复杂对指与功能性电刺激下正常与受损脊髓的功能核磁共振研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:功能核磁共振成像能显示人体的生理及病理过程,提供动态和功能方面的信息。脊髓功能核磁共振(Spinal fMRI)能无创伤性地对脊髓神经元活动进行较准确的定位和分析,近几年来已经成为国内外神经科学研究者在脊髓生理和病理研究领域的一种全新研究手段。用功能性核磁共振探讨脊髓病理生理是一个新兴的研究领域,目前国际上的相关研究甚少,利用fMRI研究脊髓损伤尚处于起步阶段,探讨功能核磁共振技术在脊髓损伤方面的应用将有助于脊髓损伤的基础研究和临床。
     目前fMRI技术主要通过运动、感觉、电流、针灸等刺激方式进行脊髓功能成像。国内外未见应用复杂对指运动及功能性电刺激方式的脊髓功能核磁共振研究。复杂规律的对指运动能产生广泛的大脑皮层兴奋区,常被选为评估人脑功能状况的可行性刺激模式并在脑功能成像中应用,推断该刺激模式也应该在脊髓中产生明显的激活区,能成为评估脊髓功能状况的理想刺激模式。功能性电刺激技术在康复和疾病治疗中有广泛的临床应用价值,研究功能性电刺激下脊髓功能核磁共振的特异性反应,能为理解和发展电刺激治疗脊髓疾病的方法提供依据和方向。在此背景下本课题将首次应用复杂对指运动及功能性电刺激模式进行脊髓功能核磁共振研究。
     目的:观察复杂对指运动和功能性电刺激时,正常颈脊髓功能核磁共振信号的产生和变化,以及颈脊髓损伤患者脊髓神经功能激活区域的分布与解剖的关系,探讨正常与受损的颈脊髓中神经信号的变化。
     方法:11名健康志愿者按要求进行复杂对指运动与功能性电刺激,6名颈脊髓损伤的受试患者进行功能性电刺激,采用“静息-任务刺激-静息”的时段设计模式,共4次刺激,5次静息,各长35s。同时用单次激发快速自旋回波序列(SSFSE)的1.5 T核磁共振机采集C2~T2节段横断面及矢状位的fMRI信号。获得的fMRI信号用AFNI软件进行后处理,得到激活信号与解剖信号的叠加图、激活信号值曲线。所得fMRI信号变化值进行统计学分析。
     结果:单次激发快速自旋回波序列脊髓功能核磁共振技术能检测到不同刺激模式下正常志愿者和颈脊髓损伤患者脊髓功能变化的信号。正常志愿者复杂对指运动和功能性电刺激时脊髓激活信号与相应脊髓节段(C6~T1)运动神经元所在的解剖区域(脊髓腹侧)相符合。fMRI信号变化波动于4.2%~13.2%之间。刺激与静息时相的信号变化幅度有显著差异。部分激活信号出现于脊髓背侧,个别激活信号出现于对侧脊髓和脊髓周围脑脊液中。4名完成实验的患者颈脊髓均出现稳定的fMRI信号,脊髓激活信号以刺激同侧脊髓背角感觉神经元区域为主。刺激对侧脊髓的激活信号强度较弱,对侧脊髓的刺激信号主要位于背角和中间带。
     结论:利用单次激发快速自旋回波序列脊髓功能核磁共振技术能检测到复杂对指运动和功能性电刺激时正常脊髓功能变化的信号,所得信号与相应的解剖位置相符合。使用1.5T医用核磁共振机和常规颈线圈对脊髓损伤患者的脊髓功能核磁共振成像能检测到受损脊髓的神经信号,有助于评估脊髓功能状况。
Backgroud:Spinal fMRI is a reliable tool for assessing neuron status and localizing activity in the spinal cord. In healthy volunteers the method has proved capable of demonstrating spinal cord neuronal activity in response to different stimulations. Finger tapping is a well-established stimulation task for mapping neuronal function in the human brain. Electrical stimulation is widely used as a diagnostic method in spinal cord diseases and has a long history as a rehabilitation tool for restoring mobility after spinal cord injury. The present investigation is to determine if spinal cord neuronal activation while undergoing a complex finger tapping task and electrical stimulation can be observed by spinal fMRI with a SSFSE sequence. Standard assessment of the condition of the spinal cord after an injury, or when affected by disease, is limited to the information that can be revealed by external signs. Information about the full extent of the cord’s condition, and any changes as a result of clinical interventions, is becoming increasingly valuable as treating spinal cord injury (SCI) patients. The purpose of the work we are carrying out is to apply the noninvasive method of fMRI in the injured spinal cord.
     Purpose: Functional MR imaging of the human spinal cord was carried out on volunteers with complex finger tapping task and functional electrical stimulation, in order to detect image intensity changes arising from neuronal activity. Spinal fMRI was also applied in central cord syndrome patients to investigate the neuronal activity in the cervical spinal cord caudal and to develop spinal fMRI as a clinical diagnostic tool.
     Methods: Functional MR imaging data using single-shot fast spin-echo sequence (SSFSE) with echo time 42.4ms on a 1.5 T GE Clinical System were acquired in eleven healthy subjects performing complex finger tapping task and functional electrical stimulation. Investigation was also carried out in six patients with cervical spinal cord injury (central cord syndrome). Spinal cord activation was measured both in the sagittal and transverse imaging planes. Postprocessing was performed by AFNI (Analysis of Functional Neuroimages) software system.
     Results: Intensity changes (4.2%~13.2%) correlated with the time course of stimulation and were consistently detected in both sagittal and transverse imaging planes of the healthy spinal cord. The activated regions localized to the ipsilateral side of the spinal cord in agreement with the neural anatomy. Spinal cord activity was detected with Spinal fMRI in the spinal cord region, below the site of injury, in four spinal cord-injured subjects studied. In subjects with central cord syndrome, activity was consistently observed in the ipsilateral dorsal horn, corresponding to sensory input. Activity was also detected on the contralateral side of the cord and within the anterior median fissure, but was less prominent.
     Conclusion: Functional MR imaging signals can be reliably detected with finger tapping activity in the human spinal cord using SSFSE sequence. The anatomic location of neural activity correlates with the muscles used in the finger tapping task. We present the first application of Spinal fMRI to spinal cord-injured subjects and the first noninvasive demonstration of activity in the human spinal cord below the site of injury.
引文
[1]. Scarabino T, Giannatempo G M, Popolizio T,et al. 3.0-T functional brain imaging: a 5-year experience. Neuroradiology, 2007, 112: 97-112.
    [2]. Yoshizawa T, Nose T, Moore GJ, et al. Functional magnetic resonance imaging of motor activation in the human cervical spinal cord. Neuroimage, 1996, 4: 174-182.
    [3]. Stroman PW, Ryner LN. Functional MRI of motor and sensory activation in the human spinal cord. Magn Reson Imaging, 2001, 19: 27–32.
    [4]. Stroman PW, Krause V, Malisza KL, et al. Functional magnetic resonance imaging of the human cervical spinal cord with stimulation of different sensory dermatomes. Magn Reson Imaging, 2002, 20: 1-6.
    [5]. Kornelsen J, Stroman PW. fMRI of the lumbar spinal cord during a lower limb motor task. Magn Reson Med, 2004, 52: 411-414.
    [6]. Ogawa S , Lee TM, Nayak A , et al. Oxygenation- sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med, 1990, 14: 68-78.
    [7]. Ogawa S , Lee TM, Kay AR , et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA, 1990, 87: 9868-9872.
    [8]. Stroman PW, Krause V, Malisza KL, et al. Extravascular proton-density changes as a non-BOLD component of contrast in fMRI of the human spinal cord. Magnetic Resonance In Medicine, 2002, 48:122-127.
    [9]. Stroman PW, Kornelsen J, Lawrence J, et al. Functional magnetic resonance imaging based on SEEP contrast: response function and anatomical specificity. Magnetic Resonance Imaging, 2005, 23: 843-850.
    [10]. Stroman PW. Magnetic Resonance Imaging of Neuronal Function in the Spinal Cord: Spinal fMRI. Clinical Medicine & Research, 2005, 3:146-156.
    [11]. Stroman PW, Kornelsen J, Bergman A, et al. Noninvasive assessment of the injured human spinal cord by means of functional magnetic resonance imaging. Spinal Cord, 2004, 42: 59-66.
    [12]. Stroman PW, Krause V, Malisza KL, et al. Characterization of contrast changes in functional MRI of the human spinal cord at 1.5 T. Magn Reson Imaging, 2001, 19: 833-838.
    [13]. Stroman PW, Krause V, Malisza KL, et al. Functional magnetic resonance imaging of the human cervical spinal cord with stimulation of different sensory dermatomes. Magn Reson Imaging, 2002, 20: 1-6.
    [14]. Stroman PW, Tomanek B, Krause V, et al. Mapping of neuronal function in the healthy and injured human spinal cord with spinal fMRI. Neuroimage, 2002, 17: 1854–1860.
    [15]. Backes WH, Mess WH, Wilmink JT. Functional MR imaging of the cervical spinal cord by use of median nerve stimulation and fist clenching. AJNR Am J Neuroradiol, 2001, 22: 1854-1859.
    [16]. Stroman PW, Nance PW, Ryner LN. BOLD MRI of the human cervical spinal cord at 3 tesla. Magn Reson Med, 1999, 42: 571-576.
    [17]. Madi S, Flanders AE, Vinitski S, et al. Functional MR imaging of the human cervical spinal cord. AJNR Am J Neuroradiol, 2001, 22: 1768-1774.
    [18]. Bandettini PA, Wong EC, Hinks RS, et al. Time course EPI of human brain function during task activation. Magn Reson Med, 1992, 25: 390-397.
    [19]. Nakai T, Matsuo K, Kato C,et al. BOLD contrast on a 3Tmagnet: Detectability of the motor areas. Journal of Computer Assisted Tomography, 2001, 25:436-439.
    [20]. Papke K, Reimer P, Renger B, et al. Optimezed activation of the primary sensorimotor cortex for clinical functional MR imaging. AJNR, 2000, 21:395-399.
    [21]. Porro CA, Francescato MP, Cettolo V, et al. Primary motor and sensory cortex activation during motor performance and motor imaging: A functional magnetic resonance imaging study. J Neurosci, 1996, 16:7688-7694.
    [22]. McDonald JW, Becker D, Sadowsky CL, et al. Late recovery following spinal cord injury - case report and review of the literature. J Neurosurg, (Spine 2) 2002, 97: 252-256.
    [23]. Mangold S, Keller T, Curt A, et al. Transcutaneous functional electrical stimulation for grasping in subjects with cervical spinal cord injury. Spinal Cord,2005, 43: 1-13.
    [24]. Seif C, Junemann KP, Braun PM. Deafferentation of the urinary bladder and implanatation of a sacral anterior root stimulator for the treatment of neurogenic bladder in paraplegic patients. Biomed Tech, 2004, 49: 88-92.
    [25]. Tuor UI, Malisza KL, Foniok T, Papadimitropoulos R, Jarmasz M, Somoriai R. et al. Functional magnetic resonance imaging in rats subjected to intense electrical and noxious chemical stimulation of the forepaw. Pain, 2000, 87: 315-324.
    [26]. Hyder F, Behar KL, Martin MA, et al. Dynamic magnetic resonance imaging of the rat brain during forepaw stimulation. J Cereb Blood Flow Metab, 1994, 14: 649-655.
    [27]. Silva AC, Lee S-P, Yang G, et al. Simultaneous blood oxygenation level-dependent and cerebral blood flow functional magnetic resonance imaging during forepaw stimulation in the rat. J Cereb Blood Flow Metab, 1999, 19: 871-879.
    [28]. Lan N, Wang J Z, Xiao ZX, et al. The principle, design and application of functional electrical stimulation. Chinese Journal of Rehabilitation Theory & Practice, 1997, 4 (3):151-154.
    [29]. P.W.Stroman, B.Tomanek, V.Krause, et al Mapping of Neuronal Function in the Healthy and Injured Human Spinal Cord with Spinal fMRI. NeuroImage, 2002,17:1854-1860.
    [30]. Kornelsen J, Stroman PW. fMRI of the lumbar spinal cord during a lower limb motor task. Magn Reson Med, 2004, 52: 411-414.
    [31]. Cox, R. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res, 1996, 29: 162-173.
    [32]. Menon RS, Ogawa S, Tank DW, et al. 4 Tesla gradient recalled echo characteristics of photic stimulation-induced signal changes in the human primary visual cortex. Magn Reson Med, 1993, 30:380-386.
    [33]. Palastanga N, Field D, Soames R (1998) Anatomy and human movement. Structure and function. Butterworth-Heinemann, Oxford, pp 110-132.
    [34]. Monkhouse S (2001) Clinical anatomy. A core text with selfassessment. Churchill Livingstone, London, pp 172-179.
    [35]. Jansma JM, Ramsey NF, Kahn RS. Tactile stimulation during finger oppositiondoes not contribute to 3D fMRI brain activity pattern. Neuroreport, 1998, 9:501–505.
    [36]. Silva. AC, Lee. SP, Yang. G, et al. Simultaneous blood oxygenation level-dependent and cerebral blood flow functional magnetic resonance imaging during forepaw stimulation in the rat. J. Cereb. Blood Flow Metab,1999, 19: 871–879.
    [37]. Gillilan LA. Veins of the spinal cord: anatomic details; suggested clinical applications. Neurology, 1970, 20: 860.
    [38]. Komisaruk BR, Mosier KM, Liu W-C, et al. Functional localization of brainstem and cervical spinal cord nuclei in humans with fMRI. AJNR Am J Neuroradiol, 2002, 23:609–617.
    [39]. A.K. Afifi, R.A. Bergman. Functional neuroanatomy. Text and atlas. New York: McGrawhill, 1996.
    [40]. Komisaruk BR, Mosier KM, Liu W-C, et al. Functional localization of brainstem and cervical spinal cord nuclei in humans with fMRI. AJNR Am J Neuroradiol, 2002, 23:609–617.
    [41]. Govers N, Beghin J, Van Goethem JW, et al. Functional MRI of the cervical spinal cord on 1.5 T with fingertapping: to what extent is it feasible? Neuroradiology, 2007, 49:73-81.
    [42]. Field AS, Yen YF, Burdette JH, et al. False cerebral activation on BOLD functional MR images: study of lowamplitude motion weakly correlated to stimulus. AJNR Am J Neuroradiol, 2000, 21:1388–1396.
    [43]. Muto N, Shinomiya K, Komori H, et al. Spinal cord monitoring of the ventral funiculus function. Analysis of spinal field potentials after galvanic vestibular stimulation. Spine, 1995, 20:2429–2434.
    [44].胥少汀,郭世绂.脊髓损伤基础与临床,第二版.北京:人民卫生出版社,2002,69-81
    [45]. Malisza KL, Stroman PW. Functional imaging of the rat cervical spinal cord. J. Magn Reson Imaging, 2002, 16: 553-558.
    [46]. Jane Lawrence,Patrick W. Stroman,Saro Bascaramurty, et.al Correlation offunctional activation in the rat spinal cord with neuronal activation detected by immunohistochemistry. NeuroImage, 2004, 22:1802-1807.
    [47]. Kraft GH , Fitts SS , Hammond MC. Techniques to improve function of the arm and hand in chronic hemiplegia. Arch Phys Med Rehabil, 1992,73:220-227.
    [48]. Feys HM , De Weerdt WJ , Selz BE , et al. Effect of a therapeutic intervention for the hemiplegic upper limb in the acute phase after stroke: a single2blind , randomized , controlled multicenter trial. Stroke, 1998, 29:785-792.
    [49]. Cauraugh J, Light K, Kim S, et al. Chronic motor dysfunction after stroke: recovering wrist and finger extension by electromyography-triggered neuromuscular stimulation. Stroke, 2000, 31:1360-1364.
    [50]. Little JW, Ditunno JF, Stiens SA, et al. Incomplete spinal cord injury: neuronal mechanisms of motor recovery and hyperreflexia. Arch Phys Med Rehabil, 1999, 80: 587-599.
    [51]. Stein RB, Gordon T, Jefferson J, et al. Optimal stimulation of paralyzed muscle after human spinal cord injury. J Appl Physiol, 1992, 72: 1393-1400.
    [52]. Petrofskey JS, Phillips. Active physical therapy: a modern approach for rehabilitation of the disabled. J Neuro Ortho Surg, 1983, 4: 165-173.
    [53]. Fehlings MG, Tator CH, Linden RD. The effect of direct current field on recovery from experimental spinal cord injury. J Neurosurg, 1988, 68:781-785.
    [54]. Borgens RB, Blight AR, Murphy DJ. Transected dorsal columnaxons within the guinea pig spinal cord regenerate in the presence of an applied electric fields. J Comp Neurol, 1986, 250:168-174.
    [55]. Fehlings MG, Tator CH, Linden RD. The effect of direct current field on recovery from experimental spinal cord injury. J Neurosurg, 1988, 68: 781-786.
    [56].董永泉,胥少汀.实验性脊髓损伤的脉冲电场治疗.中华外科杂志,1992; 30:180-183
    [57]. Patel N, Poo MM. Orientation of neurite growth by extracelluar electric fields. J Neurosci, 1982, 2:483-486.
    [58].崔晓军,李伊为,陈东风,等.电针百会对脊髓损伤大鼠脊髓组织3种亚型NOS表达及NO含量的影响.中医药学刊, 2003, 21: 1270-1272.
    [59].张志英,严振国.电针对脊髓损伤后一氧化氮合酶表达的影响.中国临床康复,2002,6:207-208.
    [60].张志英,崔云华,严振国.电针对脊髓损伤后细胞凋亡的影响.中国临床康复,2002, 6:818-819.
    [61].张志英,余安胜,严振国.电针对脊髓损伤早期bcl-2 mRNA及蛋白表达的影响.中国针灸, 2003, 23: 473-475.
    [62].朱政.电针对脊髓损伤后层粘连蛋白表达的影响.中国中西医结合杂志, 2002, 22: 525-527.
    [63]. Kwon BK, Tetzlaff W. Spinal cord regeneration: from gene to transplants. Spine,2001, 26 (Suppl): S13–S22.
    [64]. Woerly S, Pinet E, de Robertis L, et al. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel). Biomaterials, 2001, 22: 1095–1111.
    [65]. Gautier SE et al. Poly(alpha-hydroxyacids) for application in the spinal cord: resorbability and biocompatibility with adult rat Schwann cells and spinal cord. J Biomed Mater Res, 1998, 42: 642–654.
    [66]. Horner PJ, and Gage FH. Regenerating the damaged central nervous system. Nature, 2000, 407: 963–970.
    [67]. Chen MS, Huber AB, van der Haar ME, et al. Nogo-A is a myelin associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature, 2000, 403: 434–439,
    [68]. Maynard Jr FM et al. International standards for neurological and functional classification of spinal cord injury. American Spinal Injury Association. Spinal Cord, 1997, 35: 266–274.
    [69]. Willis WD, Coggeshall RE. Sensory Mechanisms of the Spinal Cord. Plenum Press, New York 1991, pp 401–462.
    [70].胥少汀,郭世绂.脊髓损伤基础与临床,第二版.北京:人民卫生出版社, 2002,163-168.
    [71]. PW Stroman, J Kornelsen, A Bergman et al. Noninvasive assessment of the injured human spinal cord by means of functional magnetic resonance imaging. Spinal Cord, 2004, 42: 59-66.
    [72]. Chen D, Theiss RD, Ebersole K, et al. Spinal interneurons that receive inputfrom muscle afferents are differentially modulated by dorsolateral descending systems. Neurophysiol, 2001, 85: 1005–1008.
    [73]. Logothetis NK, Pauls J, Augath M, et al. Neurophysiological investigation of the basis of the fMRI signal. Nature, 2001, 412: 150–157.
    [74]. Bandettini PA, Wong EC, Jesmanowicz A, et al. Spin-echo and gradient-echo EPI of human brain activation using BOLD contrast: a comparative study at 1.5 T. NMR Biomed, 1994, 7:12-20.
    [75]. Wehrli FW, MacFall JR, Schutts D, et al. Mechanism of contrast in NMR. J Comput Assist Tomogr, 1984, 8:369-380.
    [76]. Yacoub E, Duong TQ, Van De Moortele PF, et al. Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn Reson Med, 1996, 49:655-664.
    [77]. Stroman PW, Tomanek B, Krause V, et al. Functional magnetic resonance imaging of the human brain based on signal enhancement by extravascular protons (SEEP fMRI). Magn Reson Med, 2003, 49:433-439.
    [78]. Stroman PW, Krause V, Frankenstein UN, et al. Spin-echo versus gradient-echo fMRI with short echo times. Magn Reson Imaging 2001;19:827-831
    [79]. Stroman PW, Malisza KL, Onu M. Functional magnetic resonance imaging at 0.2 Tesla. Neuroimage, 2003, 20:1210-1214.
    [80]. P.W. Stroman, B. Tomanek, K.L. Malisza Functional Magnetic Resonance Imaging of the Human Brain and Spinal Cord by Means of Signal Enhancement by Extravascular Protons. Concepts Magn Reson, 2003, 16A:28-34.
    [81]. Ogawa S, Lee TM. Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn Reson Med, 1990, 16:9-18.
    [82]. P.W.Stroman. Magnetic resonance imaging of neuronal function in the spinal cord: Spinal fMRI. Clinical Medicine & Research, 2005, 3:146-156.
    [83]. Ugurbil K, Ogawa S, Kim S-G, et al. Imaging brain function using nuclear spins. In: Maraviglia B, ed. Magnetic resonance and brain function: approaches from physics. Proceedings of the International School of Physics“Enrico Fermi”.Societa Italiana di Fisica; Ohmsha, Amsterdam: IOS Press, 1999, 261-301.
    [84]. Stroman PW, Kornelsen J, Lawrence J, et al. Functional magnetic resonance imaging based on SEEP contrast: Reproducibility, hemodynamic response function, and anatomical specificity. In: Proceedings of the International Society for Magnetic Resonance in Medicine 12th Annual Meeting, Kyoto, Japan, May 15-21, 2004: poster 2543.
    [85]. Fujita H, Meyer E, Reutens DC, et al. Cerebral [15O] water clearance in humans determined by positron emission tomography: II. Vascular responses to vibrotactile stimulation. J Cereb Blood Flow Metab, 1997, 17:73-79.
    [86]. Ohta S, Meyer E, Fujita, et al. Cerebral [15O]water clearance in humans determined by PET: I. Theory and normal values. J Cereb Blood Flow Metab, 1996, 16:765-780.
    [87]. Bouzier-Sore AK, Merle M, Magistretti PJ, et al. Feeding active neurons: (re)emergence of a nursing role for astrocytes. J Physiol Paris, 2002, 96:273-282.
    [88]. Nicholls JG, Martin AR, Wallace BG. Properties and functions of neuroglial cells. In: Nicholls JG, ed. From neuron to brain. 3rd ed. Sunderland, Massachusetts: Sinauer Associates, Inc. 1992: 146-183
    [89]. Pellerin L, Magistretti PJ. Food for thought: challenging the dogmas. J Cereb Blood Flow Metab, 2003, 23:1282-1286.
    [90]. Nedergaard M, Takano T, Hansen AJ. Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci, 2002, 3:748-755.
    [91]. Piet R, Vargova L, Sykova E, et al. Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc Natl Acad Sci USA, 2004, 101:2151-2155.
    [92]. Amiry-Moghaddam M, Ottersen OP. The molecular basis of water transport in the brain. Nat Rev Neurosci, 2003, 4:991-1001.
    [93]. Brodal P. The Central Nervous System: Structure and Function. 2nd ed. New York, NY: Oxford University Press; 1998, 20
    [94]. Asai T, Kusudo K, Ikeda H, et al. Intrinsic optical signals in the dorsal horn of rat spinal cord slices elicited by brief repetitive stimulation. Eur J Neurosci,2002, 15:1737-1746.
    [95]. Anderson TR, Andrew RD. Spreading depression: imaging and blockade in the rat neocortical brain slice. J Neurophysiol, 2002, 88:2713-2725.
    [96]. Andrew RD, MacVicar BA. Imaging cell volume changes and neuronal excitation in the hippocampal slice. Neuroscience, 1994, 62:371-383.
    [1]. Ogawa S, Lee TM, Nayak A, et al. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med, 1990, 14: 68-78.
    [2]. Ogawa S, Lee TM. Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurement and image simulation. Magn Reson Med, 1990, 16:9-18.
    [3]. Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA, 1990, 87: 9868-9872.
    [4]. Ogawa S, Lee TM, Kay AR, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA, 1990, 89: 5951-9555.
    [5]. Blamire AM, Ogawa S, Ug?urbil K, et al. Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. Proc Natl Acad Sci USA, 1992, 89: 11069-11073.
    [6]. Logothetis NK, Pauls J, Augath M, et al. Neurophysiological investigation of the basis of the fMRI signal. Nature, 2001, 412: 150-157.
    [7]. T. Scarabino, G. M. Giannatempo, T. Popolizio, M. et al.3.0-T functional brain imaging: a 5-year experience. Neuroradiology, 2007, 112: 97-112.
    [8]. Backes WH, Mess WH, Wilmink JT. Functional MR imaging of the cervical spinal cord by use of median nerve stimulation and fist clenching. AJNR Am J Neuroradiol, 2001, 22: 1854-1859.
    [9]. Bandettini PA, Wong EC, Jesmanowicz A, et al. Spin-echo and gradient-echo EPI of human brain activation using BOLD contrast: a comparative study at 1.5 T. NMR Biomed, 1994, 7: 12-20.
    [10]. Yoshizawa T, Nose T, Moore GJ, et al. Functional magnetic resonance imaging of motor activation in the human cervical spinal cord. Neuroimage, 1996, 4: 174-182.
    [11]. Stroman PW, Nance PW, Ryner LN. BOLD MRI of the human cervical spinal cord at 3 tesla. Magn Reson Med, 1999, 42: 571-576.
    [12]. Stroman PW, Ryner LN. Functional MRI of motor and sensory activation in the human spinal cord. Magn Reson Med, 2001, 19: 27-32.
    [13]. Stroman PW, Krause V, Malisza KL, et al. Characterization of contrast changes in functional MRI of the human spinal cord at 1.5 T. Magn Reson Imaging, 2001, 19: 833-838.
    [14]. Stroman PW, Krause V, Malisza KL, et al. Functional magnetic resonance imaging of the human cervical spinal cord with stimulation of different sensory dermatomes. Magn Reson Imaging, 2002, 20: 1-6.
    [15]. Stroman PW, Krause V, Malisza KL, et al. Extravascular proton-density changes as a non-BOLD component of contrast in fMRI of the human spinal cord. Magn Reson Med, 2002, 48: 122-127.
    [16]. Stroman PW, Tomanek B, Krause V, et al. Mapping of neuronal function in the healthy and injured human spinal cord with spinal fMRI. Neuroimage, 2002, 17: 1854-1860.
    [17]. Stroman PW, Tomanek B, Malisza KL. Functional magnetic resonance imaging of the human brain and spinal cord by means of signal enhancement by extravascular protons. Concepts Magn Reson Part A, 2003, 16A: 28-34.
    [18]. Stroman PW, Kornelsen J, Bergman A, et al. Noninvasive assessment of the injured human spinal cord by means of functional magnetic resonance imaging. Spinal Cord. 2004, 42: 59-66.
    [19]. Kornelsen J, Stroman PW. fMRI of the lumbar spinal cord during a lower limb motor task. Magn Reson Med, 2004, 52: 411-414.
    [20]. Kandel ER, Schwartz JH, Jessel TM. Principles of neural sciences. New York7 Elsevier, 1991, p534-547.
    [21]. Horner PJ, Gage FH. Regenerating the damaged central nervous system. Nature 2000;407:963– 70.
    [22]. Woerly S, Doan VD, Evans-Martin F, et al. Spinal cord reconstruction using NeuroGel implants and functional recovery after chronic injury. J NeurosciRes 2001;66:1187– 97.
    [23]. Oudega M, Gautier SE, Chapon P, et al. Axonal regeneration into Schwann cell grafts within resorbable poly(alpha-hydroxyacid) guidance channels in the adult rat spinal cord. Biomaterials 2001;22:1125– 36.
    [24]. Wickelgren I. Neuroscience. Animal studies raise hopes for spinal cord repair. Science 2002;297:178– 81.
    [25]. Woerly S, Pinet E, de Robertis L, et al. Spinal cord repair with PHPMA hydrogel containing RGD peptides. Biomaterials 2001;22:1095–111.
    [26]. Teng YD, Lavik EB, Qu X, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A 2002;99:3024– 9.
    [27]. Bligth AR. Just one word: plasticity. Nat Neurosci 2004;7:206– 8.
    [28]. Resnick DK, Schmitt C, Miranpuri GS, et al. Molecular evidence of repair and plasticity following spinal cord injury. Neuroreport 2004;15:837–9.
    [29]. Fouad K, Pearson K. Restoring walking after spinal cord injury. Prog Neurobiol 2004;73:107– 26.
    [30]. Cheng H, Liao KK, Liao SF, et al. Spinal cord repair with acidic fibroblast growth factor as a treatment for a patient with chronic paraplegia. Spine 2004;29:E284– 8.
    [31]. Gomez-Anson B, MacManus DG, Parker GJ, et al. In vivo 1H-magnetic resonance spectroscopy of the spinal cord in humans. Neuroradiology 2000;42:515–7.
    [32]. Cooke FJ, Blamire AM, Manners DN, et al. Quantitative proton magnetic resonance spectroscopy of the cervical spinal cord. Magn Reson Med 2004;51:1122– 8.
    [33]. Clark CA, Werring DJ, Miller DH. Diffusion imaging of the spinal cord in vivo: estimation of the principal diffusivities and application to multiple sclerosis. Magn Reson Med 2000;43:133–8.
    [34]. Ries M, Jones RA, Dousset V, et al. Diffusion tensor MRI of the spinal cord. Magn Reson Med 2000;44:884–92.
    [35]. Barker GJ. Diffusion-weighted imaging of the spinal cord and optic nerve.J Neurol Sci 2001;186(Suppl 1):S45– 9.
    [36]. Murphy BP, Zientara GP, Huppi PS, et al. Line scan diffusion tensor MRI of the cervical spinal cord in preterm infants. J Magn Reson Imaging 2001;13:949–53.
    [37]. Clark CA, Werring DJ. Diffusion tensor imaging in spinal cord: methods and applications—a review. NMR Biomed 2002;15: 578– 86.
    [38]. Wheeler-Kingshott CA, Hickman SJ, Parker GJ, et al. Investigating cervical spinal cord structure using axial diffusion tensor imaging. Neuroimage 2002;16:93– 102.
    [39]. Cercignani M, Horsfield MA, Agosta F, et al. Sensitivityencoded diffusion tensor MR imaging of the cervical cord. AJNR Am J Neuroradiol 2003;24:1254– 1256.
    [40]. Mamata H, Jolesz FA, Maier SE. Characterization of central nervous system structures by magnetic resonance diffusion anisotropy. Neurochem Int 2004;45:553– 560.
    [41]. Madi S, Flanders AE, Vinitski S, et al. Functional MR imaging of the human cervical spinal cord. AJNR Am J Neuroradiol 2001;22:1768– 1774.
    [42]. Schroth G, Klose U. Cerebrospinal fluid flow. I. Physiology of cardiac-related pulsation. Neuroradiology 1992;35:1–9.
    [43]. Schroth G, Klose U. Cerebrospinal fluid flow. II. Physiology of respiration-related pulsations. Neuroradiology 1992;35:10–15.
    [44]. Schroth G, Klose U. Cerebrospinal fluid flow. III. Pathological cerebrospinal fluid pulsations. Neuroradiology 1992;35:16– 24.
    [45]. Mikulis DJ,Wood ML, Zerdoner OA, et al. Oscillatory motion of the normal cervical spinal cord. Radiology 1994;192:117– 121.
    [46]. Stroman PW, Tomanek B, Krause V, et al. Functional magnetic resonance imaging of the human brain based on signal enhancement by extravascular protons (SEEP fMRI). Magn Reson Med 2003;49:433– 439.
    [47]. Stroman PW, Malisza KL, Onu M. Functional magnetic resonance imaging at 0.2 Tesla. Neuroimage 2003;20:1210– 1214.
    [48]. Stroman PW, Kornelsen J, Lawrence J, et al. Functional magnetic resonance imaging based on SEEP contrast: response function and anatomical specificity. Magnetic Resonance Imaging, 2005, 23: 843–850
    [49]. Stroman PW. Magnetic Resonance Imaging of Neuronal Function in the Spinal Cord: Spinal fMRI. Clinical Medicine & Research, 2005, 3:146-156
    [50]. Menon RS, Ogawa S, Tank DW, et al. 4 Tesla gradient recalled echo characteristics of photic stimulation-induced signal changes in the human primary visual cortex. Magn Reson Med 1993;30:380– 386.
    [51]. Darquie′A, Poline JB, Poupon C, et al. Transient decrease in water diffusion observed in human occipital cortex during visual stimulation. Proc Natl Acad Sci U S A 2001; 98:9391– 9395.
    [52]. Stroman PW, Krause V, Frankenstein UN, et al. Spin-echo versus gradient-echo fMRI with short echo times. Magn Reson Imaging 2001;19:827– 831.
    [53]. Yacoub E, Duong TQ, Van De Moortele PF, et al. Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn Reson Med 1996;49:655– 664.
    [54]. Ugurbil K, Ogawa S, Kim SG, et al. Imaging brain activity using nuclear spins. In: Maraviglia B, editor. Proceedings of the International School of Physics bEnrico FermiQ. Amsterdam7 IOS Press; 1999. p. 261– 310.
    [55]. Wehrli FW, MacFall JR, Schutts D, et al. Mechanism of contrast in NMR. J Comput Assist Tomogr 1984;8:369– 380.
    [56]. Stroman PW, Kornelsen J, Lawrence J, M et al. Functional magnetic resonance imaging based on SEEP contrast: Reproducibility, hemodynamic response function, and anatomical specificity. In: Proceedings of the International Society for Magnetic Resonance in Medicine 12th Annual Meeting, Kyoto, Japan, May 15-21, 2004: poster 2543
    [57]. Gati JS, Menon RS, Rutt BK. Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 1997;38:296– 302.
    [58]. Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: applicationto functional mapping. Magn Reson Med 1995;34:293-301.
    [59]. Fujita H, Meyer E, Reutens DC, et al. Cerebral [15O] water clearance in humans determined by positron emission tomography: II. Vascular responses to vibrotactile stimulation. J Cereb Blood Flow Metab 1997;17:73-79.
    [60]. Ohta S, Meyer E, Fujita , et al. Cerebral [15O]water clearance in humans determined by PET: I. Theory and normal values. J Cereb Blood Flow Metab 1996;16:765-780.
    [61]. Bouzier-Sore AK, Merle M, Magistretti PJ, et al. Feeding active neurons: (re)emergence of a nursing role for astrocytes. J Physiol Paris 2002;96:273-282.
    [62]. Nicholls JG, Martin AR, Wallace BG. Properties and functions of neuroglial cells. In: Nicholls JG, ed. From neuron to brain. 3rd ed. Sunderland, Massachusetts: Sinauer Associates, Inc.;1992. 146-183.
    [63]. Pellerin L, Magistretti PJ. Food for thought: challenging the dogmas. J Cereb Blood Flow Metab 2003;23:1282-1286.
    [64]. Nedergaard M, Takano T, Hansen AJ. Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci 2002;3:748-755.
    [65]. Piet R, Vargova L, Sykova E, et al. Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc Natl Acad Sci U S A 2004;101:2151-2155.
    [66]. Amiry-Moghaddam M, Ottersen OP. The molecular basis of water transport in the brain. Nat Rev Neurosci 2003;4:991-1001.
    [67]. Sykova E, Vargova L, Kubinova S, et al. The relationship between changes in intrinsic optical signals and cell swelling in rat spinal cord slices. Neuroimage 2003;18:214-230.
    [68]. Sykova E. Diffusion properties of the brain in health and disease. Neurochem Int 2004;45:453-466.
    [69]. Brodal P. The Central Nervous System: Structure and Function. 2nd ed. New York, NY: Oxford University Press; 1998. 20.
    [70]. Asai T, Kusudo K, Ikeda H, et al. Intrinsic optical signals in the dorsalhorn of rat spinal cord slices elicited by brief repetitive stimulation. Eur J Neurosci 2002;15:1737-1746.
    [71]. Anderson TR, Andrew RD. Spreading depression: imaging and blockade in the rat neocortical brain slice. J Neurophysiol 2002;88:2713-2725.
    [72]. Andrew RD, MacVicar BA. Imaging cell volume changes and neuronal excitation in the hippocampal slice. Neuroscience 1994;62:371-383.
    [73]. Porszasz R, Beckmann N, Bruttel K, et al. Signal changes in the spinal cord of the rat after injection of formalin into the hindpaw: characterization using functional magnetic resonance imaging. Proc Natl Acad Sci U S A 1997;94:5034-5039.
    [74]. Stroman PW, Kornelsen J, Lawrence J. An improved method for spinal functional MRI with large volume coverage of the spinal cord. J Magn Reson Imaging 2005;21:520-526.
    [75]. Stroman PW, Tomanek B, Krause V, et al. Mapping of neuronal function in the healthy and injured human spinal cord with spinal fMRI. Neuroimage 2002;17:1854-1860.
    [76]. Stroman PW, Ryner LN. Functional MRI of motor and sensory activation in the human spinal cord. Magn Reson Imaging 2001;19:27-32.
    [77]. Thron AK. Vascular anatomy of the spinal cord: neurological investigations and clinical syndromes. New York7 Springer-Verlag; 1988. p. 8–64.
    [78]. Ogawa S, Menon RS, Tank DW, et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 1993;64:803– 812.
    [79]. Matsuzaki H, Wakabayashi K, Ishihara K, et al. The origin and significance of spinal cord pulsation. Spinal Cord 1996;34:422-426.
    [80]. Schumacher R, Richter D. One-dimensional Fourier transformation of M-mode sonograms for frequency analysis of moving structures with application to spinal cord motion. Pediatr Radiol 2004;34:793-797.
    [81]. Jokich PM, Rubin JM, Dohrmann GJ. Intraoperative ultrasonic evaluation ofspinal cord motion. J Neurosurg 1984;60:707–711.
    [82]. Levy LM. Evaluation of spinal cord function using functional MR imaging with neurophysiological stimuli. AJNR Am J Neuroradiol 2001;22:1811–1812.
    [83]. Pattany PM, Khamis IH, Bowen BC, et al. Effects of physiologic human brain motion on proton spectroscopy: quantitative analysis and correction with cardiac gating. AJNR Am J Neuroradiol 2002;23:225–230.
    [84]. Lee KH, Chung TS, Jeon TJ, et al. Application of spatial modulation of magnetization to cervical spinal stenosis for evaluation of the hydrodynamic changes occurring in cerebrospinal fluid. J Radiol 2000;1:11–18.
    [85]. Itabashi T. Quantitative analysis of cervical CSF and syrinx fluid pulsations. Nippon Seikei Geka Gakkai Zasshi 1990;64:523–533.
    [86].Henry-Feugeas MC, Idy-Peretti I, Blanchet B, et al. Temporal and spatial assessment of normal cerebrospinal fluid dynamics with MR imaging. Magn Reson Imaging 1993;11:1107– 1118.
    [87]. Federico Giove, Girolamo Garreffa, Giovanni Giulietti, et al. Issues about the fMRI of the human spinal cord. Magnetic Resonance Imaging. 2004; 22: 1505-1516
    [88]. Enzmann DR, Pelc NJ. Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase-contrast cine MR imaging. Radiology 1991;178:467– 474.
    [89]. Enzmann DR, Pelc NJ. Brain motion: measurement with phasecontrast MR imaging. Radiology 1992;185:653–660.
    [90]. Enzmann DR, Pelc NJ. Cerebrospinal fluid flow measured by phasecontrast cine MR. AJNR Am J Neuroradiol 1993;14:1301–1307.
    [91]. Stroman PW, Krause V, Malisza KL, et al. Spinal fMRI of spinal cord injury in human subjects. In: Proceedings of the International Society for Magnetic Resonance in Medicine 11th Annual Meeting, Toronto, Canada, July 10-16, 2003: poster 13.
    [92]. Boxerman JL, Bandettini PA, Kwong KK et al . The intravascular contribution to fMRI signal change : Monte Carlo modeling and diffusion weighted studiesin vivo . Magn Reson Med , 1995 ,34 : 4 -10.
    [93]. Darian-Smith I, Johnson KO, Dykes R. bColdQ fiber population innervating palmar and digital skin of the monkey: responses to cooling pulses. J Neurophysiol 1973;36:325–346.
    [94]. LaMotte RH, Thalhammer JG. Response properties of high-threshold cutaneous cold receptors in the primate. Brain Res 1982;244:279– 287.
    [95]. Maier MA, Perlmutter SI, Fetz EE. Response patterns and force relations of monkey spinal interneurons during active wrist movement. J Neurophysiol 1998;80:2495– 2513.
    [96]. Brooks J, Robson M, Schweinhardt P, et al. Functional magnetic resonance imaging (fMRI) of the spinal cord: a methodological study. In: American Pain Society 23rd Annual Meeting, Vancouver, BC Canada, May 6-9, 2004: poster 667. Available at: http://www.ampainsoc.org/abstract/2004/data/667/index.html. Last accessed July 29, 2005.
    [97]. Kollias SS, Kwiecinski S, Summers P. Functional MR Imaging of the Human Cervical Spinal Cord. In: American Society of Neuroradiology, Proceedings of the 42nd Annual Meeting, Seattle, June 7-11, 2004: poster 227. Available at: http://www.abstractsonline.com/viewer/viewAbstractPrintFriendly.asp?CKey={16E2D87F-B378-4556-9699-774561DB7707}&SKey={053974D8-783F-4BF1-9973-3075A326BFCF}&MKey={ED255145-0562-4CAC-AC4FF1E94E8D05F6}&AKey={1CC9ED8F-E877-432D-98B3- 8BB6898BEE36}. Last accessed July 29, 2005.
    [98]. Mackey S, Ludlow D, Knierim J, et al. FMRI activation in the human cervical spinal cord to noxious thermal stimulation. In: American Pain Society 22nd Annual Meeting, Chicago, March 20-23, 2003: poster 750. Available at: http://www.ampainsoc.org/abstract/2003/data/750/index.html. Last accessed July 29, 2005.
    [99]. Wong KK, Ng MC, Hu Y, et al. Functional MRI of the spinal cord at low field. In: Proceedings of the International Society for Magnetic Resonance in Medicine 12th Scientific Meeting & Exhibition, Kyoto, Japan, May 15-21, 2004: poster 1534.
    [100]. Takahashi Y, Chiba T, Kurokawa M, et al. Dermatomes and the central organization of dermatomes and body surface regions in the spinal cord dorsal horn in rats. J Neurol 2003;462:29-41.
    [101]. Wilmink J T, Backes WH, Mess WH. Functional MRI of the spinal cord : will it solve the puzzle of pain[J ] JBR-BTR , 2003 ,86 (5) :293- 294.
    [102]. Bergman A, Leblanc C, Stroman PW. Spinal fMRI of multiple sclerosis in human subjects. In: Proceedings of the International Society for Magnetic Resonance in Medicine 12th Scientific Meeting & Exhibition, Kyoto, Japan, May 15-21, 2004: poster 1126.
    [103]. Malisza KL, Stroman PW, Turner A, et al. Functional MRI of the rat lumbar spinal cord involving painful stimulation and the effect of peripheral joint mobilization. J Magn Reson Imaging 2003;18:152-159.
    [104]. Malisza KL, Stroman PW. Functional imaging of the rat cervical spinal cord. J Magn Reson Imaging 2002;16:553-558.
    [105]. Lawrence J, Stroman PW, Bascaramurty S, et al. Correlation of functional activation in the rat spinal cord with neuronal activation detected by immunohistochemistry. Neuroimage, 2004, 22: 1802-1807.
    [106]. Majcher K, Tomanek B, Jasinski A, et al. Simultaneous functional magnetic resonance imaging in the rat spinal cord and brain. In: Proceedings of the International Society for Magnetic Resonance in Medicine 13th Annual Meeting, Miami, USA, May 7-13, 2005, poster 1982.
    [107]. P.W. Stroman. Magnetic Resonance Imaging of Neuronal function in the Spinal Cord: Spinal fMRI. Clinical Medicine & Research, 2005, 3: 146-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700