003, 100(10): 6263-6268
    Yang C.H., Chen L.J. and Sung Z.R.. Genetic regulation of shoot development in Arabidopsis role of the EMF genes. Dev. Biol., 1995, (169): 421-435
    Yanovsky M.J. and Kay S.A.. Living by the calendar: how plants know when to flower. Nat. Rev. Mol. Cell Biol., 2003, 4(4): 265-276
    Yong W.D., Xu Y.Y., Xu W.Z., Wang X., Li N., Wu J.S., Liang T.B., Chong K., Xu Z.H., Tan K.H. and Zhu Z.Q.. Vernalization-induced flowering in wheat is mediated by a lectin-like gene VER2. Planta, 2003, 217(2): 261-270
    Zagotta M.T., Hicks K.A., Jacobs C.I., Young J.C., Hangarter R.P. and Meeks-Wagner D.R.. The arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. Plant Joumal, 1996, (10): 691-702
    Zambryski P., Joos H., Genetello C., Leemans J., Montagu M.V. and Schell J.. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. The EMBO Joumal, 1983, 2(12): 2143-2150
    Zeng Q., Zhao Z.H. and Zhao S.Q.. Signal pathways of flowering time regulation in plant. Yi Chuan, 2006, 28(8): 1031-1036
    Zhao X.Y., Liu M.S., Li J.R., Guan C.M. and Zhang X.S.. The wheat TaGI1 involved in photoperiodic flowering encodes an arabidopsis GI ortholog. Plant Mol. Biol., 2005, (58): 53-64
    Zhou H. Berg J.D. and Blank S.. Field efficacy assessment of transgenic roundup ready wheat. Crop Science, 2003, (43): 1072-1075

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700