不同抗旱性青稞LEA2/LEA3蛋白基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物的抗旱性是一个多基因控制的、极为复杂的数量性状,植物对干旱在分子水平上的差异反应通过植物组织生理和细胞生物学水平,最终表现为植物抗旱性的不同。在我国,旱地农业超过耕地面积的50%,但水资源短缺,因此培育和选育抗旱高产作物是发展节水型农业最有效的途径。
     青藏高原气候恶劣、年均降雨量少,也是世界大麦初生起源中心,因而蕴藏了十分丰富的与抗逆相关的种质资源材料,从这些特殊的资源材料克隆抗旱基因,不仅对培育抗旱、优质、高产大麦新品种具有重要理论意义和经济价值,而且对整个作物抗旱基础和育种应用研究都具重大促进作用。
     为了筛选青稞(裸大麦,Hordeum vulgare ssp.vulgare)抗旱性材料,本研究选用来自青藏高原不同地区的84份青稞为材料,在叶片失水率(water loss rate,WLR)检测分析的基础上,选择失水率值差异显著的12个品种,通过相对含水量(relative water content,RWC)和反复干旱法评价其抗旱性,并通过植株对干旱胁迫下的丙二醛(MDA)含量和游离脯氨酸(free-proline)含量变化,了解不同抗旱性材料的生理反应特性。选择抗旱性强弱不同的品种各两份进行LEA2蛋白基因(Dhn6基因)、LEA3蛋白基因(HVA1基因)的克隆,比较LEA蛋白结构差异与作物抗旱性之间的关系。同时,对抗旱性不同的青稞品种受到干旱时间不同的失水变化率(dynamics water loss rate,DWLR)进行了检测;对抗旱性不同的青稞对照材料进行2h、4h、8h和12h的快速干旱处理,通过SYBR Green实时荧光定量RT-PCR技术对Dhn6基因、Dhn11基因、Dhn13基因和HVA1基因在不同抗旱性材料受到不同干旱时间处理后的相对表达水平进行了检测。本研究对LEA蛋白基因在抗旱性不同的青稞材料中的干旱胁迫分子水平上的差异反应进行了研究,也对植物的抗旱机理进行了初步探讨。主要研究结果如下:
     1.青稞苗期进行离体叶片失水率测定结果表明,来自青藏高原的84份青稞材料的WLR在0.086~0.205gh~(-1)g~(-1)DW之间。选择WLR低于0.1gh~(-1)g~(-1)DW和WLR高于0.18gh~(-1)g~(-1)DW的品种各6份,并对苗期分别进行未干旱及干旱12小时的处理。相对含水量检测结果表明,低失水率青稞材料干旱后的具有更高的相对含水量,盆栽缺水试验也显示叶片失水率低的材料耐旱能力强于失水率高的材料。通过水合茚三酮法测定离体叶片游离脯氨酸的含量,结果表明,所有品种未干旱处理时,游离脯氨酸含量差异不大(17.10~25.74μgg~(-1)FW);干旱12小时后,低失水率的品种游离脯氨酸含量明显增高(32.99~53.45μgg~(-1)FW),高失水率品种的游离脯氨酸含量与干旱前变化不明显(P<0.05)。硫代巴比妥酸法测定离体叶片丙二醛(MDA)含量,结果显示,12份所选对照品种中,丙二醛的含量在0.97~2.74nmolg~(-1)FW,干旱12小时后丙二醛的含量显著上升(1.46~4.74nmolg~(-1)FW),高失水率的6个品种的丙二醛含量在未干旱和干旱处理时都明显高于低WLR品种。本研究结果表明青稞的低失水率、低丙二醛含量、高相对含水量和高脯氨酸含量具相关性(P<0.05)。综上研究,我们认为作物失水率的测定可以作为快速检测作物抗旱性的指标之一,因此,强抗旱品种喜玛拉10号(TR1)、品比14号(TR2)和弱抗旱品种冬青8号(TS1)、QB24(TS2)被选作抗旱基因克隆和表达分析的研究材料。
     2.高等植物胚胎发育晚期丰富蛋白(late embryogenesis abundant proteins,LEA proteins)与植物耐脱水性密切相关,为了探讨青稞LEA蛋白结构差异性与植物抗旱性的关系,本研究以强抗旱品种(喜玛拉10号、品比14号)和弱抗旱品种(冬青8号、QB24)为材料,利用同源克隆法,通过RT-PCR,分别克隆了与抗旱性密切相关的Dhn6基因和HVA1基因。Dhn6基因序列分析结果表明,强抗旱品种品比14号和弱抗旱品种冬青8号Dhn6基因所克隆到的序列为1026bp,它们之间只有5个碱基的差异;喜玛拉10号和QB24克隆到的序列长963bp。在强弱不同的抗旱品种中有22个核苷酸易突变位点,相应的脱水素氨基酸序列推导结果表明,22个核苷酸突变位点中,仅有8个位点导致相应的氨基酸残基的改变,其余的位点系同义突变,另外,21个富含甘氨酸序列的缺失并没有联系作物抗旱性特征。推测这些同义突变位点的氨基酸残基对维持青稞DHN6蛋白的正常结构和功能起着非常重要的作用,也可能DHN6蛋白对青稞长期适应逆境胁迫和遗传进化的结果。对HVA1基因的序列分析结果表明,冬青8号、QB24、品比14号和喜玛拉10号的目的基因核苷酸序列全长分别为661bp、697bp、694bp和691bp,它们都包含1个完整的开放阅读框。相应的LEA3蛋白氨基酸序列结果表明,11个高度保守的氨基酸残基组成基元重复序列的拷贝数与青稞抗旱性之间没有必然关系,在强抗旱品种(喜玛拉10号、品比14号)中三个共同的氨基酸突变位点Gln_(32)、Arg_(33)和Ala_(195)可能对抗旱蛋白的结构和功能有影响;另外,强抗旱青稞品种LEA3蛋白质中11-氨基酸保守基元序列拷贝数和极性氨基酸占蛋白的比例更高,推测LEA3蛋白中基元序列拷贝数和极性氨基酸占蛋白的比例对该蛋白的结构和功能影响更大。
     3.LEA蛋白基因的表达水平的上调与植物的耐脱水性密切相关,我们对强抗旱性材料(喜玛拉10号、品比14号)和弱抗旱材料(冬青8号、QB24)进行干旱处理2h、4h、6h、8h和10h的失水变化率进行测定,结果表明弱抗旱品种在2~4小时之间失水率变化最明显,而四个对照品种的失水率在8小时后和24小时的失水率值变化不大。进一步提取青稞苗期进行2h、4h、8h和12h的干旱处理后的总RNA,通过SYBR Green实时荧光定量RT-PCR技术对青稞脱水素基因(Dhn6、Dhn11和Dhn13)和LEA3蛋白基因(HVA1)的相对表达水平受干旱时间和作物抗旱性的影响进行了检测。研究发现,抗旱性不同的青稞品种随干旱处理的时间延长,Dhn6、Dhn11、Dhn13和HVA1基因的相对表达水平不同。Dhn6基因的相对表达水平在强抗旱青稞品种干旱8小时后快速上升,但在弱抗旱青稞品种干旱处理12小时后检测到更高表达量;Dhn11基因在对照青稞抗旱品种的表达累积水平随干旱时间的延长持续下降;整个干旱过程中,Dhn13基因的相对表达水平在弱抗旱品种持续上升,在强抗旱品种中干旱处理8小时快速上升并达到最高,干旱12小时后降低。与脱水素基因相比较,强抗旱青稞品种在干旱2小时后HVA1基因的相对表达水平显著升高,相对表达量随干旱处理的时间持续上升,在干旱12小时后达到最高;与之相比较,在整个干旱过程中,弱抗旱品种的相对表达水平显著低于强抗旱品种,在干旱8小时之前弱抗旱品种的相对表达水平变化不明显;在干旱8~12小时后却显著上升。上述结果表明,不同的LEA蛋白在植物耐脱水过程中的干旱表达累积水平不同;干旱不是诱导高等植物Dhn11基因表达的主要因素:植物的抗旱性不同,不同LEA蛋白基因对干旱的反应有差异。推测某些LEA蛋白基因的干旱胁迫早期表达累积程度与植物的抗旱性直接相关;其中,Dhn11基因和Dhn12基因不同的表达模式可能与干旱调控表达顺式作用成分(dehydration responsive element,DRE)的有无或结构上的差异有关。
     本研究结果认为,(1)失水率和相对含水量可作为植物抗旱性检测的指标之一;(2)DHN6同义突变位点的氨基酸残基对维持该蛋白的正常结构和功能起着重要作用;(3)11-氨基酸保守基元序列拷贝数和极性氨基酸的比例对LEA3蛋白结构和功能有重要影响;(4)LEA蛋白表达随着干旱胁迫程度而增加,但Dhn11基因并不受干旱诱导表达;(5)作物的抗旱性不同,LEA蛋白对干旱的累积反应并不相同,干旱早期LEA蛋白的累积程度可能会影响植物的抗旱性。
Drought resistance was a complex trait which involved multiple physiological and biochemical mechanisms and regulation of numerous genes. Because its complex traits, it is difficult to understand the mechanisms of drought resistance in plants. Plants respond to water stress through multiple physiological mechanisms at the cellular, tissue, and whole-plant levels. Tibetan hulless barley, a pure line, is a selfing annual plant that has predominantly penetrated into the Qinghai-Tibetan Plateau and remains stable populations there. The wide ecological range of Tibetan hulless barley differs in water availability, temperature, soil type and vegetation, which makes it possess a high potential of adaptive diversity to abiotic stresses. This adaptive genetic diversity indicates that the potential of Tibetan hulless barley serves as a good source for drought resistance alleles for breeding purposes.
     12 contrasting drought-tolerant genotypes were selected to measure relative water content (RWC), maldondialdehyde (MDA) and proline content, based on values of water loss rate (WLR) and repeated drought methods from Tibetan populations of cultivated hulless barley. As a result of the screening, sensitive and tolerant genotypes were identified to clarify relationships between characteristics of LEA2/LEA3 genes sequences and expression and drought-tolerant genotypes, associated with resistance to water deficit. In addition, dynamics water loss rate (DWLR) was measured to observe the changes on diffrential drought-tolerant genotypes. Real-time quantitative RT-PCR was applied to detect relative expression levels of Dhn6, Dhn11, Dhn13 and HVA1 genes in sensitive and tolerant genotypes with 2 h, 4 h, 8h and 12 h of dehydration. In the present study, differential sequences and expression of LEA2/LEA3 genes were explored in Tibetan hulless barley, associated with phenotypically diverse drought-tolerant genotypes.
     1. The assessments of WLR and RWC were considered as an alternative measure of plant water statues reflecting the metabolic activity in plants, and the parameters of MDA and proline contents were usually consistent with the resistance to water stress. The values of detached leaf WLR of the tested genotypes were highly variable among 84 genotypes, ranging from 0.086 to 0.205 g/h.g DW. The 12 most contrasting genotypes (6 genotypes with the lowest values of WLR and 6 genotypes with the highest values of WLR) were further validated by measuring RWC, MDA and free-proline contents, which were well watered and dehydrated for 12 h. Results of RWC indicated that the values of 12 contrasting genotypes RWC ranged from 89.94% to 93.38% under condition of well water, without significant differences, but 6 genotypes with lower WLR had higher RWC suffered from 12 h dehydration. The results indicated that lower MDA contents, lower scores of WLR and higher proline contents were associated with drought-tolerant genotypes in hulless barley. Remarkably, proline amounts were increased more notable in 6 tolerant genotypes than 6 sensitive genotypes after excised leaves were dehydrated for 12 h, with control to slight changes under condition of well water. Results of MDA contents showed that six 6 tolerant genotypes had lower MDA contents than the 6 sensitive genotypes under both stressed and non-stressed conditions. As a result of that screening, drought-resistant genotypes (Ximala 10 and Pinbi 14) and drought-sensitive genotypes (Dongqing 8 and QB 24) were chosen for comparing the differential characteristics of LEA2/LEA3 genes and their expression analysis. It was conclusion that measurements of WLR could be considered an alternative index as screening of drought-tolerant genotypes in crops.
     2. Late embryogenesis abundant (LEA) proteins were thought to protect against water stress in plants. To explore the relationships between configuration of LEA proteins and phenotypically diverse drought-tolerant genotypes, sequences of LEA genes and their deduced proteins were compared in Tibetan hulless barley. Results of comparing Dhn6 gene in Ximala 10 and QB24 indicated that absence of 63bp was found, except that only 5 mutant nucleotides were found. While 22 mutant sites were taken place in Dhn6 gene between sensitive and tolerant lines, 14 synonymous mutation sites appeared in the contrasting genotypes. The additional/absent polypeptide of 21 polar amino acid residues was not consistent with phenotypically drought-tolerant genotypes in hulless barley. It was deduced that synonymous mutation sites would play important roles in holding out right configurations and functions on DHN6 protein. The sequencing analysis results indicated that each cloned HVA1 gene from four selected genotypes contained an entire open reading frame. The whole sequence of HVA1 gene from Dongqing 8, QB24, Pinbi 14 and Ximala 10 was respectively 661bp, 697bp, 694bp and 691bp. Results of DNA sequence analyses showed that the differences in nucleotides of HVA1 gene in sensitive genotypes were not consistent with that of tolerant genotypes, except for absence of 33 nucleotides from +154 to +186 (numbering from ATG) in QB24. Database searches using deduced amino acid sequences showed a high homology in LEA3 proteins in the selected genotypes. Multiple sequence alignments revealed that LEA3 protein from Dongqing 8 was composed of 8 repeats of an 11 amino acid motif, less the fourth motif than Pinbi 14, Ximala 10 and QB24. Consistent mutant amino acid residues appeared in contrasting genotypes by aligning and comparing the coding sequence region, including Gln_(32), Arg_(33) and Ala_(195) in tolerant genotypes as compared to Asp_(32), Glu_(33) and Thr_(195) (Thr_(184) in Dongqing 8) in sensitive lines. It was concluded that consistent appearance of Gln_(32), Arg_(33) and Ala_(195) would contributed to functions of LEA3 protein in crops, as well as higher proportion of 11-amino-repeating motifs and polar amino acid residues.
     3. Most of the LEA genes are up-regulated by dehydration, salinity, or low temperature, are also induced by application of exogenous ABA, which increases in concentration in plants under various stress conditions and acts as a mobile stress signal. Higher levels of proteins of LEA group 3 accumulated was correlated well with high level of desiccation tolerance in severely dehydrated plant seedlings. Dehydrins (DHNs), members of LEA2 protein, are an immunologically distinct protein family, and Dhn genes expression is associated with plant response to dehydration. Dynamic water loss rate was measured between sensitive genotypes and tolerant genotypes after they were dehydrated for 2 h, 4 h, 6h and 8 h. Detailed measurements of WLR at the early stage of dehydration (2, 4, 6, and 8 h) showed that WLR was stabilizing after 8 h, and there were no significant changes between these values and WLR after 24 h. Drought stress was applied to 10-day-old seedlings by draining the solution from the container for defined dehydration periods. Leaf tissues of the selected genotypes were harvested from control plants (time 0); and after 2,4, 8, and 12 h of dehydration. Differential expression trends of Dhn6, Dhn11, Dhn13 and HVA1 genes were detected in phenotypically diverse drought-tolerant hulless barleys, related to different time of dehydration. Results of quantitative real-time PCR indicated that relative level of HVA1 expression was always higher in tolerant genotypes, rapidly increasing at the earlier stages (after 2-4 h of dehydration). However, HVA1 expressions of sensitive genotypes had a fast increase from 8 h to 12 h of stress. Significant differences in expression trends of dehydrin genes between tolerant genotypes and sensitive lines were detected, mainly in Dhn6 and Dhnl3 gene, depending on the duration of the dehydration stress. The relative expression levels of Dhn6 gene were significantly higher in tolerant genotypes after 8 h dehydration, by control with notable higher expression levels after 12 h water stress in sensitive ones. The relative expression levels of Dhn13 gene tended to ascend during exposure to dehydration in drought-sensitive genotypes. However, fluctuate trends of Dhn13 expression level were detected in drought-resistant lines, including in lower expression levels of 12 h dehydration as compared to 8 h water stress. It was conclusion that (1) diverse LEA proteins would play variable roles in resisting water stress in plants; (2) expression of Dhn11 gene was not induced by dehydrated signals because of the trends of expression descended in contrasting genotypes suffered from water deficit and (3) variable accumulations on LEA proteins would be appear in diverse drought-tolerant genotypes during dehydrations. It is deduced that higher accumulations of Dhn6 and Dhn13 expression in 8 h dehydration are related to diverse drought-tolerant lines in crops. The present results indicated that different dehydrin genes would play variable functional roles in resisting water stress when plants were suffered from water deficit. The authors suggest physiologically different reactions between resistant and sensitive genotypes may be the results of differential expression of drought-resistant genes and related signal genes in plants. In addition, contrarily induced expression of Dhn11 and Dhn12 was related to dehydration responsive element (DRE) in barleys.
     The present study indicated that (1) measurements of WLR and RWC could be considered as one index of drought-tolerant screenings; (2) synonymous mutation sites would play important roles in holding out right configurations and functions on DHN6 protein, (3) higher proportion of 11-amino-repeating motifs and polar amino acid residues would contribute to functions on LEA3 protein, (4) the longer drought, the more accumulation on LEA proteins, except for Dhn11 gene in crops and (5) differential responses on expression of LEA protein genes would result in physiological traits of drought tolerance in plants.
引文
陈建魁,牟兆钦。定量PCR技术的研究进展。临床检验杂志,1997,15(2):121-123.
    陈颖,徐宝梁,苏宁,葛毅强,王曙光.实时荧光定量PCR技术在转基因玉米检测中的应用研究.作物学报,2004,30(6):602—607.
    郭卫东,饶景萍,李嘉瑞,郑学勤。二棱大麦LEA cDNA的克隆与测序。西北农业大学学报,28(2):8-12.
    何军贤,傅家瑞。种子Lea蛋白的研究进展。植物生理学通讯,1996,32(4):24 1-246.
    胡荣海,昌小平。反复干旱法的生理基础及其应用,华北农学报,1996,11(3):51-56.
    揭雨成,黄丕生,李宗道.干旱胁迫下苎麻的生理生化变化与抗旱性的关系.中国农业科学,2000,33(6):33—39.
    景蕊莲,昌小平,朱志华,胡荣海.小麦幼苗根系形态与反复干旱存活率的关系.西北植物学报,2002,22(2):243—249.
    景蕊莲,胡荣海,朱志华.冬小麦不同基因型幼苗形态性状遗传力和抗旱性的研究.西北植物学报,1997,17(2):152—157.
    赖钟雄,张妙霞,李冬梅,车建美,王凤华,赖呈纯,郭志雄,吴金寿,陈振光。植物LEA蛋白与Lea基因表达。福建农林大学学报(自然科学版),2002,31(4):463-466.
    李德谋,肖月华,罗明,侯磊,罗小英,罗克明,裴炎。棉花PTS2受体基因(GhPex7)的克隆及表达分析。Acta Genetica Sinica,2003,30(9):823—829.
    李鲁华,李世清,翟军海.小麦根系与土壤水分胁迫关系的研究进展.西北植物学报,2001,21(1):1-17.
    李甜,朱延珠,张晓萍。不同抗旱性大豆品种生理特征的探讨。东北师范大学学报自然科学版,1999,32(2):122-124.
    李壮,许文娟,薛兵东,曹萍。玉米苗期抗旱性评定方法探讨,玉米科学,2004,12(2) :73-75. 李臻,刘新平,张远强,许若军.大鼠睾丸前促甲状腺激素释放激素原及其受体的表达与发育变化.动物学报,2001,47(2):196-202.
    林玲,高锦声。定量PCR技术的研究进展。国外医学遗传学分册,1999,22(3):116-120.
    卢萍,卢青,杜荣骞。LEA基因及Lea蛋白的研究进展。内蒙古师大学报自然科学(汉文)版,1999,28(2):138-142.
    罗克明,郭余龙,肖月华,侯磊,裴炎。棉花Lea蛋白D-113基因启动子的克隆及序列分析。遗传学报,2002,29(2):161-165.
    苗果园,尹钧,张云亭.中国北方主要作物根系生长的研究.作物学报,1998,24(1):1-6.
    苗果园,张云亭,尹钧.黄土高原旱地冬小麦根系生长规律的研究.作物学报,1989,15(2):104-115.
    莫庭辉.柱花草苗期抗旱性鉴定方法的研究.华南热带农业大学学报,1999,5(1):7-14.
    尼玛扎西。青稞与高原地区的食物保障:优势与作用。西藏农业科技,1998,20(2):20-25.
    石峰,谢惠民,张晓科。冬小麦不同抗旱品种抽穗期干旱诱导蛋白差异与抗旱性的研究。麦类作物学报,2005,25(3):32-36.
    孙海丹,兰英,刘钧,郑易之。LEA蛋白质11-氨基酸基序与植物的抗旱性。东北师范大学学报自然科学版,2004,36(3):85-90.
    盛宏达。小麦籽粒发育初期土壤水分亏缺对植株各部位光合作用的影响。植物生理学报,1986,12(2):109-115.
    谭常,杨惠东,余叔文。植物生理学实验手册。上海:上海科学技术出版社,1985,67-85.
    宋凤斌,戴俊英,张烈等。水分胁迫对玉米花粉活力和花丝受精能力的影响。作物学报,1998,24(3):368-374.
    罗淑平。玉米抗旱性及鉴定指标的相关分析。干旱地区农业研究,1990,8(3):72-78. 孙立平,李德全。LEA蛋白的分子牛物学研究进展。生物技术通报,2003,6:5-8.
    宋凤斌,徐世昌。玉米抗旱性鉴定指标的研究。中国生态农业学报,2004,12(1):127-129。
    孙歆,雷韬,袁澍,林宏辉。脱水素研究进展。武汉植物学研究,2005,23(3):299-304
    汤学军,傅家瑞。植物胚胎发育后期富集(LEA)蛋白的研究进展。植物学通报,1997,14(1):13-18.
    王启明,马原松。不同抗旱品种大豆苗中脯氨酸累积的差异。商丘职业技术学院学报,2005,4(17):63-64.
    王志斌,郭三堆。提高PCR产物及其克隆效率的几点方法与经验。生物技术通报,1999,4:30-32.
    王育红,姚宇卿,张灿军,吕军杰,张洁,王聪慧,李俊红。早稻抗旱性鉴定方法与指标研究—早稻苗期抗旱性。干旱地区农业研究,2005,23(4):134-137.
    叶燕萍,李杨瑞,李永健,黄诚梅,唐军。反复干旱法在甘蔗抗旱性研究中的应用。中国糖料,2003,3:12-16.
    阳成波,印遇龙,黄瑞林,李铁军,单计光,唐志如。实时荧光RT-PCR的原理与方法。免疫学杂志,2003,19(3):145-150.
    俞嘉宁,山仑。LEA蛋白与植物的抗旱性。生物工程进展,2002,22(2):10-14.
    赵丽英,邓西平,山仑。活性氧清除系统对干旱胁迫的响应机制,西北植物学报,2005, (25)2:413-418.
    赵新华,张小村,李斯深,李立会,范玉顶,李瑞军.小麦抗旱相关生理性状的QTL分析。西北植物学报,2005,25(4):694—696.
    张林生,赵文明。LEA蛋白与植物的抗旱性。植物生理学通讯,2003,39(1)61-65.
    张正斌,王德轩.小麦抗早生态育种.西安:陕西人民教育出版社,1992:3-12.
    张贤珍.BASIC语言农业数理统计计算程序.北京:农业出版社,1990:32-38,276-290.
    张彤,齐麟。植物抗旱机理研究进展。湖北农业科学,2005,4:107-110.
    张秀海,黄丛林,沈月元等.植物抗旱基因工程的研究进展.生物技术通报,2001,4:21-25.
    Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63-78
    Alsheikh MK, Heyen BJ, Randall SK (2003) Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation, J Biol Chem 278, 40882-40889
    Anderson FN, Peterson GA (1988) Effect of incrementing nitrogen application on sucrose yield of sugar beet. Agron J 80, 709-712.
    Argos P (1989) Editbase, computer program. Purdue University research foundation and USDA/ARS, Lafayette, IN, USA.
    Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Annual Botany (Lond) 89,925-940
    Artus NN, Uemera M, Steponkus PL, Gilmour SJ, Thomashow MF (1996) Constitutive expression of the cold-regulated Arabidopsis thaliana cor15a gene affects both chloroplast and protoplast freezing tolerance. Proceeding of the National Academy of Sciences, USA 93, 13404-13409
    Asano N, Nash RJ, Molyneux RJ, Feet GWJ (2000) Sugarmimic glycosidase inhibitors: natural occurrence, biological activity an prospects for therapeutic application. Tetrahedron-Asymm 11, 1645-1680
    Asghar R, Fenton RD, Demason DA, Close TJ (1994) Nuclear and cytoplasmic localization of maize embryo and aleurone dehydrin. Protoplasma 177, 87-94
    Athanassios M, Thomas S, Georgia T, Grigorios D, Ioannis T (2006) Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environmental and Experimental Botany 56, 54-62
    Babu CR, Zhang JX, Blum A, David Ho TH, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration in transgenic rice (Oryza sativa L) via cell membrane protection. Plant Science 166, 855-862
    Baker J, Steele C, Dure LⅢ (1988) Sequence and characterization of 6 lea protein and their genes from cotton. Plant Molecular Biology 11,277-291
    Barron MC, De-Mejia EG (1998) Comparative study of enzymes related to praline metabolism in tepary bean (Phaseolus acutifolius) and common bean (Phaseolus vulgaris) under drought and irrigated conditions, and various urea concentrations. Plant Food Human Nutr. 52, 119-132
    
    Battels D, Souer E (2004) Molecular responses of higher plants to dehydration. In Plant Responses to Abiotic Stress (eds H. Hirt & K Shinozaki), pp. 9-38 Springer-Verlag, Berlin, Heidelberg
    
    Bate N,Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Bio 137, 859-869
    
    Bates LS, Waldren RP, Teare JD (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39, 205-207
    
    Bewley JD (1979) Phsiological aspects of desiccation tolerance. Annual Review of plant Physiology 30, 195-238
    
    Bewley JD, Reynolds TL, Oliver MJ (1993) Evolving strategies in the adaptation to desiccation. In: Close TJ, Bray EA, eds. Responses of plants to cellular dehydration during environmental stress. Rockville MD, USA: American Society of Plant Physiologists, 193-201
    
    Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1996) Marker regression mapping of QTL controlling flowering time and plant height in a spring barley (Hordeum vulgare L.) cross. Heredity 77, 64-73
    
    Bilbao B, Giraldo D, Hevia P, (1999) Quantitative determination of nitrogen content in plant tissue by acolorimetric method. Commun Soil Sci Plan Anal 30, 1997-2005.
    
    Blaszczak A, Zylicz M, Georgopolos C, Liberek K (1995) Both ambient temperature and the DnaK chaperone machine modulate the heat shock response in Eschericia coli by regulating the switch between Sigma 70 and Sigma 32 factors assembled with RNA polymerase. EMBO journal 14, 5085-5093
    
    Bohn M, Khairallah MM, Gonzalez-de-Leon D, Hoisington DA, Uta HF, Deutsch JA, Jewell DC, Mihm JA, Melchinger AE (1996) QTL mapping in tropical maize I. Genomic regions affect leaf feeding resistance to sugarcane borer and other traits. Crop science 36, 1352-4361.
    Bohnert, HJ, Nelson, D, Jensen, RG (1995) Adaptation to environmental stress. Plant Cell 7, 1099-1111
    
    Bohnert, HJ, Jensen, RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnology 14, 89-97
    
    Boyer JS (1982) Plant productivity and environment. Science 218, 443-448.
    
    Bray EA (1993) Molecular response to water deficit. Plant Physiology 103, 1035-1040.
    
    Bray EA (1994) Alterations in gene expression in response to water deficit. In Stress-induced Gene Expression in Plants (ed. A.S. Basara), pp. 1-23. Harwood Academic Publishers, Ludbiana, India.
    
    Bray EA (2002) Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome. Plant cell and environment 25,153-161
    
    Browne J, Tunnacliffe A, Burnell A (2002) Plant desiccation gene found in a nematode. Nature 416, 38
    
    Bruce WB, Edmeades GO, Barker TC (2002) Molecular andphysiological approaches to maize improvement for drought tolerance. Journal of Experimental Botany 53, 13-25
    
    Brugiere N, Dubois F, Limami AM, Lelandais M, Roux Y, Sangwan RS, Hirel B (1999) Glutamine synthetase in the phloem plays a major role in controlling praline production. Plant Cell 11,1995-2011.
    
    Brule-babel AL, Fowler DB (1988) Genetic control of cold hardiness and vernalization requirement in winter wheat. Crop science 23, 879-884.
    
    Burr B, Burr F (1991) Recombinant inbreds for molecular mapping in maize: theoretical and practical consideration. Trends in Genetics, 7, 55-60.
    
    Cahalan C, Law CN (1979) The genetic control of cold resistance and vernalisation requirement in wheat. Heredity, 42, 125-132.
    
    Campbell SA (2000) Identification and characterization of dehydrin gene family members from maize (Zeamays L.). PhD thesis,UniversityofCalifornia
    
    Campbell LG (2002) Sugar beet quality improvement. J. Crop Prod. 5,395-413.
    
    Carpenter JF, Crowe JH (1988) The mechanism of croyoprotection of proteins by solutes. Cryobiology 25, 244-255.
    
    Cellier F, Conejero G, Breitler JC, Casse F (1998) Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive sunflower lines (Helianthus annuus L): accumulation of dehydrin transcripts correlates with tolerance. Plant Physiology 116, 319-328
    
    Chen H, Wang S, Xing Y, Xu C, Hayes PM, Zhang Q (2003) Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Proc Natl Acad Sci USA 100, 2544—2549
    
    Choi DW, Close TJ (2000) A newly identified barley gene, Dhnl2, encoding YSK.2 DHN, is located on chromosome 6H and has embryo-specific expression. Theoretical and Applied Genetics 100, 1274-1278
    
    Choi DW, Zhu B, Close TJ (1999) The barley (Hordeum vulgare L) dehydrin multigene family: sequences, allelic types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theoretical and Applied Genetics 98, 1234-1247
    
    Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction. Anal Biochem 162, 156-15
    
    Chou PY, Fasman GD (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Advances in Enzymology 47: 45-148
    
    Chow TY, Liu SM, Lin TY, Hsing YIC (1999) Isolation and characterization of three seed cDNA encoding LEA III proteins up-regulated by maturation. Plant Physiol. 121, 1054-1060
    
    Clarke JM, McCaig TN (1982) Evaluation of techniques for drought resistance in wheat. Crop Science 22, 503-506
    
    Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97, 795-803
    
    Close TJ, Choi DW, Venegas M, Salvi S, Tuberosa R, Ryabushkina N, Turuspekov Y, Nevo E (2000) Allelic variation in wild and cultivated barley at the Dhn4 locus, which encodes a major drought-induced and seed protein, DHN4. 8th International Barley Genetics Symposium 22-27 October 2000, (ed. S Logue) Adelaide, South Australia
    
    Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol, 134, 960-96
    Coca M, Garcia MT, Gonzalez G, Pena M, Garcia JA (2004) Study of coloured components formed in sugar beet processing. Food Chem. 86, 421-433.
    
    Comic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis. Trends Plant Sci 5, 187-188.
    
    Dahinden I, Buren MV, Luthy J (2001) A quantitative competitive PCR system to detect contamination of wheat, barley or rye in gluten-free food for coeliac patients. Eur Food Res Technol 212, 228-233
    
    Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J. 4, 215-223.
    
    Delauney AJ, Hu CA, Kishor PB, Verma DPS (1993) Cloningo or nithinedelta-amino transferase cDNA from Vigna aconitifolia by transcomplementation in Escherichia coli and regulation of praline biosynthesis J. Biol. Chem. 268, 18673-18678.
    
    Demiral T, Turkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and praline content in roots of two rice cultivars differing in salt tolerance. Environ. Exp. Bot. 53, 247-257.
    
    Doyle, JJ, Doyle, JI (1990) Isolation of plant DNA from fresh tissue. Focus 12, 13-15
    Dure L III (1993) Structural motifs in LEA proteins of higher plants In: Close TJ, Bray EA (eds) Response of plantsto cellular dehydration during environmental stress. American Society of Plant Physiologists, Rockville, Maryland, USA, pp 91-103
    
    Dure L III, Crouch M, Harada J, Ho T-H, Quatrano R, Thomas T, Sung ZR (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Molecular Biology 12,475-486
    
    Dure III L, Crouch M, Harada J, HoT-HD, Mundy J, Quatrano R, Thomas T, Sung ZR (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Bio 12,475-486
    
    Fambrini M, Durante C, Cionini G, Geri C, Giorgetti L, Michelotti V, Salvini M, Pugliesi C (2006) Characterization of LEA FYCOTYLEDON1-LIKE gene in Helianthuss annuus and its relationship with zygotic and somatic embryogenesis. Dev Genes Evol 216, 253-264.
    
    Ferreira LGR, Souza JG, Prisco JF (1979) Effects of water deficit on praline accumulation and growth of two cotton genotypes of differing drought resistance. Z Pflanzenphysiol. 93, 189-199
    
    Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plant: stomatal and non-stomatal limitations revisited. Ann Bot 89, 183-189
    
    Flower DJ, Ludlow MM (1986) Contribution of osmotic adjustment to the dehydration tolerance of water-stressed pigeonpea (Cajanus cajian (L) millsp) leaves. Plant, cell and environment 9, 33-40
    
    Garcia-Maurino S, Jimenez ET, Monreal JA, Morillo-Velarde R, Echevarria C (2005) Adenylate patterns of autumn-sown sugar beet differ from spring-sown sugar beet. Implications for root quality. Physiol. Plant 124, 200-207
    
    Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275, 5668-5674
    
    Gamier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of Molecular Biology 120, 97-120
    
    Gill KS, Lubbers EL, Gill BS, Raupp WJ, Cox TS (1991) A genetic linkage map of Triticum tauschii (DD) and its relationship to the D genome of bread wheat. Genome 34, 362-374
    
    Gilmour SJ, Artus NN, Thomashow MF (1992) cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Molecular Biology 18, 13-21
    
    Gilmour SJ, Lin C, Thomashow, MF (1996) Purification and properties of Arabidopsis thaliana COR (Cold-regulated) gene polypeptides COR15am and COR6.6 expressed in Eschericia coli. Plant Physiology 111, 293-299
    
    Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J, Morris PC, Bouvier-Durand M, Vartanian N. (1994) Current advances in abscisic acid action and signalling. Plant Molecular Biology 26, 1557-1577
    
    Giordani T., Natali L., Ercole A.D, Pugliesi C., Fambrini M., Vernieri P., Vitagliano C. & Cavallini A. (1999) Expression of a dehydrin gene during embryo development and drought stress in ABA-deficient mutants of sunflower (Helianthus annuus L.). Plant Molecular Biology 39: 739-748
    Graham PH, Ranalli P (1997) Common bean (Phaseolus vulgaris L.), Field Crops Res 53,131-146
    
    Grosselindemann E, Robertson M, Wilmer JA, Chandler PM (1998) Genetic variation in pea (Pisum) dehydrins: sequence elements responsible for length differences between dehydrin alleles and between dehydrin loci in Pisum sativum L. Theoretical and Applied Genetics 96, 1186-1192
    
    Gupta PK, Sharma PK, Balyan HS, Roy JK, Sharma S, Beharav A & Nevo E (2002) Polymorphism at rDNA loci in barley and its relation with climatic variables. Theoretical and Applied Genetics 104, 473-481
    
    Gzik A (1996) Accumulation of praline and pattern of-amino acids in sugar beet plant sin response to osmotic, water and salt stress. Environ. Exp. Bot 36, 29-38.
    
    Hanson AD, Nelson CE & Everson EH (1977) Evaluation of free proline accumulation as a index of drought resistance using two contrasting barley cultivars. Crop science 17,720-726
    
    Hasegawa PM, Bressan RA, Nelson DE, Samaras Y, Rhodes D (1994) Tissue culture in the improvement of salt tolerance in plants. In: Yeo A.R., Flowers T.J. (Eds.), Soil Mineral Stresses Approaches to Crop Improvement. Springer, Berlin/Heidelberg pp.83 125
    
    Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51,463-499.
    
    Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. .Arch. Biochem. Biophys 125, 189-198
    
    Herve D, Fabre F, Flores Berrios E, Leroux N, Alcharani Gh, Planchon C, Sarrafi A, Gentzbittel L (2001) QTL analysis of photosynthesis and water status traits in sunflower (Helianthus annuus L.) under green house condition. J Exp Bot 52, 1857-1864
    
    Hewezi T, Petitprez M, Gentzbittel L (2006) Primary metabolic pathways and signal transduction in sunflower (Helianthus annuus L.): comparison of transcriptional profiling in leaves and immature embryos using cDNA microarray. Planta 223, 948-964
    
    Heyen BJ, Alsheikh MK, Smith EA, Torvik CF, Seals DF, Randall SK (2002) The calcium-binding activity of avacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol, 130, 675-687
    Hoffman AA & Parsons PA (1991) Evolutionary Genetics and Environmental Stress. Oxford University Press, Oxford, UK
    
    Hoffmann CM, Blomberg M (2004) Estimation of leaf area index of Beta vulgaris L. based on optical remote sensing data. J. Agron. Crop Sci. 190, 197-204.
    
    Holmberg N, Bulow L (1998) Improving stress tolerance in plants by gene transfer. Trends Plant Sci 3, 61-66.
    
    Hong B, Uknes SJ, Ho THD (1988) Cloning and characterization of a cDNA encoding a mRNA rapidly-induced by ABA in barley aleurone layers. Plant Mol. Biol. 11, 495-506
    
    Humberto FC, Rosa NJ, Atilio JB (2006) The effect of light spectral quality on leaf senescence and oxidative stress in wheat. Plant Science 171, 24-33
    
    Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annual Review of plant physiology and plant molecular biology 47, 377-403
    
    Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47, 377-403
    
    Ismail A, Hall AE, Close TJ (1999) Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiology 120,237-244
    
    Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat-barley chromosome addi-tionlines. Heredity 46, 161-174
    
    Ivandic V, Hackett CA, Zhang ZJ, Staub JE, Nevo E, Thomas WTB, Forster BP (2000) Phenotypic responses of wild barley to experimentally imposed water stress. Journal of Experimental Botany 51, 2021-2029
    
    Ivandic V, Thomas WTB, Nevo E, Zhang Z, Forster BP (2003) Association of simple sequence repeats with quantitative trait variation including biotic and abiotic stress tolerance in Hordeum spontaneum. Plant Breeding 122, 300-304
    
    Ivanka F, Katya G, Maya V, Irena G (2006) Effect of pretreatment of barley seedlings with different salts on the level of UV-B induced and UV-B absorbing compounds. Environmental and Experimental Botany 56,225-230
    
    Jayaprakash TL, Ramamohan G, Krishnaprasad BT, Ganeshkumar, Prasad TG, Mathew MK, Udayakumar M (1998) Genotypic variability in differential expression of lea2 and lea3 genes and proteins in response to salinity stress in fingermillet (Eleusine coracana Gaertn) and rice (Oryza sativa L) seedlings. Annals of Botany 82, 513-522
    
    Jamaux I, Steinmetz A, Belhasen E (1997) Looking for molecular and physiological markers for osmotic adjustment in sunflower. New Phytol 137, 117-127
    
    Jang JY, Kim DG, Kim YO, Kim JS, Kang H (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54, 713-725
    
    Joshi CP, Kluveva NY, Morrow KJ, Nguyen HT (1997) Expression of a unique plastid localized heat shock proteinis genetically linked to acquired thermo tolerance in wheat. Theor Appl Genet 95, 834-841
    
    Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13,889-905
    
    Kiani SP, Grieu P, Maury P, Hewez T (2007) Genetic variability for physiological traits under drought conditions and differential expression of waterstress-associated genes in sunflower (Helianthus annuus L.). Theor Appl Genet 114,193-207
    
    Kishor PBK, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Over expression of-pyrroline-5-carboxylate synthetase increases praline production and confers osmotolerance in transgenic plants. Plant Physiol 108, 1387-1394.
    
    Koag M-C, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131, 309-316
    
    Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12, 172-175
    
    Krishnan M, Nguyen HT, Burke JJ (1989) Heat shock protein synthesis and thermo tolerance in wheat. Plant Physiol 90, 140-145
    
    Kruger C, Berkowitz O, Stephan UW, Hell R (2002) Ametal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J Biol Chem 277, 25062-25069
    
    Labhilili M, Jourdier P, Gautier MF (1995) Characterization of cDNAs encoding Triticum durum dehydrins and their expression patterns in cultivars that differ in drought tolerance. Plant Science 112, 219-230
    Lannucci A, Rascio A, Russo M, DiFonzo N, Martiniello P (2000) Physiological responses to water stress following a conditioning period in berseem clover. Plant Soil 223,217-227.
    
    Lawlor DW (1995) The effects of water deficit on photosynthesis In: Smirnoff N (ed) Environment and plant metabolism flexibility and acclimation. BIOS Scientific publishers, Oxford
    
    Lawlor D W (2002) Limitation of photosynthesis in water stressed leaves: stomata vs metabolism and the role of ATP. Ann Bot 89, 871-885
    
    Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficit in higher plants. Plant Cell Environ 25, 275-294
    
    Levitt J (1980) Responses of plants to environmental stresses. Water, Radiation, Salt and Other Stresses. New York: Academic Press, 325.
    
    Leon DIII (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant Journal 3,393-369
    
    Liu J, Zhu JK (1997) Proline accumulation and salt-stress-induced gene expression in a salt-hyper sensitive mutant of Arabidopsis. Plant Physiol 114, 591-596.
    
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the DDCT method. Methods 25: 402-408
    
    Little T, Hills J (1976) Mrtodos estadisticos para la investigacien agricultura. Mexico: Trillas.
    
    Lopez CG, Banowetz GM, Peterson CJ, Kronstad WE (2003) Dehydrin expression and drought tolerance in seven wheat cultivars. Crop Science 43, 577-582
    
    Ludlow MM, Muchow RC (1990) A critical evaluation of traits for improving crop yields in water-limited environments. Advances in Agronomy 43,107-153
    
    Luu DT, Maurel M (2005) Aquaporins in the challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28, 85-96
    
    Martre P, Morillon R, Barrieu F, Gretchen BN, Park SN, Maarten JC (2002) Plasma membrane aquapor in play a significant role during recovery from water deficit. Plant Physiol 130,2101-2110
    
    Maury P, Mojayad F, Berger M, Planchon C (1996) Photosynthesis response to drought acclimation in two sunflower genotypes. Physiol Plant 98, 57-66
    Maury P, Berger M, Mojayad F, Planchon C (2000) Leaf water characteristics and drought acclimation in sunflower genotypes. Plant Soil 223, 153-160
    
    Maldonado CA, Zuniga GE, Corcuera LJ & Alberdi M (1997) Effect of water stress on frost of oat leaves. Environmental and Experimental Botany, 38, 99-107
    
    Manly K, Cudmore J, Meer J (2001) Map manager QTX, cross-plat form software for genetic mapping. Mamm Genome 12, 930-932
    
    Marschner H (1995) Mineral Nutrition of Higher Plants, 2nd ed. Academi Press, London.
    
    Maury P, Berger M, Mojayad F, Planchon C (2000) Leaf water characteristics and drought acclimation in sunflower genotypes. Plant Soil 223, 153-160
    
    Moons A, Bauw G, Dekeyser R, Von Montagu M, Van DStraeten D (1995) Novel ABA responsive proteins vegetative rice tissue. Curr Topics Plant Physiol 10, 288-289
    
    Morgan JM (1984) Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol 35,299-319
    
    Meie Wang, Qixing Zhou (2006) Effects of herbicide chlorimuron-ethyl on physiological mechanisms in wheat (Triticum aestivum), Ecotoxicology and Environmental Safety 64,190-197
    
    Melchor J, Rosa MR, Luis R, Juan MR (2005) Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars, Environmental and Experimental Botany 54,193-201
    
    Milford GFJ, Pocock TO, Jaggard KW, Biscoe PV, Armstrong MJ, Last PJ, Goodman PJ (1985) Ananalysis of leaf growth in sugar beet. IV. The expansion of the leaf canopy in relation to temperature and nitrogen. Ann. Appl. Biol. 107, 335-347.
    
    Mohsenzadeh S, Malboobi MA, Razavi K, Farrahi-Aschtiani S (2006) Physiological and molecular response of Aeluropus lagopoides (poaceae) to water deficit. Environmental and Experimental Botany 56, 314-322
    
    Monreal JA, Jimenez ET, Remesal E, Morillo-Velarde R, Garcia-Maurino S, Echevarria C (2007) Proline content of sugar beet storage roots: Response to water deficit and nitrogen fertilization at field conditions. Environmental and Experimental Botany 60, 257-267
    
    Morrell PL, Lundy KE, Clegg MT (2003) Distinct geographic patterns of genetic
    diversity is maintained in wild barley (Hordeum vulgare ssp. spontaneum) despite migration. Proceedings of the National of Academy of Sciences of the USA 100, 10812-10817
    
    MurashigeT,SkoogF(1962) A revised medium for rapid growth and Bioassays with tobacco tissue cultures. PhysiologiaPlantarum 15, 473-497
    
    Nagy E (1997) Selection for native characters in hybrids between two locally adapted plant subspecies. Evolution 51, 1469-1480
    
    Natali L, Giordani T, Cavallini A (2003) Sequence variability of a dehydrin gene within Helianthus annuus. Theoretical and Applied Genetics 106, 811-818
    
    Nevo E (1992) Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. In Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology (ed PR Shewry), pp 19-43CAB International, Wallingford, Oxon, UK
    
    Nevo E, Brown AHD, Zohary D, Storch N, Beiles A (1981) Microgeographic edaphic differentiation of allozyme polymorphism of wild barley (Hordeum spontaneum, Poaceae). Plant Systematic and Evolution 138, 287-292.
    
    Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of Wild Emmer and Wheat Improvement. Springer Verlag, Heidelberg.
    
    Nylander M, Svensson J, Palva ET, WelinBV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45, 263-279
    
    Ober ES, LeBloa M, Clark CJA, Royal A, Jaggard K, Pidgeon JD (2005) Evaluation of physiological traits in direct selection criteria for drought tolerance in sugar beet. Field Crop Res 91,231-249
    
    Oono Y, Seki M, Nnjo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Akiyama K, Lida K, Maruyama K, Satoh S, Yamaguchi-Shinozaki K, Shinozaki K (2003) Monitoring expression profile of Arabidopsis gene exprsion during rehydration process after dehydration using 7000 full-lengh cDNA microarray. Plant J 34, 868-887
    
    Ouvrard O, Cellier F, Ferrare K, Tousch D, Lamaze T, Dupui M, Casse-Delbart F (1996) Identification and expression water stress and abscisic acid-regulated genes in a drought tolerant sunflower genotype. Plant Mol Biol 31, 819-829
    Owuor ED, Fahima T, Beharav A, Korol AB, Nevo E (1999) RAPD divergence caused by microsite edaphic selection in wild barley. Genetica 105, 177-192
    
    Ozturk ZN, Talame V, Deyholos M, Michalowski CC, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert H (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Molecular Biology 48, 551-573
    
    Pan A, Hayes PM, Chen F, Chen THH, Blake T, Wright S, Karsai I, Bedo Z (1994) Genetic analysis of the components of winter hardiness in barley (Hordeum vulgare L). Theoretical and Applied Genetics 89, 900-910
    
    Pandey PK (1982) Free praline accumulation in response to water stress in wheat seedling. Current Sci. 51(3) 141-143
    
    Paquin R., Lechasseur P (1979) Observations sur une methode de dosage de la proline libre dans les extraits de plants. Can. J. Bot. 57, 1851-1854
    
    Parry, MJ, Androlojc JP, Khan S, Lea PJ, Keys AJ (2002) Rubisco activity: effects of drought stress. Ann. Bot. 89, 833-839.
    
    Parcy F, Valon C, Kohara A, Misera S, Giraudat J (1997) The ABSCISIC ACIDINSENSITIVE3, FUSCA3 and LEACOTYLEDONl genes act in concert to control multiple aspects of Arabidopsis seed development. Plant Cell 9, 1265-1277
    
    Pelah D, Wang W, Altman A, Shoseyov O, Bartles D (1997) Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiologia Plantarum 99, 153-159
    
    Pidgeon JD, Werker AR, Jaggard KW, Richter GM, Lister DH, Jones PD (2001) Climatic impact on the productivity of sugar beet in Europe, 1961-1995. Agric. For. Meteorol. 109,27-37.
    
    Pierrokovski S, Henikoff JG, Henikoff S (1996) The blocks databasea system for protein classification. Nucleic Acids Res. 24, 197-200.
    
    Popova LP, Outlaw WH, Aghoram K, Hite DC (2000) Abscisic acid an intra leaf water-stress signal. Physiol. Plant 108, 376-381.
    
    Pocock T, Milford GFJ, Armstrong M (1990) Storage root quality in sugar beet in relation to nitrogen uptake. J. Agric. Sci. 115, 355-362.
    
    Raymond MJ, Smirnoff N (2002) Proline metabolism and transport in maize seedlings at low water potential. Ann. Bot. 89, 813-823.
    
    Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant, Cell and Environment 25, 141-151
    
    Ristic Z, Jenks MA (2002) Leaf cuticle and water loss in maize lines differing in dehydration avoidance. Journal of Plant Physiology 159, 645-651
    
    Robinson D, Handley LL, Scrimgeour CM, Gordon DC, Forster BP, Ellis RP (2000) Using stable isotope natural abundances (delta 15N and delta 13C) to integrate the stress responses of wild barley (Hordeum spontaneum C Koch) genotypes. Journal of Experimental Botany 51 (342), 41-50
    
    Rodriguez EM, Svensson JT, Malatrasi M, Choi D-W, Close TJ (2005) Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theor Appl Genet 110,852-858
    
    Rorat T, Grygorowicz WJ, Irzykowski W, ReyP (2004) Expression of KS-type dehydrins is primarily regulated by factors related to organ type and leaf developmental stage during vegetative growth. Planta 218,878-885
    
    Raymond MJ, Smirnoff N (2002) Proline metabolism and transport in maize at low water potential. Ann. Bot. 89, 813-823.
    
    Riccardi F, Gazeau P, Vienne D, Zivy M (1998) Protein changes in response to progressive water deficit in maize. Plant Physiol. 117, 1253-1263.
    
    Reviron MP, Vartanian N, Sallantin M, Huet JC, Pernollet JC, Vienne D (1992) Characterization of a novel protein in duced by progressive or rapid drought and salinity in Brassica napus leaves. Plant Physiol. 100, 1486-1493.
    
    Reid JL, Walker-Simmons MK (1993) Group 3 late embryogenesis abundant proteins in desiccation tolerant seedlings of wheat (Triticum aestivum L). Plant physiology 102, 125-131
    
    Roberts SK (1998) Regulation of K channels in maize roots by water stress and abscisic acid. Plant Physiol. 116, 145-153.
    
    Sarda X, Tousch D, Ferrare K, Legrand E, Dupuis JM, Casse Delbart F, Lamaze T (1997) Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells. Plant J 12, 1103-1111
    
    Sarda X, Tousch D, Ferrare K, Cellier F, Alcon C, Dupuis JM, Casse F, Lamaze T (1999) Characterization of closely related d-TIP gene encoding aquaporins which are differentially expressed in sunflower roots upon water deprivation through exposure to air. Plant Mol Bio 140, 179-191
    
    Schneiter AA, Miller JF (1981) Description of sunflower growth stages. Crop Sci 21, 901-903
    
    Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148, 339-364
    
    Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1,300 Arabidopsis genes under drought and cold stresses using full-length cDNA microarray. Plant Cell 13,61-72
    
    Stitt M (1990) Fructose-2,6-bisphosphate as a regulatory protein in plants. Annu Rev Plant Physiol Plant Mol Biol 41, 153-185
    
    Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomic approach to analyzing drought-and salt-responsiveness inrice. Field Crops Res. 76, 199-219.
    
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, vol.2, seconded. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    
    Schaefer C (1995) Isolation of mRNA from a few eukaryoticcells: a fast method to obtain template for highly sensitive quantitative reverse transcription-PCR (RT-PCR). PCR application manual, Boehringer Mannhaim, pp. 21-23.
    
    Seki M, Narusaka M, IshidaJ, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant 731, 279-292
    
    Sher M, Sen DN, Mohmmed S (1994) Seasonal variations in sugar and protein content of halophytes in Indian desert. Ann. Arid Zone 33, 249-251.
    
    Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular responses to drought and cold stress. Curr. Opin. Biotechnol. 7, 161-167.
    
    Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol. 115, 327-334.
    
    Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor
    
    Scott A, Campbell J & Close TJ (1997) Dehydrins: genes, proteins, and associated with phenotypic traits. New Phytol. 137, 61-74
    
    Shao HB, Liang ZS, Shao MA. (2006) Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits, Colloids and Surfaces B: Biointerfaces 47,132-139
    
    Salvucci ME, Crafts-Bradner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol. Plant. 120, 179-186.
    
    Sivaramakrishnan S, Patell VZ, Flower DJ, Peacock JM (1988) Proline accumulation and nitrate reductase activity in contrasting sorghum lines mid-season drought stress. Physiol. Plant. 74,418-426.
    
    Sinebo W (2005) Trade off between yield increase and yield stability in three decades of barley breeding in a tropical highland environment. Field crops research, 92:35-52
    
    Shen Q, Ho TH (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-actingele-ment. Plant Cell 7, 295-307
    
    Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiology 115, 327-334
    
    Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho T-HD, Qu RD (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Science 155, 1-9
    
    Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. The plant cell, 2: 503-512
    
    Smith JAC, Griffiths H (1993) Water deficits: Plant Responses from Cell to Community. Bios Scientific Publishers, Oxford, UK, pp, 1-332
    
    Stacy RAP, Aalen RB (1998) Identification of homology between the internal hydrophilic repeated motifs of group I late embryogenesis abundant proteins in plants and hydrophilic repeats of the general stress proteins of Bacillus subtilis. Rart A 1998, 20(6), 471-478
    
    Subbaro GV, Johansen C, Slinkard AE, Nageswara RCR, Saxena NP, Channah YS (1995) Strategies for improving drought resistance in grainlegumes,Crit.Rev. Plant Sci. 14, 469-523
    
    Suprunova T, Krugman T, Fahima T, Chen G, Shams I, Korol A, Nevo, E (2004) Differential expression of dehydrin genes in wild barly, Hordeum spontaneum, associated with resistance to water deficit. Plant, cell and environment 27,1297-1308
    
    Svensson AS, Johansson FI, Moller IM, Rasmusson AG (2002) Cold stress decreases the capacity for respiratory NADH oxidation in potato leaves. FEBS Letters 517, 79-82
    
    Svensson J, Palva ET, Welin B (2000) Purification of recombinant Arabidopsis thaliana dehydrins by metal ion affinity chroma-tography. Protein Expres Purif 20, 169-178
    
    Svensson J, Ismail AM, Palva ET, Close TJ (2002) Dehydrins. In: Storey KB, Storey JM (eds) Sensing, signaling and cell adaptation. Elsevier, Amsterdam, pp155-171
    
    Taiz L, Zeiger E (2002) Plant physiology. Sinauer Associates Inc., Massachusetts.
    
    Tambussi EA, Bartoli CG, Beltrano J, Guiamet JJ, Araus JL (2000) Oxidative damage to thylakoid proteins in water-stressed leaves of wheat (Triticum aestivum). Physiol. Plant 108, 398-404.
    
    Tewari A (1970) A note on the value of Sporobolus caromandelianus (Trin.) Kunth and Aeluropus lagopoides (Linn.) as feed and soil binder. Plant Sci. 2, 135-136.
    
    Teulat B, Zoumarou-Wallis N, Rotter B, Ben Salem M, Bahri H, This D (2003) QTL for relative water content in fieldgrown barley and their stability across Mediterranean environments. Theoretical and Applied Genetics 108, 181-188.
    
    Tezara W, Mitchall V, Driscoll SP, Lawlor DW (2002) Effects of supply on the water deficit and its interaction with CO_2 biochemistry and physiology of photosynthesis in sunflower. J Exp Bot 375, 1781-1791
    
    Turner NC, Jones MM (1980) Turgor maintenance by osmotic adjustment; a review and evaluation. In: Turner N, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp87-107
    
    Torbatinejad N, Maghsoodlowrad H, Gharabash AM (2000) Nutritive value of Aeluropus littoralis and Aeluropus lagopoides in sheep. J. Agric. Sci. Nat. Res. 7, 31-45.
    
    Takebayashi N, Brewer PB, Newbigin E, Uyenoyama MK (2003) Patterns of variation within self-incompatibility loci. Mol Biol Evol 20, 1778-1794
    
    Tali Z Gal, Itamar Glazer, Hinanit Koltai (2004) An LEA group3 family member is involved in survival of C elegans during expose to stress. FEBS Letters 577,21-26
    
    Tognetti R, Palladino M, Minnocci A, Delfine S, Alvino A (2003) The response of sugar beet to dripand low-pressure sprinkler irrigation in south-ernItaly. Agric. Water Manage. 1804,1-21.
    
    Turkan I, Bor M, Ozdemir F, Koca H (2005) Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science 168, 223-231
    
    Turpeinen T, Vanhala T, Nevo E, Nissila E (2003) AFLP genetic polymorphism in wild barley (Hordeum spontaneum) populations in Israel. Theoretical and Applied Genetics 106, 1333-1339
    
    VanRensburg L, Kruger GHJ (1994) Applicability of abscisic acid and (or) proline accumulation as selection criteria for drought tolerance in Nicotiana tabacum. Can. J. Bot. 72, 1535-1540.
    
    Van Berloo R (1999) GGT software for the display of graphical genotypes. J Heredity 90, 328-329
    
    Vander Willigen C, Pammenter NW, Mundree SG, Farrant JM (2004) Mechanical stabilization of desiccated vegetative tissues of the resurrection grass Eragrostis nindensis: does a TIP3; 1 and/or compartmentalization of subcellular component sand metabolites play a role? J Exp Bot 55,651-661
    
    Verwoerd TC, Bekker BM, Hoekema A (1989) A small scale procedure for the rapid isolation of plant RNAs. Nucleic Acid Res 17(16), 2362
    
    Vierling E, Nguyen HT, (1992) Heat-shock protein gene expression in diploid wheat genotypes differing in thermal tolerance. Crop Science 32:370-377
    
    Very AA, Sentenac H (2003) Molecular mechanisms and regulation of K~+ transport in higher plants. Annu. Rev. Plant Biol. 54, 575-603.
    
    Watkinson JI, Sioson AA, Vasquez-Robinet C, Shukla M, Kuma D, Ellis M, Heath LS,
    Ramakrishnan N, Chevone B, Watson LT, Van Zyl L, Egertsdotter U, Sederoff RR, Grene R (2003) Photosynthetic acclimation is reflected in specific patterns of gene expression in drought-stressed loblolly pine. Plant Physiol 133, 1702-1716
    
    Waghmode AP, Hegde BA (1984) Effect of sodium chloride on pyruvate or thophosphate dikinase of a saline grass Aeluropus lagopoides (Linn.). Trin. Biovigyanam 10,209-210.
    
    Waghmode AP, Joshi GV (1982) Photosynthetic and photorespiratory enzymes and metabolism of 14 C-substrates in isolated leaf cells of the C_4 species of Aeluropus lagopoides L. Photosynthetica 16, 17-21.
    
    Watson L, Dallwitz MJ (1992) The Grass Genera of the World. CAB International, Wallingford.
    
    Werner O, Maria R, Espin R, Bopp M, Atzorn R (1991) Abscisic-acid-induced drought tolerance in Funaria hygrometrica Hedw. Planta 186, 99-103
    
    White DA, Battaglia M, MacFarlane C, Mummery JF, McGrath JF, Beadle CL (2003) Selecting species for recharge management in Mediterranean southwestern Australia some ecophysiological considerations. Plant Soil 257,283-293.
    
    Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110,249-257
    
    Xue GP (2002) An AP2 domain transcription factor HvCBFl activates expression of cold-responsive genes in barley through interaction with a(G/a)(C/t)CGAC motif. BBA Gene Struct Expr 1577, 63-72
    
    Yu Y, Tomkins JP, Waugh R, Frisch DA, Kudrna D, Kleinhofs A, Brueggeman RS, Muehlbauer GJ, Wise RP, Wing RA (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor Appl Genet 101, 1093-1099
    
    Yeo A (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J. Exp. Bot. 49, 915-929.
    
    Yamaguchi-Shinozaki K, Koizumi M, Urao S, Shinozaki K (1992) Molecular cloning of 9 cDNA that are responsive to dessication in Arabidopsis thaliana sequence analysis of one cDNA that encodes a putative transmembrane channel protein. Plant Cell Physio 133, 217-224
    
    Yamada S, Komori T, Myers PN, Kuwata S, Kubo T, Imaseki H (1997) Expression of plasma membrane water channel genes under water stress in Nicotiana excelsior. Plant Cell Physiol 38, 1226-1231
    
    Zee VK, Qiang Chen F, Hayes PM, Close TJ, Chen THH (1995) Cold-specific induction of a dehydrin gene-family member in barley. Plant Physiology 108, 1233-1239.
    
    Zrenner R, Krause KP, ApelP, Sonnewald U (1996) Reduction of the cytosolic fructose-1,6-bisphosphatase in transgenic potato plants limits photosynthesis sucrose biosynthesis with no impact on plant growth and tuber yield. Plant J 9, 671-681
    
    Zhu B, Choi DW, Fenton R, Close TJ (2000) Expression of the barley dehydrin multigene family and the development of freezing tolerance. Molecular and General Genetics 246, 145-153
    
    Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700