骨髓间充质干细胞结合多肽自组装支架材料治疗脊髓损伤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分移植骨髓间充质干细胞治疗大鼠脊髓损伤的实验研究
     目的:研究体外培养的骨髓间充质干细胞(MSCs)神经营养因子的表达,以及移植后对大鼠脊髓损伤的治疗作用。
     方法:取大鼠骨髓,用全骨髓贴壁法分离MSCs,流式细胞仪检测CD34、CD90、CD44和CD45等抗原的表达。逆转录-聚合酶链反应(RT-PCR)检测MSCs中脑源性神经营养因子(BDNF)和神经生长因子(NGF)mRNA的表达,酶联免疫吸附(ELISA)检测其BDNF和NGF蛋白的表达。用改良Allen重物打击法造大鼠脊髓损伤模型,1周后将MSCs注射到损伤部位,术后4周每周进行BBB评分,术后第4周取损伤部位脊髓组织,ELISA检测组织中BDNF和NGF的表达:另取损伤部位脊髓组织进行NF200和GFAP免疫荧光染色。
     结果:MSCs贴壁生长,呈纺锤形及梭形,流式细胞术检测表达CD90、CD44,不表达CD34和CD45,RT-PCR发现其表达BDNF和NGF mRNA,且ELISA检测到了BDNF和NGF蛋白的表达,移植MSCs的大鼠运动功能改善,BBB评分高于对照组;移植MSCs的脊髓组织中BDNF和NGF蛋白含量高于对照组;免疫荧光发现移植MSCs的大鼠脊髓囊腔较小,且周围有较多轴突再生。
     结论:MSCs表达神经营养因子BDNF和NGF,移植后改善了局部微环境,能够促进大鼠脊髓损伤后运动功能恢复。
     第二部分多肽原位植入对大鼠脊髓损伤治疗作用的实验研究
     目的:设计合成两亲性多肽C_(16)H_(31)O-A_3G_4D_2IKVAV,研究其自组装形成的三维凝胶结构,并研究其植入后对大鼠脊髓损伤的治疗作用。
     方法:将两亲性多肽C_(16)H_(31)O-A_3G_4D_2IKVAV用仿生体液促发自组装,用透射电镜(TEM)检测。改良Allen植物打击法造大鼠脊髓损伤模型,将多肽溶液注入损伤部位,术后6周每周进行BBB评分;术后3d、1w、2w、3w、4w、6w分别取损伤部位脊髓组织,实时荧光定量PCR检测胶质纤维酸性蛋白(GFAP)的表达;术后第6周取损伤部位脊髓组织,进行NF200和GFAP免疫荧光染色。
     结果:多肽溶液在仿生体液促发下自组装为三维凝胶,TEM显示为纳米纤维,直径7-8nm,纤维空隙较大;术后第5周、第6周多肽注入组BBB评分高于对照组;实时定量荧光PCR显示多肽组损伤部位GFAP表达低于对照组;免疫荧光染色发现植入多肽组局部GFAP表达较少,且有较多轴突再生。
     结论:两亲性多肽C_(16)H_(31)O-A_3G_4D_2IKVAV能自组装为三维凝胶,植入脊髓损伤大鼠能够抑制GFAP形成,并能促进轴突再生。
     第三部分组织工程化神经移植物的构建
     目的:使用两亲性多肽自组装三维凝胶作为支架材料,结合骨髓间充质干细胞,构建组织工程化神经移植物。
     方法:将多肽溶液用MSCs细胞悬液促发自组装,形成复合细胞的三维凝胶,光镜观察细胞的分布;培养1d、7d及21d,用钙黄绿素和PI进行活死细胞染色,观察细胞在凝胶内的存活情况;细胞凝胶复合物进行培养,用CCK-8法检测细胞增殖;ELISA法检测细胞培养液中BDNF和NGF的表达。
     结果:细胞悬液促发了多肽溶液自组装为三维凝胶,且细胞以三维形式存在于凝胶内;活死细胞染色发现培养至21d大部分MSCs仍存活,细胞增殖测试发现MSCs在凝胶内增殖良好,与三维培养无显著性差异,ELISA发现凝胶中的MSCs产生并分泌了BDNF和NGF。
     结论:用细胞悬液成功促发了多肽溶液自组装,构建了神经组织工程构件,体外测试其活性良好。
Part 1Experimental research of transplant mesenchymal stem cells to treat spinal cordinjury
     Objective: To investigate the expressions of neurotrophins in MSCs in vitro, and thetherapeutic effects of MSCs transplantation for SCI.
     Methods: MSCs were isolated from marrow of rats, and purified by continuous culture.The cells were characterized by the expression of CD34, CD90, CD44 and CD45 by flowcytometry. The expression of BDNF and NGF were detected in MSCs using RT -PCR andELISA. SCI model was established by modified Allen's method. MSCs were injected intothe epicenter of injured spinal cord in one week. Locomotive function of SCI rats wasgraded with BBB score weekly, and in four weeks injured spinal cord was taken, theprotein level of BDNF and NGF was detected by ELISA, and NF200, GFAPimmunofluorescent staining were performed in frozen sections of injured spinal cord.
     Results: Isolated cells were adherent to culture flask and were spindle-shaped, and werepositive for CD90 and CD44, negative for CD34 and CD45 by flow cytometry. MSCsexpressed BDNF and NGF mRNA, and expressed the protein. The rats treated with MSCstransplantation showed improvement in functional outcome, the BBB scorces were higherthan the control, the protein levels of BDNF and NGF in spinal cord were higher than thecontrol. And immunofluorescent staining show smaller cysts and more regenerated axonsin spinal cord tn transplantation rats.
     Conclusions: MSCs could expressed BDNF and NGF, and could improve functionaloutcome in SCI rats. neurotrophic factor, nerve growth factor
     Part 2Experimental study of Peptide implantation in situ of spinal cord injuried rats for SCItreatment
     Objective: To design Peptide-Amphiphile C_(16)H_(31)O-A_3G_4D_2IKVAV, investigate 3-Dconstruction of self-assembly gel and study the therapeutic effects of its implantation forSCI treatment in rats.
     Methods: Self-assembly of PA C_(16)H_(31)O-A_3G_4D_2IKVAV was improved by simulated bodyfluid and detected under TEM. SCI rats models were established by modified Allen'smethod, peptide solution was injected into injuried site. BBB test was performed everyweek postoperatively in 6 weeks, spinal cord samples were collected 3d, 1w, 2w, 3w, 4wand 6w after SCI. the expression of GFAP was detected by Real-time PCR. Spinal cordsample of injuried sites were collected again and observed after immunofluorescentstaining with NF200 and GFAP.
     Results: Self-assembly of peptide solution into 3-D gel could be trigged by SBF, andpresented as nanofiber under TEM, with 7-8nm in diameter and big gaps between the fibers.BBB scores in peptide implantation group were higher than controls in the 5th and 6thweeks after surgery, Real-time quantitative fluorescent PCR demonstrated the expression ofGFAP in the injured sites was weaker than controls. Immunofluorescent staining showedthe low expression of GFAP and many axon regenerations after peptide transplantation.
     Conclusion: PA C_(16)H_(31)O-A_3G_4D_2IKVAV could self-assembly into 3-D gel, GFAPformation could be inhibited and axon regeneration could be improved after itstransplantation into rats.
     Objective: To construct tissue-engineered neural grafts with Self-assembled PA 3-D gel asscaffold material and MSC.
     Methods: Self-assembly of peptide solution was trigged by MSCs suspension, 3-D gelcombined with MSCs was formed, cells distribution was observed under microscope.Live/dead cell staining was performed with Calcein-AM PI after 1d, 7d and 21d culture.Living condition of cells in the gel was observed. The gel combined with cells was culturedand detected by CCK-8 method to determine the cell proliferation. The expressions ofBDNF and NGF in the medium were detected by ELISA.
     Results: Cell suspension trigged peptide solution to self-assembly into 3-D gel, the cellswere kept alive in the gel. Live/dead cell staining presented most MSCs were still aliveafter 21 days culture. Cell proliferation test demonstrated MSCs proliferation was prettywell, and there's no significant difference with 2-D culture. ELISA showed BDNF andNGF were generated and secreted by MSCs in the gal.
     Conclusion: peptide solution self-assembly was trigged by MSCs suspension successfully;tissue-engineered material was constructed and presented good activity in vitro experiment.
引文
[1]Hagg T, Oudega M. Degenerative and spontaneous regenerative processes after spinal cord injury. J Neurotrauma. 2006 Mar-Apr;23(3-4):264-80.
    [2]Kwon BK, Tetzlaff W, Grauer JN, et al. Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. 2004 Jul-Aug;4(4):451-64.
    [3]Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 1991 ;75(1): 15-26.
    [4]Hall E. Free radicals in central nervous system injury. In: Rice-Evans CA, Burdon R, editors. Free radical damage and its control. New York: Elsevier Science, 1994:217-38.
    [5]Wrathall JR, Teng YD, Choiniere D. Amelioration of functional deficits from spinal cord trauma with systemically administered NBQX, an antagonist of non-N-methyl-D-aspartate receptors. Exp Neurol 1996;137(1):119-26.
    [6]Choi DW. Excitotoxic cell death. J Neurobiol 1992;23(9): 1261-76.
    [7]Mody I, MacDonald JF. NMDA receptor-dependent excitotoxicity: the role of intracellular Ca2_ release. Trends Pharmacol Sci 1995; 16(10):356-9.
    [8]Springer JE, Azbill RD, Knapp PE. Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat Med 1999;5(8):943-6.
    [9]Casha S, Yu WR, Fehlings MG. Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. Neuroscience 2001;103(l):203-18.
    [10]Nicholson DW. From bench to clinic with apoptosis-based therapeutic agents. Nature 2000;407(6805):810-16.
    [11]Schwartz M, Moalem G, Leibowitz-Amit R, Cohen IR. Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci 1999; 22(7):295-9.
    [12]Klusman I, Schwab ME. Effects of pro-inflammatory cytokines in experimental spinal cord injury. Brain Res 1997; 762(1-2): 173-84.
    [13]Tonai T, Taketani Y, Ueda N, et al. Possible involvement of interleukin-1 in cyclooxygenase-2 induction after spinal cord injury in rats. J Neurochem 1999; 72(l):302-9.
    [14]Vanegas H, Schaible HG. Prostaglandins and cyclooxygenases in the spinal cord. Prog Neurobiol 2001;64(4):327-63.
    [15]Schwab JM, Brechtel K, Nguyen TD, Schluesener HJ. Persistent accumulation of cyclooxygenase-1 (COX-1) expressing microglia/ macrophages and upregulation by endothelium following spinal cord injury. J Neuroimmunol 2000; 111(1-2): 122-30.
    [16]Yan P, Li Q, Kim GM, Xu J, Hsu CY, Xu XM. Cellular localization of tumor necrosis factor-alpha following acute spinal cord injury in adult rats. J Neurotrauma 2001;18(5):563-8.
    [17]Bethea JR, Nagashima H, Acosta MC, et al. Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma 1999;16(10):851-63.
    [18]Bethea JR, Nagashima H, Acosta MC, et al. Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma 1999;16(10):851-63.
    [19]Barger SW, Horster D, FurukawaK, Goodman Y, Krieglstein J, Mattson MP. Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2~+ accumulation. Proc Natl Acad Sci U S A 1995; 92(20):9328-32.
    [20]Lazarov-Spiegler 0, Rapalino 0, Agranov G, Schwartz M. Restricted inflammatory reaction in the CNS: a key impediment to axonal regeneration? Mol Med Today 1998;4(8):337-42.
    [21]Bethea JR. Spinal cord injury-induced inflammation: a dual-edged sword. Prog Brain Res 2000:128:33-42.
    [22]Knoblach SM, Faden AI. Interleukin-10 improves outcome and alters proinflammatory cytokine expression after experimental traumatic brain injury. Exp Neurol 1998;153(1):143-51.
    [23]Brewer KL, Bethea JR, Yezierski RP. Neuroprotective effects of interleukin-10 following excitotoxic spinaL cord injury. Exp Neurol 1999; 159(2) :484 -93.
    [24]B1ight AR. Macrophages and inflammatory damage in spinal cord injury. J Neurotrauma 1992;9(suppl 1):S83-91.
    [25]Lazarov-Spiegler 0, Solomon AS, Zeev-Brann AB, Ilirschberg DL, Lavie V, Schwartz M. Transplantation of activated macrophages overcomes central nervous system regrowth failure. FASEB J 1996;10(11):1296-302.
    [26]Rapalino 0, Lazarov-Spiegler 0, Agranov E, et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 1998;4(7):814-21.
    [27]Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull. 1999Aug;49(6):377-91
    [28]Priestley JV, Ramer MS, King VR, et al. Stimulating regeneration in the damaged spinal cord. J Physiol Paris. 2002 Jan-Mar;96(1-2): 123-33.
    [29]Tsai EC, Tator CH. Neuroprotection and regeneration strategies for spinal cord repair. Curr Pharm Des. 2005;11 (10):1211-22.
    [30]Anderson DK, Hall ED. Pathophysiology of spinal cord trauma. Ann Emerg Med, 1993;22: 987-92.
    [31]Sribnick EA, Wingrave JM, Matzelle DD, Ray SK, Banik NL. Estrogen as a neuroprotective agent in the treatment of spinal cord injury. Ann N Y Acad Sci, 2003; 993: 125-33; discussion 159-60.
    [32]Gorio A, Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C, et al. Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci USA 2002;99: 9450-5.
    [33]Vorwerk CK, Bonheur J, Kreutz MR, Dreyer EB, Laev H. GM1 ganglioside administration protects spinal neurons after glutamate excitotoxicity. Restor Neurol Neurosci 1999; 14:47-51.
    [34]Cajal SR y. Cajal's degeneration and regeneration of the nervous system, Oxford University Press: New York 1991.
    [35]Weidner N, Ner A, Salimi N, Tuszynski M H, Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc. Natl. Acad Sci. U. S. A. 2001. 98, 3513-3518.
    [36]Fansa H, Schneider W, Wolf G, et al, Host responses after acellular muscle basal lamina allografting used as a matrix for tissue engineered nerve grafts. Transplantation, 2002, 74(3):381-7.
    [37]Richardson PM, McGuinness UM, Aguayo AJ, Axons from the CNS neurones regenerate into PNS grafts. Nature, 1980, 284(5753):264-5.
    [38]Lu P, Yang H, Jones LL, Filbin MT, Tuszynski MH. Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J Neurosci. 2004 Jul 14;24(28):6402-9.
    [39]Tuszynski MH, Gabriel K, Gage FH, et al. Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor, and noradrenergic neurites after adult spinal cord injury. Exp Neurol, 1996, 137:157-173.
    [40]Liu Y, Kim D, Himes BT, et al. Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J Neurosci, 1999.19:4370-4387.
    [41]Filbin MT. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci, 2003, 4:703-713.
    [42]Jones LL, Sajed D, TuszynskiMH. Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition. J Neurosci, 2003, 23:9276-9288.
    [43]Bomze HM, Bulsara KR, Iskandar B J, et.al. Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nat Neurosci, 2001,4:38-43.
    [44]Snider WD, Zhou FQ, Zhong J, et al. Signaling the pathway to regeneration. Neuron, 2002, 35:13-16.
    [45]周政,张可成.神经生长因子和中枢神经系统创伤的研究进展.中国临床康复,2003,7:1554-1555.
    [46]Bonnet D, Garcia M, Vecino E, et al. Brain-derived neurotrophic factor signalling in adult pig retinal ganglion cell neurite regeneration in vitro. Brain Res. 2004 May 8; 1007(1-2): 142-51.
    [47]Je HS, Zhou J, Yang F, Lu B. Distinct mechanisms for neurotrophin-3-induced acute and long-term synaptic potentiation. J Neurosci. 2005 Dec 14;25(50): 11719-29.
    [48]Sahenk Z, Nagaraja I-IN, McCracken BS, et al:NT-3 promoters nerve regeneration and sensory jmprovement in CMT1A mouse models and in patients. Neurology, 2005 Sop 13;65(5):681-9.
    [49] English AW, Meador W, Carrasco DI. Neurotrophin-4/5 is required for the early growth of regenerating axons in peripheral nerves. Eur J Neurosci. 2005 May;21(10):2624-34.
    [50] 石向群,陈兴洲,陆兵勋.睫状神经营养因子及受体的研究进展,国外医学脑血管疾病分册,1999;7(2):76-79
    [51] Sendtner M, Kreutzberg GW, Thoenen H. Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature. 1990 May 31; 345(6274):440-1
    [52] Oppenheim RW, Prevette D, Yin QW, et al. Control of embryonic motoneuron survival in vivo by ciliary neurotrophic factor. Science. 1991 Mar 29; 251(5001):1616-8.
    [53] Lin LF, Doherty DH, Lile JD, et al. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993 May 21;260(5111):1130-2.
    [54] Henderson CE, Phillips HS, Pollock RA, et al. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science. 1994 Nov 11; 266(5187): 1062-4.
    [55] Hajebrahimi Z, Mowla SJ, Movahedin M, Tavallaei M. Gene expression alterations of neurotrophins, their receptors and prohormone convertases in a rat model of spinal cord contusion. Neurosci Lett. 2008 Aug 29; 441(3):261-6. Epub 2008 Jun 21.
    [56] Busch SA, Silver J. The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol. 2007 Feb; 17(1): 120-7. Epub 2007 Jan 12.
    [57] Mueller BK. Growth cone guidance: first steps towards a deeper understanding. Annu Rev Neurosci, 1999, 22:351-388.
    [58] Tang BL. Inhibitors of neuronal regeneration: mediators and signaling mechanisms. Neurochem Int, 2003, 42:189-203.
    [59] Qiu J, Cai D, Filbin MT.. Glial inhibition of nerve regeneration in the mature mammalian CNS. Glia, 2000, 81:166-384.
    [60] Fournier AE, Strittmatter SM. Repulsive factors and axon regeneration in the CNS. Curr Opin Neurobiol, 2001, 11:89-94.
    [61] Pasterkamp RJ, Verhaagen J. Emerging roles for semaphorins in neural regeneration. Brain Res Rev, 2001, 35:36-54.
    [62]Sandvig A, Berry M, Barrett LB, et al. Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia. 2004 May;46(3):225-51.
    [63]Fawcett JW. Overcoming inhibition in the damaged spinal cord. J Neurotrauma. 2006 Mar-Apr; 23(3-4):371-83.
    [64]Eph Nomenclature Committee.. Unified nomenclature for Eph family receptors and their ligands. Cell, 1997, 90:403.
    [65] Holder N, Klein R. 1999. Eph receptors and ephrins: effectors of morphogenesis. Development 126:2033-2044.
    [66] Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, Christ F, Schwab ME. 2000. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403:434-439.
    [67] GrandPre' T, Nakamura F, Vartanian T, Strittmatter SS. 2000. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403:439-444.
    [68] Prinjha R, Moore SE, Vinson M, Blake S, Morrow R, Christie G, Michalovich D, Simmons DL, Walsh FS. 2000. Inhibitor of neurite outgrowth in humans. Nature 403:383-384.
    [69] Domeniconi M, Cao Z, Spencer T, Sivasankaran R, Wang KC, Nikulina E, Kimura N, Cai H, Deng K, Gao Y, He Z, Filbin MT. 2002. Myelin-associated glycoprotein interacts with the Nogo-66 receptor to inhibit neurite outgrowth. Neuron 35:283-290.
    [70] Liu H, Ng CEL, Tang BL. 2002a. Nogo-A expression in mouse central nervous system neurons. Neurosci Lett 328:257-260.
    [71] Wang KC, Kopprivica VUK, Kim JA, Sivasankaran R, Guo Y, Neve RL, He Z. 2002. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ljgand that inhibits neurite outgrowth. Nature 417:941-944.
    [72] Semaphorin Nomenclature Committee. 1999. Unified nomenclature for the semaphorins/collapsins. Cell 97:551-552.
    [73] Markus A, Patel TD, Snider WD. Neurotrophic factors and axonal growth. Curr Opin Neurobiol 2002; 12: 523-31.
    [74] Houle JD, Tessler A. Repair of chronic spinal cord injury. Exp Neurol 2003; 182: 247-60.
    [75] Lindsay RM. Nerve growth factors (NGF, BDNF) enhance axonal regeneration but are not required for survival of adult sensory neurons. J Neurosci 1988; 8: 2394-405.
    [76] Chun LL, Patterson PH. Role of nerve growth factor in the development of rat sympathetic neurons in vitro. I. Survival, growth, and differentiation of catecholamine production. J Cell Biol 1977; 75: 694-704.
    [77] Namiki J, Kojima A, Tator CH. Effect of brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 on functional recovery and regeneration after spinal cord injury in adult rats. J Neurotrauma 2000; 17: 1219-31.
    [78] Shumsky JS, Tobias CA, Tumolo M, Long WD, Giszter SF, Murray M. Delayed transplantation of fibroblasts genetically modified to secrete BDNF and NT-3 into a spinal cord injury site is associated with limited recovery of function. Exp Neurol 2003; 184: 114-30.
    [79] Jin Y, Fischer I, Tessler A, Houle JD. Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury. Exp Neurol 2002; 177: 265-75.
    [80] Coumans JV, Lin TT, Dai HN, MacArthur L, McAtee M, Nash C, et al. Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. J Neurosci 2001; 21: 9334-44.
    [81] Lee YS, Hsiao I, Lin VW. Peripheral nerve grafts and aFGF restore partial hindlimb function in adult paraplegic rats. J Neurotrauma 2002; 19: 1203-16.
    [82] Cheng H, Wu JP, Tzeng SF. Neuroprotection of glial cell linederived neurotrophic factor in damaged spinal cords following contusive injury. J Neurosci Res 2002; 69: 397-405.
    [83] Bilak MM, Kuncl RW. Delayed application of IGF-I and GDNF can rescue already injured postnatal motor neurons. Neuroreport 2001; 12: 2531-5.
    [84] Bradbury EJ, King VR, Simmons LJ, Priestley JV, McMahon SB. NT-3, but not BDNF, prevents atrophy and death of axotomized spinal cord projection neurons. Eur J Neurosci 1998; 10: 3058-68.
    [85] Kobayashi NR, Fan DP, Giehl KM, Bedard AM, Wiegand SJ, Tetzlaff W. BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talphal-tubulin mRNA expression, and promote axonal regeneration. J Neurosci 1997; 17: 9583-95.
    [86] Lee TT, Green BA, Dietrich WD, Yezierski RP. Neuroprotective effects of basic fibroblast growth factor following spinal cord contusion injury in the rat. J Neurotrauma 1999; 16: 347-56.
    [87] Sayer FT, Oudega M, Hagg T. Neurotrophins reduce degeneration of injured ascending sensory and corticospinal motor axons in adult rat spinal cord. Exp Neurol 2002; 175: 282-96.
    [88] Bregman BS, Kunkel-Bagden E, Schnell L, Dai HN, Gao D, Schwab ME. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature. 1995 Nov 30;378(6556):498-501.
    [89] Huang DW, McKerracher L, Braun PE, David S. A therapeutic vaccine approach to stimulate axon regeneration in the adult mammalian spinal cord. Neuron 1999; 24: 639-47.
    [90] David S, Bouchard C, Tsatas O, Giftochristos N. Macrophages can modify the nonpermissive nature of the adult mammalian central nervous system. Neuron, 1990; 5: 463-9.
    [91] Li S, Strittmatter SM. Delayed systemic Nogo-66 receptor antagonist promotes recovery from spinal cord injury. J Neurosci 2003; 23: 421.9-27.
    [92] Ellezam B, Dubreuil C, Winton M, Loy L, Dergham P, Selles-Navarro I, et al. Inactivation of intracellular Rho to stimulate axon growth and regeneration. Prog Brain Res 2002; 137: 371-80.
    [93] Davies JE, Tang X, Denning JW, Archibald SJ, Davies SJ. Decorin suppresses neurocan, brevican, phosphacan and NG2 expression and promotes axon growth across adult rat spinal cord injuries. Eur J Neurosci 2004; 19: 1226-42.
    [94] Morgenstern DA, Asher RA, Fawcett JW. Chondroitin sulphate proteoglycans in the CNS injury response. Prog Brain Res 2002; 137: 313-32.
    [95] Bradbury EJ, Moon, LD, Popat RJ, King VR, Bennett GS, Patel PN, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 2002; 416: 636-40.
    [96] Yoshii S, Oka M, Shima M, Akagi M, Taniguchi A. Bridging a spinal cord defect using collagen filament. Spine 2003; 28: 2346-51.
    [97] Woerly S, Pinet E, de Robertis L, Van Diep D, Bousmina M. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel). Biomaterials 2001; 22: 1095-111.
    [98] Woerly S, Doan VD, Sosa N, de Vellis J, Espinosa A. Reconstruction of the transected cat spinal cord following NeuroGel implantation: axonal tracing, immunohistochemical and ultrastructural studies. Int J Dev Neurosci 2001; 19: 63-83.
    [99] Montgomery CT, Tenaglia EA, Robson JA. Axonal growth into tubes implanted within lesions in the spinal cords of adult rats. Exp Neurol 1996; 137: 277-90.
    [100]Spilker MH, Yannas IV, Kostyk SK, Norregaard TV, Hsu HP, Spector M. The effects of tubulation on healing and scar formation after transection of the adult rat spinal cord. Restor Neurol Neurosci 2001; 18: 23-38.
    [101] Oudega M, Gautier SE, Chapon P, Fragoso M, Bates ML, Parel JM et al. Axonal regeneration into Schwann cell grafts within resorbable poly(alpha-hydroxyacid) guidance channels in the adult rat spinal cord. Biomaterials 2001; 22: 1125-36.
    [102] Gautier SE, Oudega M, Fragoso M, Chapon P, Plant GW, Bunge MB, et al. Poly(alpha-hydroxyacids) for application in the spinal cord: resorbability and biocompatibility with adult rat Schwann cells and spinal cord. J Biomed Mater Res 1998; 42: 642-54.
    [103] Murray M, Kim D, Liu Y, Tobias C, Tessler A, Fischer I. Transplantation of genetically modified cells contributes to repair and recovery from spinal injury. Brain Res Brain Res Rev 2002; 40: 292-300.
    [104] Bunge MB. Transplantation of purified populations of Schwann cells into lesioned adult rat spinal cord. J Neurol 1994; 242: S36-9.
    [105] Raisman G. Olfactory ensheathing cells-another miracle cure for spinal cord injury? Nat Rev Neurosci 2001; 2: 369-75.
    [106] Keyvan-Fouladi N, Li Y, Raisman G. How do transplanted olfactory ensheathing cells restore function? Brain Res Brain Res Rev 2002; 40: 325-7.
    [107] Lu, P., Jones, L., Snyder, E., Tuszynski, M.H., 2003. Neural stem cells constitutively secrete neurotrophic factors and promote robust host axonal growth after spinal cord injury. Exp. Neurol. 81, 115-129.
    [108] Lim PA, Tow AM. Recovery and regeneration after spinal cord injury: a review and summary of recent literature. Ann Acad Med Singapore. 2007 Jan;36(l):49-57.
    [109] Price J, Williams BP. 2001. Neural stem cells. Curr Opin Neurobiol 11:564-567.
    [110]裴雪涛. 干细胞技术,北京:化学工业出版社,2002
    [111] Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell. 2004 Mar
    [112] Krause DS, Theise ND, Collector Ml, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105, 369-377.
    [113] Theise ND, Henegariu O, Grove J, et al. (2002). Radiation pneumonitis in mice: a severe injury model for pneumocyte engraftment from bone marrow. Exp. Hematol. 30, 1333-1338.
    [114] Kale S, Karihaloo A, Clark PR, (2003). Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J. Clin. Invest. 112, 42-49.
    [115] Petersen BE, Bowen WC, Patrene KD, (1999). Bone marrow as a potential source of hepatic oval cells. Science 284, 1168-1170.
    [116] Ianus A, Holz GG, Theise ND, and Hussain MA (2003). In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J. Clin. Invest. Ill, 843-850.
    [117] Brazelton TR, Nystrom M, and Blau HM (2003). Significant differences among skeletal muscles in the incorporation of bone marrow-derived cells. Dev. Biol. 262, 64-74.
    [118] Grant MB, May WS, Caballero S, et al. (2002). Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat. Med. 8, 607-612.
    [119] Jackson KA, Majka SM, Wang H, et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395-1402.
    [120] Brazelton TR, Rossi FM, Keshet GI, and Blau HM (2000). From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775-1779.
    [121] Mezey E, Chandross KJ, Harta G, et al. (2000). Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779-1782.
    [122] Priller J, Persons DA, Klett FF, et al. (2001). Neogenesis of cerebellar Purkinje neu rons from gene-marked bone marrow cells in vivo. J. Cell Biol. 155, 733-738.
    [123] Weimann JM, Charlton CA, Brazelton TR, et al. (2003). Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc. Natl. Acad. Sci. USA 100, 2088-2093.
    [124] Weimann JM, Johansson CB, Trejo A, et al. (2003). Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat. Cell Biol. 5, 959-966.
    [125] Wurmser AE, Gage FH. Stem cells: cell fusion causes confusion. Nature. 2002 Apr 4;416(6880):485-7.
    [126] Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature. 2002 Apr 4;416(6880):545-8. Epub 2002 Mar 13.
    [127] Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature. 2002 Apr 4;416(6880):542-5. Epub 2002 Mar 13.
    [128] Crain BJ, Tran SD, Mezey E. Transplanted human bone marrow cells generate new brain cells. J Neurol Sci. 2005 Jun 15;233(l-2):121-3. Epub 2005 Apr 21.
    [129] Mezey E, Key S, Vogelsang G, et al. Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci USA. 2003 Feb 4; 100(3): 1364-9. Epub 2003 Jan 21.
    [130] Tran SD, Piliemer SR, Dutra A, et al. Differentiation of human bone marrow-derived cells into buccal epithelial cells in vivo: a molecular analytical study. Lancet. 2003 Mar 29;361(9363):1084-8.
    [131]Cogle CR, Yachnis AT, Laywell ED, et al. Bone Marrow transdifferentiation in brain after transplantation: a retrospective study, Lancet, 363: 1432-1437, 2004
    [ 132] Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes, Nature, 425: 968-973, 2003
    [133]Corti S, Locatelli F, Papadimitriou D, et al. Somatic stem cell research for neural repair: current evidence and emerging perspectives. J Cell Mol Med. 2004 Jul-Sep;8(3):329-37.
    [134]Castro RF, Jackson KA, Goodell MA, et al. (2002). Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science 297, 1299.
    [135]Choi JB, Uchino H, Azuma K, et al. (2003). Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia 46, 1366-1374.
    [136]Ono K, Yoshihara K, Suzuki H, et al. (2003). Preservation of hematopoietic properties in transplanted bone marrow cells in the brain. J. Neurosci. Res. 72, 503-507.
    [137]Vallieres L, Sawchenko PE (2003). Bone marrow-derived cells that populate the adult mouse brain preserve their hematopoietic identity. J. Neurosci. 23, 5197-5207.
    [138]Wagers AJ, Sherwood RI, Christensen JL, et al. (2002). Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297, 2256-2259.
    [139]Goodell MA (2003). Stem-cell "plasticity": befuddled by the muddleCurr. Opin. Hematol. 10, 208-213.
    [140]Raff M (2003). Adult stem cell plasticity: fact or artifact? Annu. Rev. Cell Dev. Biol. 19, 1-22.
    [141]Ferrari G, Cusella-De Angelis G, Coletta M, et al. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528-1530.
    [142]Bjornson CR, Rietze RL, Reynolds BA, et al. (1999). Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283,534-537.
    [143]Jiang Y, Jahagirdar BN, Reinhardt RL, et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41-49.
    [144]Jiang Y, Vaessen B, Lenvik T, et al. (2002b). Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp. Hematol. 30, 896-904.
    [145]Toma JG., Akhavan M, Fernandes KJ, et al. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 3,778-784.
    [146]Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425,968-973.
    [147]Brodhun M, Bauer R, Patt S. Potential stem cell therapy and application in neurotrauma. Experimental and Toxicologic Pathology 56 (2004) 103-112
    [148]Bru" stle O, Spiro AC, Karram K, et al, In vitro-generated neuronal precursors participate in mammalian brain development. Proc Natl Acad Sci USA 1997;94: 14809-14.
    [149]Song HJ, Stevens CF, Gage FH. Neural stem cells from adult hippocampus develop ssential properties of functional ONS neurons Nat Neurosci 2002;5;438-45.
    [150] Romero-Ramos M, Vourc'h P, Young HE, et al. Neuronal differentiation of stem cells isolated from adult muscle. J Neurosci Res 2002; 15:3999-4002.
    [151] Reubinoff BE, Itsykson P, Turetsky T, et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol 2001; 19:1134-40.
    [152] Enzmann GU, Benton RL, Talbott JF, et al. Functional considerations of stem cell transplantation therapy for spinal cord repair. J Neurotrauma. 2006 Mar-Apr; 23 (3-4) :479-95.
    [153] Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental Hematology, 1976, 4: 267-274.
    [154] Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet, 1987,20: 263-272.
    [155] Jackson L, Jones DR, Scotting P, et al. Adult mesenchymal stem cells: differentiation potential and therapeutic applications. J Postgrad Med, 2007, 53(2): 121-127
    [156] Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7.
    [157] Devine SM, Cobbs C, Jennings M, et al. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 2003;101:2999-3001.
    [158] Aggarwal S, Pittenger MF Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105:1815-22.
    [159] Chang CJ, Yen ML, Chen YC, et al. Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells 2006;24:2466-77.
    [160] Neuhuber B, Himes BT, Shumsky JS, et al. (2005). Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res. 1035, 73-85.
    [161] Lu P, Jones L, Tuszynski MH. (2005). BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp. Neurol. 191, 344-360.
    [162] Song S, Kamath S, Mosquera D, et al. (2004). Expression of brain natriuretic peptide by human bone marrow stromal cells. Exp. Neurol. 185, 191-197.
    [163] Krabbe C, Zimmer J, Meyer M. Neural transdifferentiation of mesenchymal stem cells-a critical review. APMIS, 2005, 113: 831-44.
    [164] Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000; 61:364-70.
    [165] Woodbury D, Reynolds K, Black IB. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res. 2002 Sep 15;69(6):908-17.
    [166] Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 2000; 164:247-56.
    [167] Deng W, Obrocka M, Fischer I, Prockop DJ. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Com 2001 ;282:148-52.
    [168] Kohyama J, Abe H, Shimazaki T, Koizumi A, Nakashima K, Gojo S, et al. Brain from bone: efficient "meta-differentiation" of marrow stroma derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation 2001;68:235-44.
    [169] Kim BJ, Seo JH, Bubien JK, Oh YS. Differentiation of adult bone marrow stem cells into progenitor cells in vitro. Neuroreport 2002; 13:1185-8.
    [170] Jin K, Mao XO, Batteur S, Sun Y, Greenberg DA. Induction of neuronal markers in bone marrow cells: differential effects of growth factors and patterns of intracellular expression. Exp Neurol 2003;184:78-89.
    [171] Svendsen CN, Bhattacharyya A, Tai YT. Neurons from stem cells: preventing an identity crisis. Nat Rev Neurosci 2001;2:831-4.
    [172] Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair-current views. Stem Cells. 2007 Nov;25(11):2896-902. Epub 2007 Sep 27.
    [173] Neuhuber B, Gallo G, Howard L et al. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: Disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res 2004;77:192-204.
    [174] Lu P, Blesch A, Tuszynski MH. Induction of bone marrow stromal cells to neurons: Differentiation, transdifferentiation, or artifact. J Neurosci Res 2004;77:174-191.
    [175] Chou YH, Goldman RD. Intermediate filaments on the move. J Cell Biol 2000;150:F101-F106.
    [176] Qian L, Saltzman WM. Improving the expansion and neural differentiation of mesenchymal stem cells through culture surface modification. Biomaterials 2004;25:1331-1337.
    [177] Parr AM, Tator CH, Keating A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplantation (2007) 40, 609-619
    [178] Lee J, Kuroda S, Shichinohe H, et al. Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology 2003; 23: 169-180.
    [179] Zurita M, Vaquero J. Functional recovery in chronic paraplegia after bone marrow stromal cells transplantation. Neuroreport 2004; 15: 1105-1108.
    [180] Sasaki M, Honmou O, Akiyama Y, et al. Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axons. Glia 2001; 35: 26-34.
    [181] Kamada T, Koda M, Dezawa M, et al. Transplantation of bone marrow stromal cell-derived Schwann cells promotes axonal regeneration and functional recovery after complete transection of adult rat spinal cord. J Neuropathol Exp Neurol 2005; 64: 37-45.
    [182] Yano S, Kuroda S, Lee JB, et al. In vivo fluorescence tracking of bone marrow stromal cells transplanted into a pneumatic injury model of rat spinal cord. J Neurotrauma 2005; 22: 907-918.
    [183] Akiyama Y, Radtke C, Honmou O, et al. Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 2002; 39: 229-236.
    [184] Ohta M, Suzuki Y, Noda T, et al. Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation. Exp Neurol 2004; 187: 266-278.
    [185] Sykov(?) E, Jendelov(?) P, Urdz(?)kov(?) L, et al. Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair. Cell Mol Neurobiol. 2006 Oct-Nov;26(7-8): 1113-29. Epub 2006 Apr 22.
    [186] Sykov(?) E, Homola A, Mazanec R, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant. 2006;15(8-9):675-87.
    [187] Yoon SH, Shim YS, Park YH, et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase Ⅰ/Ⅱ clinical trial. Stem Cells. 2007 Aug;25(8):2066-73. Epub 2007 Apr 26.
    [188] Park HC, Shim YS, Ha Y, et al. Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng. 2005 May-Jun; 11 (5-6) :913-22.
    [189] Steeves J, Fawcett J, Tuszynski M. Report of international clinical trials workshop on spinal cord injury February 20-21, 2004, Vancouver, Canada. Spinal Cord. 2004 Oct;42(10):591-7.
    [190] Hofstetter CP, Schwarz EJ, Hess D, etal. 2002. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl. Acad. Sci. 99, 2199- 2204.
    [191] Ogawa Y, Sawamoto K, Miyata T, et al. 2002. Transplantation of in vitro expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in rats. J Neurosci Res 69:925-933.
    [192] Pearse DD, Sanchez AR, Pereira FC, et al. Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord: Survival, migration, axon association, and functional recovery. Glia, 2007, 55(9):976-1000.
    [193] Iwatsuki K, Yoshimine T, Kishima H, et al. Transplantation of olfactory mucosa following spinal cord injury promotes recovery in rats. Neuroreport, 2008, 19(13): 1249-52.
    [194] Zahir T, Nomura H, Guo XD, et al. Bioengineering neural stem/progenitor cell-coated tubes for spinal cord injury repair. Cell Transplant, 2008, 17(3):245-54.
    [195] Lo WC, Hsu CH, Wu AT, et al. A novel cell-based therapy for contusion spinal cord injury using GDNF-delivering NIH3T3 cells with dual reporter genes monitored by molecular imaging. J Nucl Med, 2008, 49(9): 1512-9.
    [196] Lang EM, Schlegel N, Reiners K, et al. Single-dose application of CNTF and BDNF improves remyelination of regenerating nerve fibers after C7 ventral root avulsion and replantation. J Neurotrauma, 2008, 25(4):384-400.
    [197] Atalay B, Bavbek M, Cekinmez M, et al. Antibodies neutralizing Nogo-A increase pan-cadherin expression and motor recovery following spinal cord injury in rats. Spinal Cord, 2007, 45(12):780-6.
    [198] Hejcl A, Lesn(?) P, Pr(?)dn(?) M, et al. Biocompatible hydrogels in spinal cord injury repair. Physiol Res. 2008;57 Suppl 3:S121-32. Epub 2008 May 13.
    [199] Zhong Y, Bellamkonda RV. Biomaterials for the central nervous system. J. R. Soc. Interface (2008) 5, 957-975
    [200] Woerly S, Pinet E, de Robertis L, et al. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel). Biomaterials. 2001 May;22(10): 1095-111.
    [201] Nomura H, Tator CH, Shoichet MS. Bioengineered strategies for spinal cord repair. J Neurotrauma. 2006 Mar-Apr;23(3-4):496-507.
    [202] Wallacea DG, Rosenblatt J. Collagen gel systems for sustained delivery and tissue engineering. Advanced Drug Delivery Reviews 55 (2003) 1631- 1649
    [203] Liu S, Peulve P, Jin O, et al. Axonal regrowth through collagen tubes bridging the spinal cord to nerve roots. Journal of Neuroscience Research 49:425-432 (1997)
    [204] Ysmada KM, Olden K. (1978). Fibronectins-dhesive glycoproteins of cell surface and blood. Nature 275, 179-184.
    [205] Phillips JB, King VR, Ward Z, et al. (2004). Fluid shear in viscous fibronectin gels allows aggregation of fibrous materials for CNS tissue engineering. Biomaterials 25, 2769-2779.
    [206] King VR, Phillips JB, Brown RA, et al. (2004). The effects of treatment with antibodies to transforming growth factor betal and beta2 following spinal cord damage in the adult rat. Neuroscience 126, 173-183.
    [207] Freier T, Montenegro R, Shan kon H, et al. (2005). Chitin-based tubes for tissue engineering in the nervous system. Biomaterials 26, 4624-4632.
    [208] Kataoka K, Suzuki Y, Kitada M, et al. (2004). Alginate enhances elongation of early regenerating axons in spinal cord of young rats. Tissue Eng. 10, 493-504.
    [209] Tobias CA, Han SS, Shumsky JS, et al. (2005). Alginate encapsulated BDNF-producing fibroblast grafts permit recovery of function after spinal cord injury in the absence of immune suppression. J. Neurotrauma 22, 138-156.
    [210] Zimmermanu U, Thurmer F, Jork A, et al. (2001).A novel class of amitogenic alginate microcapsules for longterm immunoisolated transplantation. Ann. NY Acad. Sci. 944, 199-215.
    [211] Stokols S, Tuszynski MH. (2004). The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials 25, 5839-5846.
    [212] Luo Y, Shoichet MS. (2004). A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat. Mater. 3, 249-253.
    [213] Wang KK, Nemeth IR, Seckel BR, et al. (1998). Hyaluronic acid enhances peripheral nerve regeneration in vivo. Microsurgery 18, 270-275.
    [214] Avitabile T, Marano F, Castiglione F, et al. (2001). Biocompatibility and biodegradation of intravitreal hyaluronan implants in rabbits. Biomaterials 22, 195-200.
    [215] Tian WM, Hou SP, Ma J, et al. (2005). Hyaluronic acid-poly-D-lysine-based three-dimensional hydrogel for traumatic brain injury. Tissue Eng. 11, 513-525.
    [216] Khor E, Lim LY. (2003). Implantable applications of chitin and chitosan. Biomaterials 24, 2339-2349.
    [217] Itoh S, Suzuki M, Yamaguchi I, et al. (2003). Development of a nerve scaffold using a tendon chitosan tube. Artif. Organs 27, 1079-1088.
    [218] Mohanna PN, Young RC, Wiberg M, et al. (2003). A composite poly-hydroxybutyrateglial growth factor conduit for long nerve gap repairs. J. Anat. 203, 553-565.
    [219] Novikov LN, Novikova LN, Mosahebi A, et al. (2002). A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury. Biomaterials 23, 3369-3376.
    [220] Mackinnon SE, Dellon AL. (1990). Clinical nerve reconstruction with a bioabsorbable polyglycolic acid tube. Plast. Reconstr. Surg. 85, 419-424.
    [221] Evans GR, Brandt K, Widmer MS, et al. (1999). In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials 20, 1109-1115.
    [222] Oudega M, Gautier SE, Chapon P, et al. (2001). Axonal regeneration into Schwann cell grafts within resorbable poly(alpha-hydroxyacid) guidance channels in the adult rat spinal cord. Biomaterials 22, 1125-1136.
    [223] Teng YD, Lavik EB, Qu X, et al. (2002). Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc. Natl. Acad. Sci. USA 99, 3024-3029.
    [224] Montgomery CT, Robson JA (1993). Implants of cultured Schwann cells support axonal growth in the central nervous system of adult rats. Exp. Neurol. 122, 107-124.
    [225] Luo J, Shi R. (2004). Diffusive oxidative stress following acute spinal cord injury in guinea pigs and its inhibition by polyethylene glycol. Neurosci. Lett. 359, 167-170.
    [226] Borgens RB, Shi R, Bohnert D. (2002). Behavioral recovery from spinal cord injury following delayed application of polyethylene glycol. J. Exp. Biol. 205, 1-12.
    [227] Laverty PH, Leskovar A, Breur GJ, et al. (2004). A preliminary study of intravenous surfactants in paraplegic dogs: polymer therapy in canine clinical SCI. J. Neurotrauma 21, 1767-1777.
    [228] Tsai EC, Dalton PD, Shoichet MS, et al. (2004). Synthetic hydrogel guidance channels facilitate regeneration of adult rat brainstem motor axons after complete spinal cord transection. J. Neurotrauma 21, 789-804.
    [229] Giannetti S, Lauretti L, Fernandez E, et al. (2001). Acrylic hydrogel implants after spinal cord lesion in the adult rat. Neurol. Res. 23, 405-409.
    [230] Tsai EC, Dalton PD, Shoichet MS, et al. (2006). Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Biomaterials 27, 519-533.
    [231] Parker AL, Fisher KD, Oupicky D, et al. (2005). Enhanced gene transfer activity of peptide-targeted gene-delivery vectors. J. Drug Target 13, 39-51.
    [232] Woerly S, Doan VD, Evans-martin F, et al. (2001). Spinal cord reconstruction using NeuroGel implants and functional recovery after chronic injury. J. Neurosci. Res. 66, 1187-1197.
    [233] Loh NK, Woerly S, Bunt SM, et al. (2001). The regrowth of axons within tissue defects in the CNS is promoted by implanted hydrogel matrices that contain BDNF and CNTF producing fibroblasts. Exp. Neurol. 170, 72-84.
    [234] Bunge MB. (2002). Bridging the transected or contused adult rat spinal cord with Schwann cell and olfactory ensheathing glia transplants. Prog. Brain Res. 137, 275-282.
    [235] Bamber NI, Li H, Lu X, et al. (2001). Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels. Eur. J. Neurosci. 13, 257-268.
    [236] Fouad K, Schnell L, Bunge MB, et al. (2005). Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J. Neurosci. 25, 1169-1178.
    [237] Schepsis AA, Greenleaf J. (1990). Prosthetic materials for anterior cruciate ligament reconstruction. Orthop. Rev. 19, 984-991.
    [238] Chauhan NB, Figlewicz HM, Khan T. (1999). Carbon filaments direct the growth of postlesional plastic axons after spinal cord injury. Int. J. Dev. Neurosci. 17, 255-264.
    [239] McKenzie JL, Waid MC, Shi R, et al. (2004). Decreased functions of astrocytes on carbon nanofiber materials. Biomaterials 25, 1309-1317.
    [240] Humble G, Mest D. (2004). Soft tissue augmentation using silicone: an historical review. Facial Plast. Surg. 20, 181-184.
    [241] Valero-Cabre A, Tsironis K, Skouras E, et al. (2004). Peripheral and spinal motor reorganization after nerve injury and repair. J. Neurotrauma 21, 95-108.
    [242] Borgens RB. (1999). Electrically mediated regeneration and guidance of adult mammalian spinal axons into polymeric channels. Neuroscience 91, 251-264.
    [243] Turner JN, Shain W, Szarowski DH, et al. (1999). Cerebral astrocyte response to micromachined silicon implants. Exp. Neurol. 156, 33-49.
    [244] Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24 (2003) 4337-4351.
    [245] Zhang S. Hydrogels: Wet or let die. Nat Mater. 2004 Jan;3(1):7-8.
    [246] Ratner, B. D., et al., (eds.), Biomaterials Science: An Introduction to Materials in Medicine, 2nd Edition, Elsevier/Academic Press, London, UK, (2004), 107
    [247] Gutowska A, Jeong B, Jasionowski M. Injectable gels for tissue engineering. Anat Rec,2001,263(4):342-9.
    [248] Anderson DG, Burdick JA, Langer R. Materials science. Smart biomaterials. Science. 2004 Sep 24;305(5692): 1923-4.
    [249] Shieh SJ, Vacanti JP. State-of-the-art tissue engineering: from tissue engineering to organ building. Surgery. 2005 Jan; 137(1):1-7.
    [250] Lehn JM. Supermolecular chemistry. Science. 1993; 260:1762.
    [251] Whitesides GM, Mathias JP, Seto CT. Molecular self-assemble and nanochemistry: a chemical strategy for the synthesis of nanostructure. Science. 1991; 254:1312.
    [252] Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science. 2001 Nov 23;294(5547): 1684-8.
    [253] Hartgerink JD, Beniash E, Stupp SI. Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials. PNAS, 2002, 99(8): 5133-5138.
    [254] Silva GA, Czeisler C, Niece KL, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science. 2004 Feb 27;303(5662): 1352-5. Epub 2004 Jan 22.
    [255] Niece KL, Hartgerink JD, Donners JJ, et al. Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. J Am Chem Soc. 2003 Jun 18;125(24):7146-7.
    [256] Lin X, Takahashi K, Liu Y, et al. Enhancement of cell attachment and tissue integration by a IKVAV containing multi-domain peptide. Biochimica et Biophysica Acta 1760(2006)1403-1410.
    [257] Santiago LY, Nowak RW, Rubin JP, et al. Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials 27 (2006) 2962-2969.
    [258] Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm, 2001, 221 (1-2): 1-22.
    [259] Tysseling-Mattiace VM, Sahni V, Niece KL, et al. Self-Assembling Nanofibers Inhibit Glial Scar Formation and Promote Axon Elongation after Spinal Cord Injury. The Journal of Neuroscience, Apri12, 2008, 28(14):3814-3823
    [260] Woerly S, Petrov P, Sykov(?) E, et al. Neural tissue formation within porous hydrogels implanted in brain and spinal cord lesions: ultrastructural, immunohistochemical, and diffusion studies. Tissue Eng, 1999, 5(5):467-88.
    [261] White DJ, Puranen S, Johnson MS, et al. The collagen receptor subfamily of the integrins. Int J Biochem Cell Biol, 2004, 36(8): 1405-10.
    [262] Lin PW, Wu CC, Chen CH, et al. Characterization of cortical neuron outgrowth in two-and three-dimensional culture systems. J Biomed Mater Res B Appl Biomater, 2005, 75(1): 146-57.
    [263] Joosten EA, Veldhuis WB, Hamers FP. Collagen containing neonatal astrocytes stimulates regrowth of injured fibers and promotes modest locomotor recovery after spinal cord injury. J Neurosci Res, 2004, 77(1): 127-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700