银/石墨烯纳米复合材料的制备及其对MCF-7细胞毒性探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化石墨烯(GO)作为合成化学改性石墨烯及石墨烯复合材料的前驱体材料,具有成本低、可实现批量生产的特点,受到人们的广泛关注。本文采用改进的Hummers法,在充足氧化剂用量下,分别改变低温(0℃)、中温(35℃)、高温(95℃)三个独立阶段的氧化时间,制备得到不同氧化程度的GO样品。结合XRD、FTIR、Raman、SEM等测试手段,对不同GO样品的晶体结构、含氧官能团类型、无序度及形貌特征进行表征,揭示Hummers法制备GO的动力学过程。以GO与硝酸银为前驱体,在NaOH溶液作用下,一步绿色合成银/石墨烯(Ag/rGO)纳米复合材料,研究银离子浓度、合成温度、反应时间等工艺参数对Ag/rGO复合材料性能的影响,分析银粒子在GO表面的析晶过程。最后,探索了Ag/rGO纳米复合材料在光疗、热疗治疗人体乳腺癌MCF-7细胞的应用价值。
     研究结果表明:采用改进的Hummers法,在充足氧化剂用量下,低温短时间氧化反应可以完全改变鳞片石墨的原始晶体结构,实现羟基、环氧基官能团在GO片层底面大量衍生,层间距明显提高,且随低温氧化时间的延长,GO的氧化度逐渐提高;中温阶段氧化反应对GO氧化度的提高影响不大,属于Hummers法中低温反应向高温反应的一个过渡阶段;高温氧化半小时内,GO无序度明显上升,羧基、羰基、烷氧基官能团大量衍生,随机分布于GO片层边缘处,并导致GO碳膜破裂、缺陷及孔洞的产生,高温氧化时间过长,碳结构缺陷加剧,但部分结合不牢固的官能团发生脱离,导致GO无序度下降。
     在氢氧化钠作用下,一步绿色合成了Ag/rGO纳米复合材料,银颗粒平均尺寸为11nm左右,且均匀牢固分布在rGO片层上,Ag/rGO纳米复合材料在水中有着优异的分散性;在合成过程中,NaOH脱除Ag/rGO表面的羧基、羰基、环氧基等基团,体系内仅保留少量的羟基官能团;Ag+将GO表面烷氧基脱除,并在还原过程中消耗一定量的羟基,Ag+的加入,促进了rGO向石墨烯sp2共轭结构转化,生成的银纳米颗粒与rGO表面残余羟基具有一定结合作用。前驱体硝酸银溶液浓度增加,可提高石墨烯表面银颗粒负载率,但对银颗粒尺寸影响不大;随着合成温度的提高,Ag2O衍射峰消失,当反应温度为70℃时,可制备得到纯净的Ag/rGO纳米复合材料;反应在6min内即可合成Ag/rGO复合结构,反应时间的延长,对复合结构中银颗粒影响不大,但促进复合材料中rGO向石墨烯sp2共轭结构转变。
     通过Ag/rGO纳米复合材料对人体乳腺癌(MCF-7)细胞的光疗、热疗作用测试,结果发现:在无光照作用下,该复合体系对MCF-7细胞毒性很小,Ag/rGO药物安全性高;当在532nm激光作用下,细胞内产生活性氧(ROS),药物通过光疗效应杀死MCF-7细胞;在近红外光(808nm)作用下,利用热疗作用损伤MCF-7细胞。因此,本课题绿色合成的Ag/rGO纳米复合材料有望用于光疗或热疗治疗肿瘤领域。
Graphene oxide (GO) has re-emerged as an intense research interest to its role as a precursor for the cost-effective and mass production of chemically converted graphene (CCG) and graphene-based materials. In this thesis, GO samples with different oxidation degree were synthetized through modified Hummers method by changing their reaction time, respectively. The structure, composition, and disorder parameter of GO were confirmed by means of XRD, FTIR, Raman, and SEM. An one-pot and green synthesis approach had been employed to prepare silver/reduced graphene oxide (Ag/rGO) nanocomposite in the presence of sodium hydroxide at70℃. Parameters in the preparation process, such as reaction temperture and reaction time, were discussed and the potential application of Ag/rGO nanocomposite in cancer photodynamic therapy and photothermal therapy was explored at the same time.
     Results show that:the structure of origin graphite was damaged completely within oxidation time of1hour at0℃, with the derivation of hydroxyl and epoxy groups on the basal of GO sheets. The degree of oxidation of GO increased over time at0℃, while it changed little at35℃. Within30min at95℃, it showed a significant increase of the degree of oxidation of GO. And carboxyl, carbonyl and alkoxy groups appeared in larger numbers at the edge of GO sheets, which lead to defects and holes on the GO surface. The disorder degree of GO may decrease if the reaction time at95℃was so long, due to the removal of some unstable goups on GO sheets.
     The Ag/rGO nanocomposite was prepared in an one-pot and green approach in alikaline solution using silver nitrate as precursor and graphene oxide as substrate.
     Within11min, the small-sized (av.11nm) and highly dispersed silver nanoparticles were supported on reduced graphene oxide sheets. The FTIR and XRD results demonstrates that NaOH accelerated the removal of carboxyl groups on the surface of GO, and Ag+attributed to recover the C=C sp2structure of rGO. Strong interaction may exist between silver nanopaticles and the remaining surface hydroxyl groups in Ag/rGO nanocomposite. The silver crystal growth was influenced by temperature and alkali concentration, rather than the reaction time. While long reaction time attributed to the recover of C=C sp2structure of rGO.
     In this work, for the first time we studied the behaviors of Ag/rGO nanocomposite in photodynamic therapy under532nm laser and photothermal therapy under NIR light (808nm) to kill MCF-7human breast cancer cell. Ag/rGO nanocomposite has cytotoxicity under irradiation and can be used as cancer therapeutic photosensitizer. The as-obtained Ag/rGO nanocomposite presented effective ability of cancer photodynamic therapy and photothermal therapy.
引文
[1]Geim, A K and Novoselov, K S. The rise of graphene[J]. Nature materials,2007,6:183-191.
    [2]Balandin, A A, Ghosh, S, Bao, W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8:902-907.
    [3]Zhu, Y, Murali, S, Cai, W, et al. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Materials,2010,22:3906-3924.
    [4]Lee, C, Wei, X, Kysar, J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321:385-388.
    [5]Neto, A H C, Guinea, F, Peres, N, et al. The electronic properties of graphene[J]. Reviews of modern physics,2009,81:109.
    [6]Bolotin, K I, Sikes, K, Jiang, Z, et al. Ultrahigh electron mobility in suspended graphenefJ]. Solid State Communications,2008,146:351-355.
    [7]Gao, Y, Jiang, P, Song, L, et al. Studies on silver nanodecahedrons synthesized by PVP-assisted N,N-dimethylformamide (DMF) reduction[J]. Journal of Crystal Growth,2006,289: 376-380.
    [8]Zhao, J, Pei, S, Ren, W, et al. Efficient preparation of large-area graphene oxide sheets for transparent conductive films[J]. ACS Nano,2010,4:5245-5252.
    [9]Winter, M, Besenhard, J, Albering, J, et al. Lithium Storage Alloys as Anode Materials in Lithium Ion Batteries[J]. Progress in Batteries and Battery Materials,1998,17:208-213.
    [10]Park, S and Ruoff, R S. Chemical methods for the production of graphenes[J]. Nature nanotechnology,2009,4:217-224.
    [11]Szabd, T, Berkesi, O, Forgo, P, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides[J]. Chemistry of Materials,2006,18:2740-2749.
    [12]Stankovich, S, Dikin, D A, Dommett, G H, et al. Graphene-based composite materialsfJ]. Nature,2006,442:282-286.
    [13]Zhi, Y, Gao, R, Hu, N, et al. The prospective two-dimensional graphene nanosheets: preparation, functionalization, and applications[J]. Nano-Micro Letters,2011,4:1-9.
    [14]Chen, S, Zhu, J, Wu, X, et al. Graphene oxide- MnO2 nanocomposites for supercapacitors[J]. ACS Nano,2010,4:2822-2830.
    [15]Kim, H, Abdala, A A and Macosko, C W. Graphene/polymer nanocomposites[J]. Macromolecules,2010,43:6515-6530.
    [16]Chandra, S, Bag, S, Bhar, R, et al. Sonochemical synthesis and application of rhodium-graphene nanocomposite[J]. Journal of Nanoparticle Research,2011,13:2769-2777.
    [17]Pasricha, R, Gupta, S and Srivastava, A K. A Facile and Novel Synthesis of Ag-Graphene-Based Nanocomposites[J]. Small,2009,5:2253-2259.
    [18]Fu, X, Bei, F, Wang, X, et al. Excitation profile of surface-enhanced Raman scattering in graphene-metal nanoparticle based derivatives[J]. Nanoscale,2010,2:1461-1466.
    [19]Zhao, H, Fu, H, Zhao, T, et al. Fabrication of small-sized silver NPs/graphene sheets for high-quality surface-enhanced Raman scattering[J]. Journal of Colloid and Interface Science, 2012,375:30-34.
    [20]Chen, J, Zheng, X, Wang, H, et al. Graphene oxide-Ag nanocomposite:In situ photochemical synthesis and application as a surface-enhanced Raman scattering substrate[J]. Thin Solid Films, 2011,520:179-185.
    [21]Yang, Y-K, He, C-E, He, W-J, et al. Reduction of silver nanoparticles onto graphene oxide nanosheets with N, N-dimethylformamide and SERS activities of GO/Ag composites[J]. Journal of Nanoparticle Research,2011,13:5571-5581.
    [22]Tien, H-W, Huang, Y-L, Yang, S-Y, et al. The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films[J]. Carbon,2011,49:1550-1560.
    [23]Tian, J, Liu, S, Zhang, Y, et al. Environmentally Friendly, One-Pot Synthesis of Ag Nanoparticle-Decorated Reduced Graphene Oxide Composites and Their Application to Photocurrent Generation[J]. Inorganic Chemistry,2012,51:4742-4746.
    [24]Tian, J, Liu, S, Zhang, Y, et al. Environmentally friendly, one-pot synthesis of Ag nanoparticle-decorated reduced graphene oxide composites and their application to photocurrent generation[J]. Inorg Chem,2012,51:4742-4746.
    [25]Zhu, M, Chen, P and Liu, M. Graphene Oxide Enwrapped Ag/AgX (X= Br, Cl) Nanocomposite as a Highly Efficient Visible-Light Plasmonic Photocatalyst[J]. ACS Nano,2011, 5:4529-4536.
    [26]Chen, X, Wu, G, Chen, J, et al. Synthesis of "Clean" and Well-Dispersive Pd Nanoparticles with Excellent Electrocatalytic Property on Graphene Oxide[J]. Journal of the American Chemical Society,2011,133:3693-3695.
    [27]Wen, C, Shao, M, Zhuo, S, et al. Silver/graphene nanocomposite:Thermal decomposition preparation and its catalytic performance[J]. Materials Chemistry and Physics,2012,135: 780-750.
    [28]Zhang, Z, Xu, F, Yang, W, et al. A facile one-pot method to high-quality Ag-graphene composite nanosheets for efficient surface-enhanced Raman scattering[J]. Chemical Communications,2011,47:6440-6442.
    [29]Li, Z, Zhang, P, Wang, K, et al. Graphene buffered galvanic synthesis of graphene-metal hybrids[J]. Journal of Materials Chemistry,2011,21:13241-13246.
    [30]Liu, S, Tian, J, Wang, L, et al. Stable aqueous dispersion of graphene nanosheets: noncovalent functionalization by a polymeric reducing agent and their subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection[J]. Macromolecules,2010,43: 10078-10083.
    [31]Das, M R, Sarma, R K, Saikia, R, et al. Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity[J]. Colloids and Surfaces B: Biointerfaces,2011,83:16-22.
    [32]Nguyen, V H, Kim, B, Jo, Y-L, et al. Preparation and antibacterial activity of silver nanoparticles-decorated graphene composites[J]. The Journal of Supercritical Fluids,2012,72: 28-35.
    [33]Ma, J, Zhang, J, Xiong, Z, et al. Preparation, characterization and antibacterial properties of silver-modified graphene oxide[J]. Journal of Materials Chemistry,2011,21:3350-3352.
    [34]Bao, Q, Zhang, D and Qi, P. Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection[J]. Journal of colloid and interface science,2011,360:463-470.
    [35]Zhang, J, Yang, Y, Wu, S J, et al. End-functional silicone coupling agent modified PEO/P(VDF-HFP)/SiO(2) nanocomposite polymer electrolyte DSSC[J]. Nanotechnology,2008, 19:245202.
    [36]Wang, Y, Zhang, S, Chen, H, et al. One-pot facile decoration of graphene nanosheets with Ag nanoparticles for electrochemical oxidation of methanol in alkaline solution[J]. Electrochemistry Communications,2012,17:63-66.
    [37]Zheng, L, Zhang, G N, Zhang, M, et al. Preparation and capacitance performance of Ag-graphene based nanocomposite[J]. Journal of Power Sources,2012,201:376-381.
    [38]Emtsev, K V, Bostwick, A, Horn, K, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide[J]. Nat Mater,2009,8:203-207.
    [39]Kim, K S, Zhao, Y, Jang, H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,2009,457:706-710.
    [40]Gilje, S, Han, S, Wang, M, et al. A chemical route to graphene for device applications[J]. Nano letters,2007,7:3394-3398.
    [41]Novoselov, K, Geim, A, Morozov, S, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306:666-669.
    [42]Pei, S and Cheng, H-M. The reduction of graphene oxide[J]. Carbon,2011,50:3210-3228.
    [43]Schafhaeutl, D C. LXXXV1. On the combinations of carbon with silicon and iron, and other metals, forming the different species of cast iron, steel, and malleable iron[J]. The London and Edinburgh Philosophical Magazine and Journal of Science,1840,16:570-590.
    [44]Brodie, B. Sur le poids atomique du graphite[J]. Ann Chim Phys,1860,59:466-472.
    [45]Staudenmaier, L. Ber Dtsch Chem Ges,1898,31:1481-1487.
    [46]Hummers Jr, W S and Offeman, R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80:1339-1339.
    [47]Hirata, M, Gotou, T, Horiuchi, S, et al. Thin-film particles of graphite oxide 1::High-yield synthesis and flexibility of the particles[J]. Carbon,2004,42:2929-2937.
    [48]Dreyer, D R, Park, S, Bielawski, C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews,2010,39:228-240.
    [49]Compton, O C and Nguyen, S T. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene:Versatile Building Blocks for Carbon-Based Materials[J]. Small,2010,6:711-723.
    [50]杨勇辉.石墨烯的制备、表征及机理研究[D].[硕士学位论文].四川,西南科技大学,2008.
    [51]Lerf, A, He, H, Forster, M, et al. Structure of Graphite Oxide Revisited[J]. The Journal of Physical Chemistry B,1998,102:4477-4482.
    [52]Gao, W, Alemany, L B, Ci, L, et al. New insights into the structure and reduction of graphite oxide[J]. Nature chemistry,2009,1:403-408.
    [53]Yang, D, Velamakanni, A, Bozoklu, G, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy[J]. Carbon, 2009,47:145-152.
    [54]Duong, D L, Kim, G, Jeong, H-K, et al. Breaking AB stacking order in graphite oxide:ab initio approach[J]. Physical Chemistry Chemical Physics,2010,12:1595-1599.
    [55]McAllister, M J, Li, J-L, Adamson, D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chemistry of Materials,2007,19:4396-4404.
    [56]Cassagneau, T, Guerin, F and Fendler, J H. Preparation and characterization of ultrathin films layer-by-layer self-assembled from graphite oxide nanoplatelets and polymers[J]. Langmuir,2000, 16:7318-7324.
    [57]Nakajima, T, Mabuchi, A and Hagiwara, R. A new structure model of graphite oxide[J]. Carbon,1988,26:357-361.
    [58]Swift, P. Adventitious carbon-the panacea for energy referencing?[J]. Surface and Interface Analysis,2004,4:47-51.
    [59]Eda, G, Fanchini, G and Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nature nanotechnology,2008,3:270-274.
    [60]Wilson, N R, Pandey, P A, Beanland, R, et al. Graphene Oxide:Structural Analysis and Application as a Highly Transparent Support for Electron Microscopy[J]. ACS Nano,2009,3: 2547-2556.
    [61]王彦.石墨烯的制备及其在聚合物复合材料中的应用[D].[博士学位论文].上海,上海交通大学,2012.
    [62]Gomez-Navarro C, B M, Kern K. Properties of Chemically derived single graphene sheets[J]. Nano Lett,2008,8:2045-2049.
    [63]Suk J W, P R D, An J, et al. Mechanical properties of monolayer graphene oxide[J]. ACS Nano,2011,4:6557-6564.
    [64]Gomez-Navarro, C, Weitz, R T, Bittner, A M, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets[J]. Nano letters,2007,7:3499-3503.
    [65]Becerril, H A, Mao, J, Liu, Z, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors[J]. Acs Nano,2008,2:463-470.
    [66]Mattevi, C, Eda, G, Agnoli, S, et al. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films[J]. Advanced Functional Materials,2009,19:2577-2583.
    [67]Boehm, H and Scholtz, W. Deflagration Point of Graphite Oxide[J]. Z. Anorg. Allg. Chem, 1965,335:74-79.
    [68]Krishnan, D, Kim, F, Luo, J, et al. Energetic graphene oxide:Challenges and opportunities[J]. Nano Today,2012,7:137-152.
    [69]Kim, F, Luo, J, Cruz-Silva, R, et al. Self-Propagating Domino-like Reactions in Oxidized Graphite[J]. Advanced Functional Materials,2010,20:2867-2873.
    [70]Wang, G, Yang, J, Park, J, et al. Facile synthesis and characterization of graphene nanosheets[J]. The Journal of Physical Chemistry C,2008,112:8192-8195.
    [71]Lerf, A, Buchsteiner, A, Pieper, J, et al. Hydration behavior and dynamics of water molecules in graphite oxide[J]. Journal of Physics and Chemistry of Solids,2006,67:1106-1110.
    [72]Marcano, D C, Kosynkin, D V, Berlin, J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano,2010,4:4806-4814.
    [73]傅玲.氧化石墨和聚吡咯/氧化石墨纳米复合材料的制备、表征和应用[D].[硕士学位论文].长沙,湖南大学,2005.
    [74]傅玲,刘洪波、邹艳红,李波.Hummers法制备氧化石墨时影响氧化程度的工艺因素研究[J].炭素,2005,10-14.
    [75]张佳利.化学还原氧化石墨烯及其衍生物的制备、性质和应用研究[D].[博士学位论文].上海,上海交通大学,2011.
    [76]Erickson, K, Erni, R, Lee, Z, et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide[J]. Advanced Materials,2010,22:4467-4472.
    [77]Stankovich, S, Dikin, D A, Piner, R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45:1558-1565.
    [78]Dreyer, D R, Murali, S, Zhu, Y, et al. Reduction of graphite oxide using alcohols[J]. Journal of Materials Chemistry,2011,21:3443-3447.
    [79]Wang, R, Sun, J, Gao, L, et al. Effective post treatment for preparing highly conductive carbon nanotube/reduced graphite oxide hybrid films[J]. Nanoscale,2011,3:904-906.
    [80]Pei, S, Zhao, J, Du, J, et al. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids[J]. Carbon,2010,48:4466-4474.
    [81]Fan, X, Peng, W, Li, Y, et al. Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions:A Green Route to Graphene Preparation[J]. Advanced Materials,2008,20: 4490-4493.
    [82]Park, S, An, J, Piner, R D, et al. Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets[J]. Chemistry of Materials,2008,20:6592-6594.
    [83]Fan, Z-J, Kai, W, Yan, J, et al. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide[J]. ACS nano,2010,5:191-198.
    [84]Gong, K, Chen, W-F, Sasaki, K, et al. Platinum-monolayer electrocatalysts:Palladium interlayer on IrCo alloy core improves activity in oxygen-reduction reaction[J]. Journal of Electroanalytical Chemistry,2010,649:232-237.
    [85]Fernandez-Merino, M, Guardia, L, Paredes, J, et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions[J]. The Journal of Physical Chemistry C, 2010,114:6426-6432.
    [86]Williams, G, Seger, B and Kamat, P V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide[J]. Acs Nano,2008,2:1487-1491.
    [87]Salas, E C, Sun, Z, Luttge, A, et al. Reduction of graphene oxide via bacterial respiration[J]. ACS nano,2010,4:4852-4856.
    [88]Gao, X, Jang, J and Nagase, S. Hydrazine and thermal reduction of graphene oxide:reaction mechanisms, product structures, and reaction design[J]. The Journal of Physical Chemistry C, 2009,114:832-842.
    [89]Kim, M C, Hwang, G S and Ruoff, R S. Epoxide reduction with hydrazine on graphene:A first principles study[J]. The Journal of chemical physics,2009,131:064704.
    [90]Moon, I K, Lee, J, Ruoff, R S, et al. Reduced graphene oxide by chemical graphitization[J]. Nature Communications,2010,1:73.
    [91]Schniepp, H C, Kudin, K N, Li, J-L, et al. Bending properties of single functionalized graphene sheets probed by atomic force microscopy [J]. ACS nano,2008,2:2577-2584.
    [92]Vollmer, A, Feng, X, Wang, X, et al. Electronic and structural properties of graphene-based transparent and conductive thin film electrodes[J]. Applied Physics A:Materials Science & Processing,2009,94:1-4.
    [93]Hass, J, Varchon, F, Millan-Otoya, J-E, et al. Why multilayer graphene on 4H-SiC (0001 [over]) behaves like a single sheet of graphene[J]. Physical review letters,2008,100:125504.
    [94]Zhu, Y, Murali, S, Stoller, M D, et al. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors[J]. Carbon,2010,48:2118-2122.
    [95]Cote, L J, Cruz-Silva, R and Huang, J. Flash reduction and patterning of graphite oxide and its polymer composite[J]. Journal of the American Chemical Society,2009,131:11027-11032.
    [96]Sokolov, D A, Shepperd, K R and Orlando, T M. Formation of graphene features from direct laser-induced reduction of graphite oxide[J]. The Journal of Physical Chemistry Letters,2010,1: 2633-2636.
    [97]Baraket, M, Walton, S, Wei, Z, et al. Reduction of graphene oxide by electron beam generated plasmas produced in methane/argon mixtures[J]. Carbon,2010,48:3382-3390.
    [98]Wei, Z, Wang, D, Kim, S, et al. Nanoscale tunable reduction of graphene oxide for graphene electronics[J]. Science,2010,328:1373-1376.
    [99]Buchsteiner, A, Lerf, A and Pieper, J. Water dynamics in graphite oxide investigated with neutron scattering[J]. The Journal of Physical Chemistry B,2006,110:22328-22338.
    [100]Acik, M, Mattevi, C, Gong, C, et al. The role of intercalated water in multilayered graphene oxide[J]. ACS nano,2010,4:5861-5868.
    [101]Bagri, A, Mattevi, C, Acik, M, et al. Structural evolution during the reduction of chemically derived graphene oxide[J]. Nature chemistry,2010,2:581-587.
    [102]Jelea, A, Marinelli, F, Ferro, Y, et al. Quantum study of hydrogen-oxygen-graphite interactions[J]. Carbon,2004,42:3189-3198.
    [103]Li, X, Wang, H, Robinson, J T, et al. Simultaneous nitrogen doping and reduction of graphene oxide[J]. Journal of the American Chemical Society,2009,131:15939-15944.
    [104]Morozan, A, Jousselme, B and Palacin, S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes[J]. Energy & Environmental Science,2011,4: 1238-1254.
    [105]Titov, A, Zapol, P, Kral, P, et al. Catalytic Fe-x N Sites in Carbon Nanotubes[J]. The Journal of Physical Chemistry C,2009,113:21629-21634.
    [106]Kendig, M and Kinlen, P. Demonstration of Galvanically Stimulated Release of a Corrosion Inhibitor Basis for "Smart" Corrosion Inhibiting Materials[J]. Journal of the Electrochemical Society,2007,154:C195-C201.
    [107]Li, D, Miiller, M B, Gilje, S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology,2008,3:101-105.
    [108]Mao, S, Pu, H and Chen, J. Graphene oxide and its reduction:modeling and experimental progress[J]. RSC Advances,2012,2:2643-2662.
    [109]Kim, K S, Zhao, Y, Jang, H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,2009,457:706-710.
    [110]Bae, S, Kim, H, Lee, Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature nanotechnology,2010,5:574-578.
    [111]王璐.团簇与氧化石墨烯的结构、电子性质和储氢特性[D].[博士学位论文].大连,大连理工大学,2011.
    [112]Chen, W-F, Wu, J-S and Kuo, P-L. Poly (oxyalkylene) diamine-functionalized carbon nanotube/perfluorosulfonated polymer composites:synthesis, water state, and conductivity [J]. Chemistry of Materials,2008,20:5756-5767.
    [113]Lu, C H, Yang, H H, Zhu, C L, et al. A graphene platform for sensing biomolecules[J]. Angewandte Chemie,2009,121:4879-4881.
    [114]Wang, Y, Lu, J, Tang, L, et al. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds[J]. Analytical chemistry,2009,81:9710-9715.
    [115]Dong, H, Gao, W, Yan, F, et al. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules[J]. Analytical chemistry,2010,82:5511-5517.
    [116]Liu, Z, Robinson, J T, Sun, X, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs[J]. Journal of the American Chemical Society,2008,130: 10876-10877.
    [117]Xiang, Q, Yu, J and Jaroniec, M. Graphene-based semiconductor photocatalysts[J]. Chemical Society Reviews,2012,41:782-796.
    [118]Yeh, T F, Syu, J M, Cheng, C, et al. Graphite oxide as a photocatalyst for hydrogen production from water[J]. Advanced Functional Materials,2010,20:2255-2262.
    [119]Liu, S, Tian, J, Wang, L, et al. Microwave-assisted rapid synthesis of Ag nanoparticles/graphene nanosheet composites and their application for hydrogen peroxide detection[J]. Journal of Nanoparticle Research,2011,13:4539-4548.
    [120]Moon, G, Park, Y, Kim, W, et al. Photochemical loading of metal nanoparticles on reduced graphene oxide sheets using phosphotungstate[J]. Carbon,2011,49:3454-3462.
    [121]Zainy, M, Huang, N M, Vijay Kumar, S, et al. Simple and scalable preparation of reduced graphene oxide-silver nanocomposites via rapid thermal treatment[J]. Materials Letters,2012,89: 180-183.
    [122]Taylor, E and Brown, S. The advantages of aminolevulinic acid photodynamic therapy in dermatology[J]. Journal of dermatological treatment,2002,13:s3-sl 1.
    [123]De Rosa, A, Naviglio, D and Di Luccia, A. Advances in Photodynamic Therapy of Cancer[J]. Current Cancer Therapy Reviews,2011,7:234-247.
    [124]Tian, B, Wang, C, Zhang, S, et al. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide[J]. ACS nano,2011,5:7000-7009.
    [125]RAVINDRA, K P. Recent advances in photodynamic therapy[J]. Journal of Porphyrins and Phthalocyanines,2000,4:368-373.
    [126]Korbelik, M, Krosl, G, Krosl, J, et al. The role of host lymphoid populations in the response of mouse EMT6 tumor to photodynamic therapy[J]. Cancer research,1996,56:5647-5652.
    [127]Korbelik, M. Induction of tumor immunity by photodynamic therapy[J]. Journal of clinical laser medicine & surgery,1996,14:329-334.
    [128]Reed, M W, Wieman, T J, Doak, K W, et al. The microvascular effects of photodynamic therapy:evidence for a possible role of cyclooxygenase products[J]. Photochemistry and photobiology,1989,50:419-423.
    [129]Dougherty, T J. Photodynamic therapy[J]. Photochemistry and photobiology,1993,58: 895-900.
    [130]Bonnett, R and Berenbaum, M. Porphyrins as photosensitizers[J]. Photosensitizing compounds:their chemistry, biology and clinical use,1989,40-59.
    [131]Von Tappeiner, H and Jesionek, A. Therapeutische versuche mit fluoreszierenden stoffen[J]. Munch Med Wochenschr,1903,47:2042-2044.
    [132]Raab, O. Uber die wilkung fluoresciender stoffe auf infusorien[J]. Z Biol,1900,39: 190-196.
    [133]Park, H, Yang, J, Lee, J, et al. Multifunctional nanoparticles for combined doxorubicin and photothermal treatments[J]. ACS nano,2009,3:2919-2926.
    [134]Sherlock, S P, Tabakman, S M, Xie, L, et al. Photothermally Enhanced Drug Delivery by Ultra-Small Multifunctional FeCo/Graphitic-Shell Nanocrystals[J]. ACS nano,2011,5:971-976.
    [135]Zhang, W, Guo, Z, Huang, D, et al. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide[J]. Biomaterials,2011,32:8555-8561.
    [136]Dougherty, T J, Henderson, B W, Gomer, C J, et al. Photodynamic therapy[J]. Journal of the National Cancer Institute,1998,90:889-905.
    [137]Jain, P K, Huang, X, El-Sayed, I H, et al. Noble metals on the nanoscale:optical and photothermal properties and some applications in imaging, sensing, biology, and medicine[J]. Accounts of Chemical Research,2008,41:1578-1586.
    [138]El-Sayed, I H, Huang, X and El-Sayed, M A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer[J]. Nano letters,2005,5:829-834.
    [139]Loo, C, Lowery, A, Halas, N, et al. Immunotargeted nanoshells for integrated cancer imaging and therapy[J]. Nano letters,2005,5:709-711.
    [140]El-Sayed, I H, Huang, X and El-Sayed, M A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles[J]. Cancer letters, 2006,239:129-135.
    [141]Huang, X, El-Sayed, I H, Qian, W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. Journal of the American Chemical Society, 2006,128:2115-2120.
    [142]Huang, X, Jain, P K, El-Sayed, I H, et al. Plasmonic photothermal therapy (PPTT) using gold nanoparticles[J]. Lasers in medical science,2008,23:217-228.
    [143]Ke, H, Wang, J, Dai, Z, et al. Gold-Nanoshelled Microcapsules:A Theranostic Agent for Ultrasound Contrast Imaging and Photothermal Therapy[J]. Angewandte Chemie,2011,123: 3073-3077.
    [144]Jang, B, Park, J-Y, Tung, C-H, et al. Gold Nanorod-Photosensitizer Complex for Near-Infrared Fluorescence Imaging and Photodynamic/Photothermal Therapy In Vivo[J]. ACS nano,2011,5:1086-1094.
    [145]Scholz, W and Boehm, H. Untersuchungen am graphitoxid. VI. Betrachtungen zur struktur des graphitoxids[J]. Zeitschrift fur anorganische und allgemeine Chemie,1969,369:327-340.
    [146]黄桥.石墨在氧化还原过程中结构的演变及电学性能研究[D].[硕士学位论文].四川,西南科技大学,2009.
    [147]王莹莹.氧化石墨烯的表面改性及其复合材料的制备[D].[硕士学位论文].长春,吉林大学,2012.
    [148]Jeong, H-K, Lee, Y P, Lahaye, R J, et al. Evidence of graphitic AB stacking order of graphite oxides[J]. Journal of the American Chemical Society,2008,130:1362-1366.
    [149]Li, Z, Zhang, W, Luo, Y, et al. How graphene is cut upon oxidation?[J]. Journal of the American Chemical Society,2009,131:6320-6321.
    [150]Li, J-L, Kudin, K N, McAllister, M J, et al. Oxygen-driven unzipping of graphitic materials[J]. Physical review letters,2006,96:176101.
    [151]Xu, Z P and Braterman, P S. Synthesis, structure and morphology of organic layered double hydroxide (LDH) hybrids:Comparison between aliphatic anions and their oxygenated analogs[J]. Applied Clay Science,2010,48:235-242.
    [152]Su, C-Y, Xu, Y, Zhang, W, et al. Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors[J]. ACS nano,2010,4:5285-5292.
    [153]Li, D, Muller, M B, Gilje, S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nat Nano,2008,3:101-105.
    [154]Nethravathi, C and Rajamathi, M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide[J]. Carbon,2008,46: 1994-1998.
    [155]Shen, J, Shi, M, Li, N, et al. Facile synthesis and application of Ag-chemically converted graphene nanocomposite[J]. Nano Research,2010,3:339-349.
    [156]Subrahmanyam, K, Manna, A K, Pati, S K, et al. A study of graphene decorated with metal nanoparticles[J]. Chemical Physics Letters,2010,497:70-75.
    [157]Dolmans, D E, Fukumura, D and Jain, R K. Photodynamic therapy for cancer[J]. Nature Reviews Cancer,2003,3:380-387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700