用于三硝基甲苯痕量检测的高灵敏纳米光学探针的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生产技术的不断进步,化学爆炸物三硝基甲苯(2,4,6-trinitrotoluenc, TNT)越来越多的应用于矿产开采、军事安全以及国防工业等领域。与此同对,也带来了一些负面影响,即对周围的环境造成了一定程度的污染,对人们的生活也形成了潜在的威胁。近年来,针对高效TNT检测方法的探索已经成为一个研究热点。比色法检测爆炸物TNT以其简单、直观、高选择性的特点进入人们的视野。该方法主要是利用金纳米颗粒构建光学探针,进而产生一个肉眼可见的颜色变化来实现对分析物检测的目的。另外,在基于纳米颗粒比色法的基础上,表面增强拉曼散射(SERS)技术以其高灵敏的指纹图谱分析被人们所特别关注。基于贵金属纳米材料的SERS检测TNT新方法开始出现,并取得了很好的检测效果。通常情况下,研究者们都是通过构建SERS探针传感器或者利用特定的SERS基底来实现对TNT的痕量检测。目前,利用纳米材料传感器检测TNT的发展进度迅速,但是;也存在一些问题:(1)光学探针检测TNT的抗环境干扰能力不高,其检测限有待进一步提高。(2)SERS检测TNT的重复性与稳定性较差,有待提高。(3)增强效果突出的理想SERS基底的制备方法还不够完善,需要继续探索。本论文围绕上述几个问题开展了相关研究,主要的研究内容如下:
     第一,利用乙二胺(EDA)对金纳米颗粒(Au NPs)进行化学修饰,构建用于检测爆炸物TNT的EDA包裹的AuNPs (Au Ps@EDA)光学探针,该光学探针具有简单、稳定、低成本、高灵敏性以及低检测限的特点,能够实现对TNT的痕量检测。其中,Au NPs@EDA超灵敏比色探针在水溶液中可以检测到400pM水平的TNT。另外,利用紫外-可见(UV-vis)吸收光谱仪以及动态光散射(DLS)仪,可以分别实现40pM和0.4pM水平的TNT超灵敏检测。
     第二,通过表面增强共振拉曼散射(SERRS)的方法对TNT进行了快速、灵敏的检测。利用亚硫酸钠(Na2SO3)对TNT分子进行磺化,增加其亲水性,使其能够与氯代十六烷基吡啶包裹的银纳米颗粒(AgNPs@CPC)基底牢固的结合。使用表面活性剂CPC对TNT分子进行增敏,提高其SERS散射截面面积。通过形成的TNT-SO3-CPC复合物,对TNT的检测限能达到5×10-11M,并且该SERRS检测过程可以在5min内完成。同时,还考察了该方法对TNT检测的重复性及稳定性,扩展了SERRS或SERS快速检测TNT的应用前景。
     第三,针对SERS检测TNT的新型基底的制备,我们采用一步法首次制备了新型DNA-Au复合SERS基底。通过原位光还原方法在DNA的骨架结构上形成了Au NPs。该新型的纳米复合结构活性基底表现出了很好的SERS信号增强效果,并且能够实现对纳米结构间隙的有效调控。此外,该复合基底合成过程简单、快速,只需约15min。该DNA-Au复合结构作为SERS基底在TNT的检测领域具有潜在的应用价值。’
     通过上述研究,利用合适的贵金属基底,通过SERS或SERRS方法可以实现对爆炸物TNT及有机污染物的痕量检测。推动了SERS方法在分析化学、环境检测领域的深入应用,并扩展了SERS研究用于现场检测的可行性。
With the development in both production and social life activities, the chemical explosive2,4,6-trinitrotoluene (TNT) was more and more used in the fields of mining, military security, and national defense industry, etc. However, many negative effects were caused with regard to the pollution of environment or the potential threat to human health. In recent years, the rapid and sensitive detection of TNT has become a hot topic and attracted more and more attentions in the research field. With the merits of simpleness, intuition, high selectivity of detecting the TNT explosive, the colorimetry has come into the researchers' vision. This method is mainly based on the ligand-capped nanoparticles optical probe, which produces a visible color change to achieve the sensing of target analytes. In addition, on the basis of colorimetric method, surface enhanced Raman scattering (SERS) is the widely used technique because of its high sensitivity and the fingerprint analysis. Currently, the development of novel nano-materials sensor for TNT detection progressed fast, nevertheless there are still some bottlenecks with regard to (1) Environmental interference resistance ability of the optical probe detection of TNT is not high; its detection limit needs to be further improved.(2) The repeatability and stability of SERS measurements is very poor and remains to be further improved.(3) Enhancement effect of SERS substrate is not perfect and needs to continue to explore. This paper focused on these several problems and the main research contents are as follows:
     1) The use of ethylenediamine (EDA) for chemical modification of gold nanoparticles (Au NPs) constructed a novel optical probe for detecting the TNT explosive. This Au NPs@EDA optical probe has several advantages with regards to simplicity, stability, low cost, high sensitivity, and the low detection limit, which can realize the trace detection of TNT. Among them, the Au NPs@EDA ultrasensitive colorimetric probe in aqueous solution can be detected in the400pM levels of TNT. In addition, the use of ultraviolet-visible absorption spectrometer and dynamic light scattering (DLS) instrument can implement40pM and0.4pM levels of TNT ultrasensitive detection.
     2) A novel SERRS platform for fast and sensitive detection of TNT was developed. A cationic surfactant, cetylpyridinium chloride (CPC) was modified on the surface of silver sols (CPC-capped Ag). CPC not only can act as the surface seeking species to trap sulfite-sulfonated TNT, but also undergoes complexation with it, causing the arising of two charge-transfer bands at467and530nm, respectively. This chromophore absorbs the visible light that matches with the incident laser and plasmon resonance of Ag sols by the use of a532.06nm laser, and offered a highly resonance Raman enhancement. This SERRS platform evidenced a fast and accurate detection of TNT with a detection limit of5×10-11M under a low laser power (200μW) and a short integration time (3s). The CPC-capped Ag also provides remarkable sensitivity and reliable repeatability.
     3) A one-step synthesis and controlled assembly of Au nanoparticles (NPs) on X.-DNA scaffolds by an in-situ photoreduction method was developed aimed at the TNT sensing. The interpaticle gaps of the Au NPs attached on DNA can be fine regulated by controlling the R values (denoted as the ratio of Au (Δ) ions added per DNA base pairs). Empirical enhancement factor above1×109is observed when the R value is in a fairly broad range of10-60under785nm excitation. Moreover, this substrates have a good reproducibility at different sites on a substrate, with a standard deviation of<15%. These results indicate that the photoreduced Au NPs on DNA scaffolds can be used as SERS-active substrates which exhibit high and reproducible SERS activity. This DNA-Au hybrid has potential applications in chemical and biological SERS analysis.
     Through the above researches, several optical nanoprobes were developed and realized the trace detection of TNT, and these probes have a great application prospect in the field of analytical chemistry, environmental analysis.
引文
1. Dasary, S.S.R., et al. Gold Nanoparticle Based Label-Free SERS Probe for Ultrasensitive and Selective Detection of Trinitrotoluene [J]. Journal of the American Chemical Society, 2009,131(38):13806-13812.
    2. Riskin, M., et al. Ultrasensitive Surface Plasmon Resonance Detection of Trinitrotoluene by a Bis-aniline-Cross-Linked Au Nanoparticles Composite [J]. Journal of the American Chemical Society,2009,131(21):7368-7378.
    3. Zhou, H.B., et al. Trinitrotoluene Explosive Lights up Ultrahigh Raman Scattering of Nonresonant Molecule on a Top-Closed Silver Nanotube Array [J]. Analytical Chemistry, 2011,83(18):6913-6917.
    4. Jiang, Y., et al. A Simple Assay for Direct Colorimetric Visualization of Trinitrotoluene at Picomolar Levels Using Gold Nanoparticles [J]. Angewandte Chemie-International Edition,2008,47(45):8601-8604.
    5. Tripathy, S.K., J.Y. Woo, and C.-S. Han. Highly Selective Colorimetric Detection of Hydrochloric Acid Using Unlabeled Gold Nanoparticles and an Oxidizing Agent [J]. Analytical Chemistry,2011.
    6. Germain, M.E. and M.J. Knapp. Optical explosives detection:from color changes to fluorescence turn-on [J]. Chemical Society Reviews,2009,38(9):2543-2555.
    7. Sun, Y.H., et al. Highly Sensitive Surface-Enhanced Raman Scattering Substrate Made from Superaligned Carbon Nanotubes [J]. Nano Lett.,2010,10(5):1747-1753.
    8. Kang, T., et al. Au Nanowire-on-Film SERRS Sensor for Ultrasensitive Hg2+Detection [J]. Chemistry-a European Journal,2011,17(7):2211-2214.
    9. Kayat, M. and M. Volkan. New Approach for the Surface Enhanced Resonance Raman Scattering (SERRS) Detection of Dopamine at Picomolar (pM) Levels in the Presence of Ascorbic Acid [J]. Analytical Chemistry,2012,84(18):7729-7735.
    10. Graham, D. and K. Faulds. Quantitative SERRS for DNA sequence analysis [J]. Chemical Society Reviews,2008,37(5):1042-1051.
    11. Qu, W.G., et al. A silver nanoparticle based surface enhanced resonance Raman scattering (SERRS) probe for the ultrasensitive and selective detection of formaldehyde [J]. Nanoscale,2012,4(23):7358-7361.
    12. Sau, T.K. and C.J. Murphy. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution [J]. Journal of the American Chemical Society, 2004,126(28):8648-8649.
    13. Personick, M.L., et al. Shape Control of Gold Nanoparticles by Silver Underpotential Deposition [J]. Nano Letters,2011,11(8):3394-3398.
    14. Fleischm.M, P.J. Hendra, and Mcquilla.Aj. Raman-Spectra of Pyridine Adsorbed at a Silver Electrode [J]. Chemical Physics Letters,1974,26(2):163-166.
    15. Jeanmaire, D.L. and R.P. Vanduyne. Surface Raman Spectroelectrochemistry.1. Heterocyclic, Aromatic, and Aliphatic-Amines Adsorbed on Anodized Silver Electrode [J]. Journal of Electroanalytical Chemistry,1977,84(1):1-20.
    16. Albrecht, M.G. and J.A. Creighton. Anomalously Intense Raman-Spectra of Pyridine at a Silver Electrode [J]. Journal of the American Chemical Society,1977,99(15):5215-5217.
    17. Moskovits, M. Surface-Roughness and Enhanced Intensity of Raman-Scattering by Molecules Adsorbed on Metals [J]. Journal of Chemical Physics,1978,69(9):4159-4161.
    18. Creighton, J.A., C.G. Blatchford, and M.G. Albrecht. Plasma Resonance Enhancement of Raman-Scattering by Pyridine Adsorbed on Silver or Gold Sol Particles of Size Comparable to the Excitation Wavelength [J]. Journal of the Chemical Society-Faraday Transactions Ii,1979,75:790-798.
    19. Kneipp, K., et al. Surface-enhanced non-linear Raman scattering at the single-molecule level [J]. Chemical Physics,1999,247(1):155-162.
    20. Sr, E., W.E. Haskins, and S.M. Nie. Direct observation of size-dependent optical enhancement in single metal nanoparticles [J]. Journal of the American Chemical Society, 1998,120(31):8009-8010.
    21. Li, J., et al. Highly Sensitive SERS Detection of As3+ Ions in Aqueous Media using Glutathione Functionalized Silver Nanoparticles [J]. Acs Applied Materials & Interfaces, 2011,3(10):3936-3941.
    22. Ray, P.C., et al. Gold Nanoparticle Based Label-Free SERS Probe for Ultrasensitive and Selective Detection of Trinitrotoluene [J]. Journal of the American Chemical Society, 2009,131(38):13806-13812.
    23. Haynes, C.L., A.D. McFarland, and R.P. Van Duyne. Surface-enhanced Raman spectroscopy [J]. Analytical Chemistry,2005,77(17):338a-346a.
    24. Campion, A. and P. Kambhampati. Surface-enhanced Raman scattering [J]. Chemical Society Reviews,1998,27(4):241-250.
    25. King, F.W., R.P. Vanduyne, and G.C. Schatz. Theory of Raman-Scattering by Molecules Adsorbed on Electrode Surfaces [J]. Journal of Chemical Physics,1978,69(10): 4472-4481.
    26. Sibbald, M.S., G. Chumanov, and T.M. Cotton. Reduction of cytochrome c by halide-modified, laser-ablated silver colloids [J]. Journal of Physical Chemistry,1996, 100(11):4672-4678.
    27. Centeno, S.P., et al. Selection rules of the charge transfer mechanism of surface-enhanced Raman scattering:The effect of the adsorption on the relative intensities of pyrimidine bonded to silver nanoclusters [J]. Journal of Physical Chemistry B,2006,110(30): 14916-14922.
    28. Zhou, Q., et al. Contribution of charge-transfer mechanisms to surface-enhanced Raman scattering with near-IR excitation [J]. Chemphyschem,2007,8(6):921-925.
    29. Lombardi, J.R., et al. Charge-Transfer Theory of Surface Enhanced Raman-Spectroscopy-Herzberg-Teller Contributions [J]. Journal of Chemical Physics,1986,84(8):4174-4180.
    30. Ken-ichi Yoshida, T.I., Vasudevanpillai Biju,Mitsuru Ishikawa,and Yukihiro Ozaki. Experimental evaluation of the twofold electromagnetic enhancement theory of surface-enhanced resonance Raman scattering [J]. Physical Reviews B,2009.
    31. Kaya, M. and M. Volkan. New Approach for the Surface Enhanced Resonance Raman Scattering (SERRS) Detection of Dopamine at Picomolar (pM) Levels in the Presence of Ascorbic Acid [J]. Analytical Chemistry,2012,84(18):7729-35.
    32. Kristy S. McKeating, J.A.D.a.K.F. Nanoparticle assembly for sensitive DNA detection using SERRS [J]. Biochem. Soc. Trans.,2012, (40):597-602.
    33. Pettinger, B., et al. Direct monitoring of plasmon resonances in a tip-surface gap of varying width [J]. Physical Review B,2007,76(11).
    34. Xu, H.X., et al. Unified treatment of fluorescence and Raman scattering processes near metal surfaces [J]. Physical Review Letters,2004,93(24).
    35. Niu, W.X., et al. Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals [J]. Journal of the American Chemical Society, 2009,131(2):697-703.
    36. Lin, X.M., et al. Surface-enhanced Raman spectroscopy:substrate-related issues [J]. Analytical and Bioanalytical Chemistry,2009,394(7):1729-1745.
    37. Sun, L.L., et al. DNA-based fabrication of density-controlled vertically aligned ZnO nanorod arrays and their SERS applications [J]. Journal of Materials Chemistry,2011, 21(26):9674-9681.
    38. Dong, L.Q., et al. SERS studies of self-assembled DNA monolayer-characterization of adsorption orientation of oligonucleotide probes and their hybridized helices on gold substrate [J]. Chemical Physics Letters,2002,354(5-6):458-465.
    39. Moore, D.S. Instrumentation for trace detection of high explosives [J]. Review of Scientific Instruments,2004,75(8):2499-2512.
    40. Yinon, J. Detection of explosives by electronic noses [J]. Analytical Chemistry,2003, 75(5):99a-105a.
    41. Toal, S.J. and W.C. Trogler. Polymer sensors for nitroaromatic explosives detection [J]. Journal of Materials Chemistry,2006,16(28):2871-2883.
    42. Thomas, S.W., G.D. Joly, and T.M. Swager. Chemical sensors based on amplifying fluorescent conjugated polymers [J]. Chemical Reviews,2007,107(4):1339-1386.
    43. Moore, D.S. and RJ. Scharff. Portable Raman explosives detection [J]. Analytical and Bioanalytical Chemistry,2009,393(6-7):1571-1578.
    44. McHugh, C.J., et al. Selective functionalisation of TNT for sensitive detection by SERRS [J]. Chemical Communications,2002, (6):580-581.
    1. Riskin, M., et al. Imprinting of molecular recognition sites through electropolymerization of functionalized au nanoparticles:Development of an electrochemical TNT sensor based on pi-donor-acceptor interactions [J]. Journal of the American Chemical Society,2008, 130(30):9726-9733.
    2. Dasary, S.S.R., et al. Gold Nanoparticle Based Label-Free SERS Probe for Ultrasensitive and Selective Detection of Trinitrotoluene [J]. Journal of the American Chemical Society, 2009,131(38):13806-13812.
    3. Aguilar, A.D., et al. A Hybrid Nanosensor for TNT Vapor Detection [J]. Nano Letters, 2010,10(2):380-384.
    4. Senesac, L. and T.G. Thundat. Nanosensors for trace explosive detection [J]. Materials Today,2008,11(3):28-36.
    5. Yang, L.B., et al. Sunlight-induced formation of silver-gold bimetallic nanostructures on DNA template for highly active surface enhanced Raman scattering substrates and application in TNT/tumor marker detection [J]. J. Mater. Chem.,2009,19(37): 6849-6856.
    6. Singh, A.K., et al. Gold Nanorod Based Selective Identification of Escherichia coli Bacteria Using Two-Photon Rayleigh Scattering Spectroscopy [J]. Acs Nano,2009,3(7): 1906-1912.
    7. Kawaguchi, T., et al. Surface plasmon resonance immunosensor using Au nanoparticle for detection of TNT [J]. Sensors and Actuators B-Chemical,2008,133(2):467-472.
    8. Riskin, M., et al. Ultrasensitive Surface Plasmon Resonance Detection of Trinitrotoluene by a Bis-aniline-Cross-Linked Au Nanoparticles Composite [J]. Journal of the American Chemical Society,2009,131(21):7368-7378.
    9. Germain, M.E. and M.J. Knapp. Optical explosives detection:from color changes to fluorescence turn-on [J]. Chemical Society Reviews,2009,38(9):2543-2555.
    10. Alizadeh, T., et al. A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples [J]. Biosensors & Bioelectronics,2010,25(5):1166-1172.
    11. Saravanan, N.P., et al. Voltammetric determination of nitroaromatic and nitramine explosives contamination in soil [J]. Talanta,2006,69(3):656-662.
    12. Gao, D.M., et al. A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles [J]. Journal of the American Chemical Society,2007,129(25):7859-7866.
    13. Salinas, Y., et al. Optical chemosensors and reagents to detect explosives [J]. Chemical Society Reviews,2012,41(3):1261-1296.
    14. Shanna, S.P. and S.C. Lahiri. Absorption spectroscopic and FTIR studies on EDA complexes between TNT (2,4,6-trinitrotoluene) with amines in DMSO and determination of the vertical electron affinity of TNT [J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2008,70(1):144-153.
    15. Jiang, Y., et al. A Simple Assay for Direct Colorimetric Visualization of Trinitrotoluene at Picomolar Levels Using Gold Nanoparticles [J]. Angewandte Chemie-Intemational Edition,2008,47(45):8601-8604.
    16. Yang, L.B., et al. Ultrasensitive SERS Detection of TNT by Imprinting Molecular Recognition Using a New Type of Stable Substrate [J]. Chemistry-a European Journal, 2010,16(42):12683-12693.
    17. Zhou, H.B., et al. Trinitrotoluene Explosive Lights up Ultrahigh Raman Scattering of Nonresonant Molecule on a Top-Closed Silver Nanotube Array [J]. Analytical Chemistry, 2011,83(18):6913-6917.
    18. Dasary, S.S.R.,et al. Highly Sensitive and Selective Dynamic Light-Scattering Assay for TNT Detection Using p-ATP Attached Gold Nanoparticle [J]. Acs Applied Materials & Interfaces,2010,2(12):3455-3460.
    19. Ercag, E., A. Uzer, and R. Apak. Selective spectro photometric determination of TNT using a dicyclohexylamine-based colorimetric sensor [J]. Talanta,2009,78(3):772-780.
    20. Jaworski, J., et al. Polydiacetylene Incorporated with Peptide Receptors for the Detection of Trinitrotoluene Explosives [J]. Langmuir,2011,27(6):3180-3187.
    21. Park, J.S., et al. Positive Homotropic Allosteric Receptors for Neutral Guests:Annulated Tetrathiafulvalene-Calix 4 pyrroles as Colorimetric Chemosensors for Nitroaromatic Explosives [J]. Chemistry-a European Journal,2010,16(3):848-854.
    22. K.W. Plaxco, A.A.L. Folding-Based Electrochemical Biosensors:The Case for Responsive Nucleic Acid Architectures [J]. Accounts Chem. Res.,2010,43:496-505.
    23. J.L.Couselo, P.v.D., E.Corredoira, A.Delgado, R.M. Wittich, A. Ballestcr, J.L.Ramos.Bioremediation of 2,4,6-Trinitrotoluene by Bacterial Nitroreductase Expressing Transgenic Aspen [J]. Environ. Sci.Technol,2008,42:7405-7410.
    24. Freeman, R. and I. Willner. NAD(+)/NADH-Sensitive Quantum Dots:Applications To Probe NAD(+)-Dependent Enzymes and To Sense the RDX Explosive [J]. Nano Letters, 2009,9(1):322-326.
    25. Ray, P.C. Size and Shape Dependent Second Order Nonlinear Optical Properties of Nanomaterials and Their Application in Biological and Chemical Sensing [J]. Chemical Reviews,2010,110(9):5332-5365.
    26. Jain, P.K., et al. Noble Metals on the Nanoscale:Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine [J]. Accounts of Chemical Research,2008,41(12):1578-1586.
    27. Jans, H., et al. Dynamic Light Scattering as a Powerful Tool for Gold Nanoparticle Bioconjugation and Biomolecular Binding Studies [J]. Analytical Chemistry,2009, 81(22):9425-9432.
    28. McHugh, C.J., et al. Selective functionalisation of TNT for sensitive detection by SERRS [J]. Chemical Communications,2002, (6):580-581.
    29. Atkins, R.L. and W.S. Wilson. Synthesis of Polynitrodiazophenols [J]. Journal of Organic Chemistry,1986,51(13):2572-2578.
    30. Darbha, G.K., et al. Selective detection of mercury (Ⅱ) ion using nonlinear optical properties of gold nanoparticles [J]. Journal of the American Chemical Society,2008, 130(25):8038-8043.
    31. Glover, D.J. and E.G. Kayser. Quantitative spectrophotometric analysis of polynitroaromatic compounds by reaction with ethylenediamine [J]. Analytical Chemistry, 1968,40(13):2055-2058.
    32. Fant, F., et al. The use of amino compounds for binding 2,4,6-trinitrotoluene in water [J]. Environmental Pollution,2001,111(3):503-507.
    33. Shi, X.Y., I. Lee, and J.R. Baker. Acetylation of dendrimer-entrapped gold and silver nanoparticles [J]. Journal of Materials Chemistry,2008,18(5):586-593.
    34. Du, X. and J.H. He. Amino-functionalized silica nanoparticles with center-radially hierarchical mesopores as ideal catalyst carriers [J]. Nanoscale,2012,4(3):852-859.
    35. Zhu, T., et al. pH-dependent adsorption of gold nanoparticles on p-aminothiophenol-modified gold substrates [J]. Langmuir,1999,15(16):5197-5199.
    36. Qian, X.M., X. Zhou, and S.M. Nie. Surface-Enhanced Raman Nanoparticle Beacons Based on Bioconjugated Gold Nanocrystals and Long Range Plasmonic Coupling [J]. Journal of the American Chemical Society,2008,130(45):14934-14935.
    37. Wang, Y., et al. Silicon nanotips formed by self-assembled Au nanoparticle mask [J]. Journal of Nanoparticle Research,2010,12(5):1821-1828.
    38. Ballarin, B., et al. Self-assembled gold nanoparticles modified ITO electrodes:The monolayer binder molecule effect [J]. Electrochimica Acta,2008,53(27):8034-8044.
    39. Mallouk, T.E. and P.D. Yang. Chemistry at the Nano-Bio Interface [J]. Journal of the American Chemical Society,2009,131(23):7937-7939.
    40. Yang, L.B., et al. Metastable state nanoparticle-enhanced Raman spectroscopy for highly sensitive detection [J]. Chemical Communications,2011,47(12):3583-3585.
    41. Lotufo, G.R. and J.D. Farrar. Comparative and mixture sediment toxicity of trinitrotoluene and its major transformation products to a freshwater midge [J]. Archives of Environmental Contamination and Toxicology,2005,49(3):333-342.
    1. Qian, X.M. and S.M. Nie. Single-molecule and single-nanoparticle SERS:from fundamental mechanisms to biomedical applications [J]. Chemical Society Reviews,2008, 37(5):912-920.
    2. Nie, S.M. and S.R. Emery. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J]. Science,1997,275(5303):1102-1106.
    3. Michaels, A.M., M. Nirmal, and L.E. Brus. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals [J]. Journal of the American Chemical Society,1999,121(43):9932-9939.
    4. Pieczonka, N.P.W. and R.F. Aroca. Single molecule analysis by surfaced-enhanced Raman scattering [J]. Chemical Society Reviews,2008,37(5):946-954.
    5. Smith, W.E. Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis [J]. Chemical Society Reviews,2008,37(5):955-964.
    6. Dos Santos, D.P., M.L.A. Temperini, and A.G. Brolo. Mapping the Energy Distribution of SERRS Hot Spots from Anti-Stokes to Stokes Intensity Ratios [J]. Journal of the American Chemical Society,2012,134(32):13492-13500.
    7. Pettinger, B., et al. Direct monitoring of plasmon resonances in a tip-surface gap of varying width [J]. Physical Review B,2007,76(11).
    8. Xu, H.X., et al. Unified treatment of fluorescence and Raman scattering processes near metal surfaces [J]. Physical Review letters,2004,93(24).
    9. Faulds, K_, et al. Quantitative simultaneous multianalyte detection of DNA by dual-wavelength surface-enhanced resonance Raman scattering [J]. Angewandte Chemie-International Edition,2007,46(11):1829-1831.
    10. Zhou, H.B., et al. Trinitrotoluene Explosive Lights up Ultrahigh Raman Scattering of Nonresonant Molecule on a Top-Closed Silver Nanotube Array [J]. Analytical Chemistry, 2011,83(18):6913-6917.
    11. Kneipp, K., et al. Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver [J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,1995,51(12):2171-2175.
    12. Lin, D.Y., et al. Ultrasensitive optical detection of trinitrotoluene by ethylenediamine-capped gold nanoparticles [J]. Analytica Chimica Acta,2012,744: 92-98.
    13. McHugh, C.J., et al. Selective functionalisation of TNT for sensitive detection by SERRS [J]. Chemical Communications,2002, (6):580-581.
    14. Jenkins, T.F. and M.E. Walsh. Development of Field Screening Methods for Tnt,2,4-Dnt and Rdx in Soil [J]. Talanta,1992,39(4):419-428.
    15. Echols, R.T., et al. Selective determination of TNT in soil extracts by sequential injection spectrophotometry [J]. Analytical Chemistry,1999,71(14):2739-2744.
    16. Nagli, L., et al. Absolute Raman cross-sections of some explosives:Trend to UV [J]. Optical Materials,2008,30(11):1747-1754.
    17. Chen, G., et al. Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers [J]. Journal of the American Chemical Society,2010,132(11):3644-3645.
    18. Kim, A., et al. Study of Molecular Trapping Inside Gold Nanofinger Arrays on Surface-Enhanced Raman Substrates [J]. Journal of the American Chemical Society,2011, 133(21):8234-8239.
    19. Naito, T., et al. Molecular Photoconductor with Simultaneously Photocontrollable Localized Spins [J]. Journal of the American Chemical Society,2012,134(45): 18656-18666.
    20. Tan, S., et al. Substrates with discretely immobilized silver nanoparticles for ultrasensitive detection of anions in water using surface-enhanced Raman scattering [J]. Langmuir, 2008,24(9):4765-4771.
    21. Alvarez-Puebla, R.A. and R.F. Aroca. Synthesis of Silver Nanoparticles with Controllable Surface Charge and Their Application to Surface-Enhanced Raman Scattering [J]. Analytical Chemistry,2009,81(6):2280-2285.
    22. Yang, L.B., et al. Ultrasensitive SERS Detection of TNT by Imprinting Molecular Recognition Using a New Type of Stable Substrate [J]. Chemistry-a European Journal, 2010,16(42):12683-12693.
    23. Qian, K., et al. Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene [J]. Analyst,2012,137(20):4644-4646.
    24. Aldeanueva-Potel, P., et al. Recyclable Molecular Trapping and SERS Detection in Silver-Loaded Agarose Gels with Dynamic Hot Spots [J]. Analytical Chemistry,2009, 81(22):9233-9238.
    25. Abalde-Cela, S., et al. Loading of Exponentially Grown LBL Films with Silver Nanoparticles and Their Application to Generalized SERS Detection [J]. Angewandte Chemie-International Edition,2009,48(29):5326-5329.
    26. Liu, H.L., et al. Molecular sensitivity of DNA-Ag-PATP hybrid on optical activity for ultratrace mercury analysis [J]. Chemical Communications,2011,47(33):9360-9362.
    27. Zhao, X.L., et al. Cetyltrimethylammonium bromide-coated magnetic nanoparticles for the preconcentration of phenolic compounds from environmental water samples [J]. Environmental Science & Technology,2008,42(4):1201-1206.
    28. Pinkhasova, P., et al. Differential SERS Activity of Gold and Silver Nanostructures Enabled by Adsorbed Poly(vinylpyrrolidone) [J]. Langmuir,2012,28(5):2529-2535.
    29. Wang, H., C.S. Levin, and N.J. Halas. Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates [J]. Journal of the American Chemical Society,2005,127(43):14992-14993.
    30. Lee, P.C. and D. Meisel. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols [J]. Journal of Physical Chemistry,1982,86(17):3391-3395.
    31. Keuchel, C, L. Weil, and R. Niessner. Enzyme-Linked-Immunosorbent-Assay for the Determination of 2,4,6-Trinitrotoluene and Related Nitroaromatic Compounds [J]. Analytical Sciences,1992,8(1):9-12.
    32. Zhang, Z., et al.Wavelength-interrogated surface plasmon resonance sensor with mesoporous-silica-film-enhanced sensitivity to small molecules [J]. Analyst,2012, 137(20):4822-4828.
    33. Dasary, S.S.R., et al. Gold Nanoparticle Based Label-Free SERS Probe for Ultrasensitive and Selective Detection of Trinitrotoluene [J]. Journal of the American Chemical Society, 2009,131(38):13806-13812.
    34. Yang, L.B., et al. Sunlight-induced formation of silver-gold bimetallic nanostructures on DNA template for highly active surface enhanced Raman scattering substrates and application in TNT/tumor marker detection [J]. Journal of Materials Chemistry,2009, 19(37):6849-6856.
    35. Demeritte, T., et al. Highly efficient SERS substrate for direct detection of explosive TNT using popcorn-shaped gold nanoparticle-functionalized SWCNT hybrid [J]. Analyst,2012, 137(21):5041-5045.
    36. Risberg, E.D., et al. Sulfur x-ray absorption and vibrational spectroscopic study of sulfur dioxide, sulfite, and sulfonate solutions and of the substituted sulfonate ions X3CSO3- (X =H, Cl, F) [J]. Inorganic Chemistry,2007,46(20):8332-8348.
    37. Littlejohn, D. and S.G. Chang. Reaction of Ferrous Chelate Nitrosyl Complexes with Sulfite and Bisulfite Ions [J]. Industrial & Engineering Chemistry Research,1990,29(1): 10-14.
    38. Suga, K., M. Bradley, and J.F. Rusling. Probing the Interface of Cast Surfactant Films and an Underlying Metal by Surface-Enhanced Raman-Scattering Spectroscopy [J]. Langmuir, 1993,9(11):3063-3066.
    39. Sun, S.C., R.L. Birke, and J.R. Lombardi. Surface-Enhanced Raman-Spectroscopy of Surfactants on Silver Electrodes [J]. Journal of Physical Chemistry,1990,94(5): 2005-2010.
    40. Eustis, S. and M.A. E1-Sayed. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes [J]. Chemical Society Reviews, 2006,35(3):209-217.
    1. Camden, J.P., et al. Controlled Plasmonic Nanostructures for Surface-Enhanced Spectroscopy and Sensing [J]. Accounts of Chemical Research,2008,41(12):1653-1661.
    2. Kneipp, K., H. Kneipp, and J. Kneipp. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregatess-From single-molecule Raman spectroscopy to ultrasensitive probing in live cells [J]. Accounts of Chemical Research, 2006,39(7):443-450.
    3. Fang, Y., N.H. Seong, and D.D. Dlott. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering [J]. Science,2008,321(5887): 388-392.
    4. Hu, X.G., et al. Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence:Off-surface plasmon resonance condition [J]. Journal of Physical Chemistry C,2007,111(19): 6962-6969.
    5. Wang, H., C.S. Levin, and N.J. Halas. Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates [J]. Journal of the American Chemical Society,2005,127(43):14992-14993.
    6. Kim, N.H., S.J. Lee, and M. Moskovits. Reversible Tuning of SERS Hot Spots with Aptamers [J]. Advanced Materials,2011,23(36):4152-4153.
    7. Sardar, R., T.B. Heap, and J.S. Shumaker-Parry. Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionalization approach [J]. Journal of the American Chemical Society,2007,129(17):5356-5357.
    8. Ji, N., et al. A potential commercial surface-enhanced Raman scattering-active substrate: stability and usability [J]. Journal of Raman Spectroscopy,2013,44(1):1-5.
    9. Que, R.H., et al. Highly Reproducible Surface-Enhanced Raman Scattering on a Capillarity-Assisted Gold Nanoparticle Assembly [J]. Advanced Functional Materials, 2011,21(17):3337-3343.
    10. Bunte, G., et al. Gas phase detection of explosives such as 2,4,6-trinitrotoluene by molecularly imprinted polymers [J]. Analytica Chimica Acta,2007,591(1):49-56.
    11. Brousseau, L.C., et al. Assembly of phenylacetylene-bridged gold nanocluster dimers and trimers [J]. Advanced Materials,1999,11(6):447-448.
    12. Liu, H.L., et al. Molecular sensitivity of DNA-Ag-PATP hybrid on optical activity for ultratrace mercury analysis [J]. Chemical Communications,2011,47(33):9360-9362.
    13. Yang, L.B., et al. Sunlight-induced formation of silver-gold bimetallic nanostructures on DNA template for highly active surface enhanced Raman scattering substrates and application in TNT/tumor marker detection [J]. Journal of Materials Chemistry,2009, 19(37):6849-6856.
    14. Sung, K.M., et al. Synthesis of monofunctionalized gold nanoparticles by Fmoc solid-phase reactions [J]. Journal of the American Chemical Society,2004,126(16): 5064-5065.
    15. Aldaye, F.A., A.L. Palmer, and H.F. Sleiman. Assembling materials with DNA as the guide [J]. Science,2008,321(5897):1795-1799.
    16. Aldaye, F.A. and H.F. Sleiman. Dynamic DNA templates for discrete gold nanoparticle assemblies:Control of geometry, modularity, write/wrase and structural switching [J]. Journal of the American Chemical Society,2007,129(14):4130-4131.
    17. Arakawa, H., J.F. Neault, and H.A. Tajmir-Riahi. Silver(Ⅰ) complexes with DNA and RNA studied by Fourier transform infrared spectroscopy and capillary electrophoresis [J]. Biophysical Journal,2001,81(3):1580-1587.
    18. Berti, L., A. Alessandrini, and P. Facci. DNA-templated photoinduced silver deposition [J]. Journal of the American Chemical Society,2005,127(32):11216-11217.
    19. Petty, J.T., et al. DNA-templated Ag nanocluster formation [J]. Journal of the American Chemical Society,2004,126(16):5207-5212.
    20. Braun, E., et al. DNA-templated assembly and electrode attachment of a conducting silver wire [J]. Nature,1998,391(6669):775-778.
    21. Kundu, S., V. Maheshwari, and R.F. Saraf. Photolytic metallization of an nanoclusters and electrically conducting micrometer long nanostructures on a DNA scaffold [J]. Langmuir, 2008,24(2):551-555.
    22. Seidel, R., et al. Synthesis of platinum cluster chains on DNA templates:Conditions for a template-controlled cluster growth [J]. Journal of Physical Chemistry B,2004,108(30): 10801-10811.
    23. Richter, J., et al. Nanoscale palladium metallization of DNA [J]. Advanced Materials, 2000,12(7):507-508.
    24. Monson, C.F. and A.T. Woolley. DNA-templated construction of copper nanowires [J]. Nano Letters,2003,3(3):359-363.
    25. Wu, A.G., et al. Construction and control of plasmid DNA network [J]. Analyst,2002, 127(5):585-587.
    26. Wei, G., et al. DNA-network-templated self-assembly of silver nanoparticles and their application in surface-enhanced Raman scattering [J]. Journal of Physical Chemistry B, 2005,109(50):23941-23947.
    27. Qi, Z.M., et al. Prism-coupled multimode waveguide refractometer [J]. Optics Letters, 2002,27(9):689-691.
    28. Qi, Z.M., et al. Optical waveguide spectrometer based on thin-film glass plates [J]. Optics Letters,2002,27(22):2001-2003.
    29. Wilkins, R.J. Photosensitization of DNA by Gold [J]. Nucleic Acids Research,1978, 5(10):3731-3742.
    30. Mohri, N., et al. Desorption of 4-aminobenzenethiol bound to a gold surface [J]. Langmuir,1998,14(9):2343-2347.
    31. Barhoumi, A., et al. Surface-enhanced Raman spectroscopy of DNA [J]. Journal of the American Chemical Society,2008,130(16):5523-5529.
    32. Pignataro, B., et al. The role of micro- and nanomorphology of rough silver surfaces of different nature in surface enhanced Raman scattering effect:A combined study of scanning force microscopy and low-frequency Raman modes [J]. Journal of Chemical Physics,2000,113(14):5947-5953.
    33. Galopin, E., et al. Silicon Nanowires Coated with Silver Nanostructures as Ultrasensitive Interfaces for Surface-Enhanced Raman Spectroscopy [J]. Acs Applied Materials & Interfaces,2009,1(7):1396-1403.
    34. Liu, R.Y., et al. Multilayered shell SERS nanotags with a highly uniform single-particle Raman readout for ultrasensitive immunoassays [J]. Chemical Communications,2012, 48(75):9421-9423.
    35. Kim, K. and J.K. Yoon. Raman scattering of 4-aminobenzenethiol sandwiched between Ag/Au nanoparticle and macroscopically smooth Au substrate [J]. Journal of Physical Chemistry B,2005,109(44):20731-20736.
    36. Wang, Y.L., et al. Facile fabrication of large area of aggregated gold nanorods film for efficient surface-enhanced Raman scattering [J]. Journal of Colloid and Interface Science, 2008,318(1):82-87.
    37. Smitha, S.L., et al. Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates [J]. Nanotechnology,2011,22(26).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700