剩余污泥减量化处理中细胞物质的释放特性与磷回收研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污泥减量化与资源化是当前环境领域的研究热点之一。通过溶胞技术,使得污泥中的微生物利用衰亡微生物形成的二次基质进行生长,可达到污泥减量化的目的。在采用溶胞法进行污泥减量的同时,必然伴随着细胞内有机物、氮、磷等物质的释放。全面了解剩余污泥减量化过程中细胞物质的释放规律,掌握污泥减量后上清液的可生化特性,为减量化后的污泥上清液寻找合理出路,同时对污泥中所释放的磷资源进行回收,对实现剩余污泥有效减排具有重要意义。
     论文以目前常用城市污水处理组合工艺—A/O, An/O, A2/O工艺的剩余污泥为研究对象,通过小试研究了污泥在超声波处理中细胞物质的破解效果和释放规律。首先对比考察了超声波工作方式对污泥中COD, TN, TP释放的影响,确定了脉冲比4:1作为本研究中的超声波工作方式。在本研究所选取的超声波处理条件下(声能密度0.167~0.500W/mL,超声时间10~60 min)下,A/O, An/O, A2/O三种工艺剩余污泥中的有机物、氮、磷的释放量与释放率均随超声时间而提高,其中0.500 W/mL,60 min时A/O, An/O, A2/O污泥所对应的COD释放率分别为50.8%、54.1%和56.9%,TN释放率分别为52.1%、47.2%和70.4%,TP释放率分别为45.3%、68.1%和88.2%。在本研究的实验条件下,声能密度对物质释放的贡献度要小于超声时间,由处理中细胞物质释放规律可判定,超声波临界声能密度介于0.330 W/mL与0.500 W/mL之间。
     经超声处理后,三种剩余污泥的上清液BOD5/COD提高到0.33~0.68,有机物均以MW≤2 kDa的低分子量物质为主,表明所释放的有机物具有良好的可生化性。所释放的TN均以有机氮为主,NH3-N次之,硝态氮含量甚微,可忽略不计。上清液中有机物及氮含量同时增加,但COD/TKN>9,表明污泥在超声处理中所释放的氮可通过生物法得到有效去除。
     由于A/O, An/O, A2/O工艺的剩余污泥含磷量不同,所以在超声处理中三种剩余污泥的磷释放特性差别较大。A/O污泥含磷量较低,在0.167~0.500 W/mL下处理时,TP释放率差别不大,并且所释放的P043--P大约占污泥TP量的13.0%-18.2%,磷回收价值不高。而含磷量较高的An/O和A2/O污泥在相同的超声波处理条件下所释放的TP量明显高于A/O污泥,并且其中PO43--P比例较高(An/O和A2/O污泥上清液中PO43--P/TP分别为73.6%-89.2%、89.9%~96.5%),是污泥TP量的46.8%-55.7%、57.2%-76.2%,有利于通过化学法进行磷回收。
     为验证超声处理剩余污泥的效果,本研究对另外两个处理方法进行了对比研究。剩余污泥的热处理实验结果表明,污泥减量化和物质释放效果受处理温度的影响较大,处理效果随处理温度的提高而提高,但不同温度下的处理效果及变化规律有所不同。较低温度(50℃时),处理效果随时间而提高,但最大污泥浓度减少率及物质释放率低于20%,而70℃、90℃时污泥减量化和细胞物质释放均呈现先快后慢的处理效果;三个温度下污泥中磷的释放规律相同,均表现为先快后慢。热处理中的污泥上清液的氮磷组成与超声波法接近。因此采用热处理法进行污泥减量和细胞物质释放时,宜采用高温短时的操作方案。采用酸碱调节实验进行剩余污泥的处理中,仅在强碱性(初始pH为12.0)条件下才有一定的污泥减量和细胞物质释放,但处理效果不如超声波法和热处理法。综合考虑处理效果和经济能耗,在本研究所选用的三种处理方法中,超声波法较为经济有效。
     为防止污泥减量化易造成污水处理系统中磷负荷的增加,论文对富磷污泥超声处理中所释放的磷进行了化学法回收研究。以An/O工艺剩余污泥在0.330 W/mL、60 min条件下得到的超声波上清液作为实验对象,通过单因素实验确定了磷酸铵镁沉淀法和磷酸钙盐沉淀法的最佳工艺条件,分别为反应初始pH 9.7、搅拌时间10 min、镁磷比1.5和反应初始pH 9.0、搅拌时间5 min、钙磷比3.87。在此条件下分别可回收污泥超声波上清液中96.3%、94.0%的PO43--P。因此超声波法进行污泥减量与化学法磷回收相结合后,可回收富磷污泥中大约50%的TP,这对缓解磷资源紧缺问题具有重要指导意义。
     最后对A/O、An/O、A2/O工艺剩余污泥经超声波处理和磷回收后的污泥上清液的可生化特性进行了静态间歇式实验研究。结果表明:A/O工艺剩余污泥超声波上清液,在好氧条件下的有机物生物降解性、有机氮与氨氮的硝化性、有机物对反硝化影响方面的可生化性均较好;An/O工艺剩余污泥经MAP法磷回收的超声波上清液,在好氧条件下的有机物生物降解性和富磷污泥的厌氧释放性均优于采用HAP法磷回收的污泥超声波上清液;经MAP法磷回收后的A2/O工艺剩余污泥的超声波上清液,在有机物生物降解性、硝化反应、反硝化反应、厌氧释磷四个方面的生化特性均不如生活污水,尤其在有机物的生物降解性方面;根据城市污水厂剩余污泥产生量,将A/O、An/O、A2/O工艺的剩余污泥超声波上清液与生活污水相混合后,混合液在各方面的生化特性均与生活污水接近。因此,A/O、An/O. A2/O工艺剩余污泥经超声波减量化处理和磷资源回收后,污泥上清液可回流至工艺流程中任意生化段,不会影响原工艺的生化处理效果。
     综上所述,通过超声波与化学法磷回收技术,可实现城市污水处理厂剩余污泥50%的减量化,回收污泥中约50%的总磷,而且减量化中所释放的细胞物质可回流至原处理工艺,不会影响生化系统的稳定运行。
Reduction and reuse of waste activated sludge (WAS) are popular topics in environmental research. Biological utilization of the cellular materials released from sludge disintegration is an attractive approach to achieve the desired degree of sludge reduction. A full understanding of the release of many organics, nitrogen (N) and phosphorus (P) species during WAS treatment, biodegradability of supernatant of the treated WAS and P recovery will help to construct a cost effective program of WAS reduction and reuse.
     Batch ultrasound treatment (sonication) runs were performed on WAS of A/O, An/O and A2/O units to identify the important factors affecting sludge disintegration and releases of the cellular materials and their effects. The effects of sonication on the releases of COD, total N (TN) and total P (TP) were first investigated; the results suggested that the 4:1 pulse ratio sonication was the desired sonication pattern for the tests. Under the sonication conditions of this research (ultrasound intensity of 0.167-0.500 W/mL and treatment time of 10-60 min), the releases of organic, N and P species increased with the treatment time; under 60 min in sonication at 0.500 W/mL, COD release efficiences of 50.8%,54.1%and 56.9%, TN release efficiences of 52.1%,47.2%and 70.4%, and TP release efficiences of 45.3%,68.1%and 88.2%were observed for the A/O, An/O and A2/O WAS samples respectively. The ultrasound intensity was a less important factor than the treatment time; the critical ultrasound intensity was estimated at 0.330-0.500 W/mL.
     After sonication, the supernatants of the treated WAS samples were more biodegradable as evidenced by the higher BOD5/COD of 0.33-0.68 and the predominance of organic compounds of MW≤2 kDa, which are called as smaller molecular. Organic N species were the predominant in TN released, followed by ammonia N and negligible amounts of nitrified N species. A major part of the TN released can be biologically removed since these supernatants all had a high value of COD/TKN, which are more than 9.
     Different amounts of TP were released from the three kinds of WAS due to their different TP contents. For the A/O WAS with low TP, about the same TP release rates were observed under sonication at 0.167-0.500 W/mL; P recovery would not be practical given its small PO43--P content of 13.0%-18.2%. For the An/O and A2/O WAS with more TP (TP was 46.8%-55.7%and 57.2%-76.2%of the dry weight for the An/O and A2/O WAS respectively), much more TP species were released under sonication; the greater release of TP species of higher%of PO43--P (the values of PO43--P/TP were 73.6%-89.2%and 89.9%-96.5%for the An/O and A2/O WAS respectively) could make P recovery by chemical precipitation more attractive.
     Thermal treatment and acid-alkalia adjustment were also studied and compared with sonication for sludge reduction effectiveness. Results of thermal treatment of WAS have demonstrated the importance of temperature during the process; more release of dissolved cellular materials and greater sludge reduction were observed at a higher temperature and that the treatment efficiences and change patterns in the process were temperature dependent. At a relatively low temperature of 50℃, although the thermal treatment efficiencies improved with the treatment time, the max observed sludge reduction and material releases were all less than 20%. At a higher temperature of 70 and 90℃, the rates of sludge reduction and material releases were fast initially and then slow down gradually. The same pattern was observed in P releases during the thermal treatment at the three temperatures mentioned above. Composition of TN released by thermal treatment was about the same as that by sonication. So high temperature treatment in short duration would therefore be the most effective mode for sludge reduction. WAS reduction by pH adjustment was only marginally effective at a very high initial pH of 12. Considering the treatment efficiences and cost, sonication was clearly the best method of the three studied for sludge reduction.
     So that recycling of the sonicated WAS would not increase the P loading to the existing wastewater treatment system, P recovery by chemical precipitation was studied. Series of experiments were performed on the supernatant of the sonicated An/O WAS (60 min at 0.330 W/mL) to identify the best operation conditions for P recovery employing MAP and HAP methods. With the initial pH of 9.7, mixed contact time of 10 min and Mg/P of 1.5,96.3%of soluble PO43--P in the MAP precipitation was recovered, and the initial pH of 9.0, mixed contact time of 5 min and Ca/P of 3.87,94.0%of soluble PO43--P in the HAP precipitation was recovered. Incorporating P recovery in the sonication WAS reduction system, about 50% of TP may be recovered, which was an important benefit due to the current shortage of P resources.
     Batch biodegradability tests were performed on the supernatants of sonicated WAS of the A/O, An/O, A2/O units. The supernatants of the sonicated A/O WAS exhibited good results to aerobic degradability for organics and N by nitrification and denitrification. Aerobic COD reduction and anaerobic TP release of the supernatant of the sonicated An/O WAS+P recovery by MAP were better than that by HAP. Supernatant of the sonicated A2/O WAS+P recovery by MAP was less efficience than the raw domestic wastewater in terms of COD reduction, nitrification, denitrification and P release. Given the proper mixture of raw wastewater and the supernatants of all sonicated WAS had similar biodegradability as the raw wastewater, the supernatants of sonicated WAS (from A/O, An/O, A2/O units)+P recovery may be recycled to a biological treatment systems (of organic removal, nitrification, denitrification and P release) without any harm.
     The results of this study do demonstrate that the combined sonication of WAS and P recovery by chemical precipitation is capable of achieving 50%reduction in the amount of the wastewater treatment plant sludge and recovering 50%soluble TP of the sonicated WAS. Furthmore the remaining dissolved cellular materials of the recycle sonicated WAS would have no adverse effects on the stable performance in raw domestic biological treatment system.
引文
[1]黄懂宁.城市污泥处置概述[J].环境科学动态,1999(4):17-29.
    [2]叶子瑞.国内外污泥处置和管理现状[J].环境卫生工程,2002,10(2):85-88.
    [3]何品晶,顾国维,李笃中等编著.城市污泥处理与利用[M].北京:科学出版社,2003:序言,
    [4]赵庆祥编著.污泥资源化技术[M].北京:化学工业出版社,2002:2-3.
    [5]张自杰主编.排水工程(下册)(第四版)[M].北京:中国建筑工业出版社,2000:328.
    [6]李军,杨秀山,彭永臻编著.微生物与水处理工程[M].北京:化学工业出版社,2002:463.
    [7]Low E. W., Chase H. A.. Reducing production of excess biomass during wastewater treatment[J], Water Research,1999,33(5):1119-1132.
    [8]Rensink J. H., Rulkens W. H.. Using metazoan to reduce sludge production[J]. Water Science and Technology,1997,36(11):171-179.
    [9]梁鹏,黄霞,钱易.污泥减量化技术的研究进展[J].环境污染治理技术与设备,2004,4(1):44-52.
    [10]B.D.黑姆斯等著,王镜岩等译.生物化学[M].北京:科学出版社,2000:296-305.
    [11]Loosdrecht M. C. M. V., Henze M.. Maintenance, endogeneous respiration, lysis, decay and predation[J]. Water Science and Technology,1999,39(1):107-117.
    [12]林山杉,管运涛.好氧/厌氧交替与循环工艺用于污泥减量化研究[J].工业水处理,2005,25(2):34-37.
    [13]Hultman B., Levlin E., Stark K.. Phosphorus recovery from sewage sludges:Research and experiences in Nordic Countries, Scope Newsletter CEEP,2000,41:29-32.
    [14]Pierrou U.. The global phosphorus cycle[J]. Ecological bulletins, No.22, nitrogen, phosphorus and sulphur:global cycles:scope report 7,1976:75-88.
    [15]刘颐华.我国与世界磷资源及开发利用现状[J].磷肥与复肥,2005,20(5):1-6.
    [16]Steen I.. Phosphorus availability in the 21st century [J]. Management of a non-renewable resource,1998,21(7):25-31.
    [17]Demirbas A., Abaly Y., Mert E.. Recovery of phosphate from calcinated bone by dissolution in hydrochloric acid solutions[J]. Resources, Conservation and Recycling 1999, 26(3-4):251-258.
    [18]莫笑萍,胡山鹰,沈静珠.我国磷资源产业的发展[J].化工矿物与加工,2005,34(8):1-4.
    [19]蒋柏泉,胡发成,郑典模,等.造纸废液作过磷酸钙减水剂的应用研究[J].环境科学与技术,2006,29(5):87-88.
    [20]Gaterell M. R., Gay R., Wilson R., et al.. An economic and environmental evaluation of the opportunities for substituting phosphorus recovered from wastewater treatment works in existing UK fertilizer markets[J]. Environmental Technology,2000,21(9):1067-1084.
    [21]Kuroda A., Takiguchi N., Gotanda T., et al.. A simple method to release polyphosphate from activated sludge for phosphorus reuse and recycling[J]. Biotechnology and Bioengineering,2002,78(2):333-338.
    [22]郝晓地,戴吉,周军,等.磷回收提高生物除磷效果的验证[J].中国给水排水,2006,22(17):22-25.
    [23]Yoshino M., Yao M., Tsuno H., et al. Removal and recovery of phosphate and ammonium as struvite from supernatant in anaerobic digestion[J]. Water Science and Technology,2003,48(1):171-178.
    [24]Ueno Y., Fujii M.. Three years experience of operating and selling recovered struvite from full-scale plant[J]. Environmental Technology,2001,22(11):1373-1381.
    [25]Jeanmaire N., Evans T.. Technical-economic feasibility of P-recovery from municipal wastewaters[J]. Environmental Technology,2001,22(11):1355-1360.
    [26]DeMarini D. M.. Genotoxicity of tobacco smoke and tobacco smoke condensate:a review[J]. Mutation Research/Reviews in Mutation Research,2004,567(2-3):447-474.
    [27]邵林广.南方城市污水处理厂实际运行水质远小于设计值的原因及其对策[J].给水排水,2000,26(5):1-4.
    [28]马培舜,王海玲,成丽华,等.昆明的城市污水处理现状及发展[J].中国给水排水,2003,19(4):19-22.
    [29]付忠志,邹利安.深圳罗芳污水厂一期工程试运行简评[J].给水排水,2000,26(1):6-10.
    [30]薛涛,黄霞,郝王娟.剩余污泥热处理过程中磷、氮和有机碳的释放特性[J].中国给水排水,2006,22(23):22-25.
    [31]Xue T., Huang X.. Releasing characteristics of phosphorus and other substances during thermal treatment of excess sludge[J]. Journal of Environmental Sciences,2007,19(10): 1153-1158.
    [32]Zhang G., Zhang P., Yang J., et al.. Ultrasonic reduction of excess sludge from the activated sludge system[J]. Journal of Hazardous Materials,2007,145(3):515-519.
    [33]袁易全编著.近代超声原理与应用[M].南京:南京大学出版社,1996:195-321
    [34]郝红伟.功率超声抑制蓝藻生长及其机理研究[博士论文].北京:清华大学机械系,2003.
    [35]王波,张光明,王慧.超声波去除铜绿微囊藻研究[J].环境污染治理技术与设备,2005,6(4):47-49.
    [36]张光明,施阳.超声波处理微污染水体技术研究[J].净水技术,2003,22(4):13-15,21.
    [37]宁平,徐金球,黄东宾,等.超声辐照-活性污泥联合处理焦化废水[J].环境科学,2003,24(3):67-71.
    [38]张光明,吴敏生,张锡辉.2-氯联苯与4-氯联苯的超声降解研究[J].环境化学,2004, 23(3):298-300.
    [39]熊宜栋.硝基苯类制药废水的超声处理研究[J].工业水处理,2003,23(1):46-48.
    [40]Chu C. P., Chang B-V., Liao G.S., et al.. Observations on changes in ultrasonically treated waste-activated sludge[J]. Water Research,2001,35(4):1038-1046.
    [41]黄汉生译.用超声波减少污水中污泥量[J].工业用水与废水,2001,32(1):14-18.
    [42]王琳,王宝贞.污泥减量技术[J].给水排水,2000,26(10):28-31.
    [43]Tiehm A., Nickel K., Neis U.. The use of ultrasound to accelerate the anaerobic digestion of sewage sludge[J]. Water Science and Technology.,1997,36(11):121-128.
    [44]Harrison S. T. L.. Bacterial cell disruption:a key unit operation in the recovery of intracellularproducts[J], Biotechnology Advances.1991,9(2):217-240.
    [45]Portenlanger G.. Mechanical and radical effects of ultrasound[M]. In Ultrasound in Environmental Engineering, TU Hamburg-Harburg Reports on SanitaryEn gineering, eds Tiehm A. and Neis U.,1999,25:139-151. GFEU-Verlag (ISBN 3-930400-23-5).
    [46]Wang F., Wang Y., Ji M.. Mechanisms and kinetic models for ultrasonic waste activated sludge disintegration[J]. Journal of Hazardous Materials,2005,123(1-3):145-150.
    [47]曹秀芹,陈珺,欧阳利,等.剩余污泥的超声处理试验研究[J].中国给水排水,2003,19(2):58-60.
    [48]季民,王芬.剩余污泥破壁技术的初步研究[C].污泥处理技术与装备会议论文集,北京:化学工业出版社,2003:73-77.
    [49]王芬,季民.污泥超声破解预处理的影响因素分析[J].天津大学学报,2005,38(7):649-653.
    [50]李欢,金宜英,张光明,等.污泥超声预处理的影响因素分析[J].中国给水排水,2006,22(3):96-100.
    [51]Cheung H. M., Shreekumar Kurup. Sonochemical destruction of CFC11 and CFC113 in dilute aqueous solution[J]. Environmental Science and Technology,1994,28(9):1619-1622.
    [52]Shirgaonkar I. Z., Pandit A. B.. Degradation of aqueous solution of potasssium iodide and sodium cyanide in the presence of carbon tetrachloride[J]. Ultrasonics Sonochemistry,1997, 4(3):245-253.
    [53]Henglein A.. Sonochemistry:historical developments and modern aspects[J]. Ultrasonics, 1987,25:6-16.
    [54]Petrier C., Francony A.. Ultrasonic wastewater treatment:Incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation[J]. Ultrasonics Sonochemistry,1997,4(4):295-300.
    [55]David B., Lhote M., Faure V., et al.. Ultrasonic and photochemical degradation of chlorpropham and 3-chloro aniline in aqueous solution[J]. Water Research,1998,32(8): 2451-2461.
    [56]Mason, Timothy J.. Sonochemistry:a technology for tomorrow[J]. Chemistry and Industry,1993,2:47-50.
    [57]Hua I., Hottmann M. R.. Optimization of ultrasonic irradiation as an advanced oxidation technology[J]. Environmental Science and Technology,1997,31(8):2237-2243.
    [58]Rai C. L., Struenkmann G., Mueller J., et al.. Influence of ultrasonic disintegration on sludge growth reduction and its estimation by respirometry[J]. Environmental Science and Technology,2004,38(21):5779-5785.
    [59]Tiehm A., Nickel K., Zellhorn M., et al.. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization[J]. Water Research,2001,35(8):2003-2009.
    [60]Neis U., Nickel K., Tiehm A.. Enhancement of anaerobic sludge digestion by ultrasonic disintegration[J]. Water Science and Technology,2000,42(9):73-80.
    [61]Price G. J., Matthias P., Lenz E. J.. Use of high power ultrasound for the destruction of aromatic compounds in aqueous solution[J]. Process safety and Environmental Protection, 1994,7213(1):27-31.
    [62]Jean D. S., Chang B-V., Liao G. S.. et al.. Reduction of microbial density level in sewage sludge through pH adjustment and ultrasonic treatment[J]. Water Science and Technology, 2000,42(9):97-102.
    [63]Bougrier C., Carrere H., Delgenes J. P.. Solubilisation of waste-activated sludge by ultrasonic treatment[J]. Chemical Engineering Journal,2005,106(2):163-169.
    [64]杨金美,张光明,王伟.超声波强化活性污泥活性的试验研究[J].给水排水,2006,32(1):37-40.
    [65]Schlafer O., Sievers M., Klotzbiicher H., et al.. Improvement of biological activity by low energy ultrasound assisted bioreactors[J]. Ultrasonics,2000,38(1-8):711-716.
    [66]王芬,季民,汪泳,等.剩余污泥的超声破解与影响因素程度分析[J].环境保护科学,2004,126(30):16-18,22.
    [67]Show K-Y., Mao T., Lee D-J.. Optimisation of sludge disruption by sonication[J]. Water Research,2007,41(20):4741-4747.
    [68]Mao T., Hong S-Y., Show K-Y., et al.. A comparison of ultrasound treatment on primary and secondary sludges[J]. Water Science and Technology,2004,50(9):91-97.
    [69]王芬,季民.剩余污泥超声破解性能研究[J].农业环境科学学报,2004,23(3):584-587.
    [70]张光明,常爱敏,张盼月编著.超声波水处理技术[M],北京:中国建筑工业出版社,2006:26-30.
    [71]H(?)ygaard B. J., Halkjaer N. P., Keiding K.. On the stability of activated sludge flocs with implications to dewatering[J]. Water Research,1992,26(12):1597-1602.
    [72]Jorand F., Zartarian F., Thomas F., et al.. Chemical and structural(2D) linkage between bacteria within activated sludge flocs[J]. Water Research,1995,29(7):1639-1647.
    [73]Ormeci Banu, Aarne Vesilind P.. Development of an improved synthetic sludge:a possible surrogate for studying activated sludge dewatering characteristics [J]. Water Research, 2000,34(4):1069-1078.
    [74]Gehr R., Henry J.G.. Removal of extracellular material, techniques and pitfalls[J]. Water Research,1983,17(12):1243-1253.
    [75]Werther J., Ogada T.. Sewage sludge combustion[J]. Progress in Energy and Combustion Science,1999,25(1):55-116.
    [76]张自杰主编.排水工程(下册)(第4版)[M].北京:中国建筑工业出版社,2000:353-354.
    [77]Shimizu T., Kudo K., Nasu Y.. Anaerobic waste-activated sludge digestion—a bioconversion mechanism and kinetic model[J]. Biotechnology and Bioengineering,1993,41(11):1082-1091.
    [78]张光明,常爱敏,张盼月编著.超声波水处理技术[M].北京:中国建筑工业出版社,2006:146-147.
    [79]杨虹,王芬,季民,等.超声与碱耦合作用破解剩余污泥的效能分析[J].环境污染治理技术与设备.2006,7(5):78-81.
    [80]Chiu Y-C., Chang C-N., Lin J-G., et al.. Alkaline and ultrasonic pretreatment of sludge before an aerobic digestion[J]. Water Science and Technology,1997,36(11):155-162.
    [81]高大维,高文宏,雷德柱,等.线形超声波辐照对啤酒酵母细胞生长的影响[J].华南理工大学学报(自然科学版),1997,27(12):34-37.
    [82]夏之宁,郭宝元,桑雪梅,等.超声波对染料膜渗透的影响[J].化学研究与应用,1 999,11(3):272-275.
    [83]龙腾锐,杨霏,丁文川.低强度超声波辐射活性污泥处理高浓度污水[J].中国给水排水,2007,23(13):76-78,82.
    [84]刘红,闰怡新.低强度超声波改善污泥活性[J].环境科学,2005,26(4):124-128.
    [85]闫怡新,刘红.低强度超声波强化污水生物处理机制[J].环境科学,2006,27(4):647-650.
    [86]曹秀芹,陈珺,王洪臣,等.超声处理对活性污泥系统污泥减量效果的研究[J].环境污泥治理技术与设备,2006,7(6):85-88.
    [87]Haner A., Mason C. A., Hamer G.. Death and lysis during aerobic thermophilic sludge treatment:characterization of recalcitrant products[J]. Water Research,1994,28(4):863-869.
    [88]Camacho P., Deleris S., Geaugey V., et al.. A comparative study between mechanical, thermal and oxidative disintegration techniques of waste activated sludge[J]. Water Science and Technology,2002,46(10):79-87.
    [89]Canales A., Pareilleux A., Rols J. L., et al.. Decreased sludge production strategy for domestic wastewater treatment[J]. Water Science and Technology,1994,30(8):97-106.
    [90]Rocher M., Goma G., Pilar Begue A., et al.. Towards reduction in excess sludge production in activated sludge process:biomass physicochemical treatment, biodegradation[J]. Applied Microbiology and Biotechnology,1999,51(6):883-890.
    [91]Weemaes M. P. J., Verstraete W. H.. Evaluation of current wet sludge disintegration techniques[J]. Journal of Chemical Technology and Biotechnology,1998,73(2):83-92.
    [92]Kim J., Park C., Kim T.-H., et al.. Effects of various pretreatment for enhanced anaerobic digestion with waste activated sludge[J]. Journal of Bioscience and Bioengineering,2003, 95(3):271-275.
    [93]Rajan R. V., Lin J. G., Ray B. T.. Low-level chemical pretreatment for enhanced sludge solubilization[J]. Journal of Water Pollution Control Federation,1989,61(11-12):1678-1683.
    [94]林志高,张守中.废弃活性污泥加碱预处理后厌氧消化的试验研究[J].给水排水,1997,23(1):10-15.
    [95]肖本益,刘俊新.污水处理系统剩余污泥碱处理融胞效果研究[J].环境科学,2006,27(2):319-323.
    [96]Tanaka S., Kamiyama K.. Thermaochemical pretreatment in the anaerobic digestion of waste activated sludge[J]. Water Science and Technology,2002,46(10):173-181.
    [97]Stephane D., Etienne P., Jean Marc A., et al.. Effect of ozonation on activated sludge solubilization and mineralization[J]. Ozone:Science and Engineering,2000,22(5):473-486.
    [98]Sakai Y., Fukase T., Yasui H., et al.. An activated sludge process without excess sludge production[J]. Water Science and Technology,1997,36(11):163-170.
    [99]Zhao Y. X., Yin J., Yu H. L., et al.. Observations on ozone treatment of excess sludge[J]. Water Science and Technology,2007,56(9):167-175.
    [100]Saby S., Djafer M., Chen G-H.. Feasibility of using a chlorination step to reduce excess sludge in activated sludge process[J]. Water Research,2002,36(3):656-666.
    [101]杨爽,江洁,张雁秋.湿式氧化技术的应用研究进展[J].环境科学与管理,2005,30(4):88-90.
    [102]Khan Y., Anderson G. K., Elliott D. J.. Wet oxidation of activated sludge[J]. Water Research,1999,33(7):1681-1687.
    [103]Wagner M., Loy A.. Bacterial community composition and function in sewage treatment systems[J]. Current Opinion in Biotechnology,2002,13(3):218-227.
    [104]Pitman A. R.. Management of biological nutrient removal plant sludges—Change the paradigms?[J]. Water Research,1999,33(5):1141-1146.
    [105]郑兴灿,李亚新编著.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998,p228-231.
    [106]吴一平,刘莹,王旭东,等.初沉污泥厌氧水解/酸化产物作为生物脱氮除磷系统碳源的试验研究[J].西安建筑科技大学学报(自然科学版),2004,36(4):421-423.
    [107]Kampas P., Parsons S. A., Pearce P., et al.. Mechanical sludge disintegration for the production of carbon source for biological nutrient removal[J]. Water Research,2007,41(8): 1734-1742.
    [108]苑宏英,张华星,陈银广,等.pH对剩余污泥厌氧发酵产生的COD、磷及氨氮的影响[J].环境科学,2006,27(7):1358-1361.
    [109]苑宏英.基于酸碱调节的剩余污泥水解酸化及其机理研究[博士论文].上海:同济大学环境科学与工程学院,2006.
    [110]Yuan H., Chen Y., Zhang H., et al.. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions [J]. Environmental Science and Technology,2006,40(6):2025-2029.
    [111]Carlsson H., Aspegren H., Hilmer A.. Interactions between wastewater quality and phosphorus release in the anaerobic reactor of the EBPR process [J]. Water Research,1996, 30(6):1517-1527.
    [112]Balmer P.. Phosphorus recovery-an overview of potentials and possibilities[J]. Water Science and Technology,2004,49(10):185-190.
    [113]Duley B.. Recycling phosphorus by recovery from sewage[C].2nd International Conference on the Recovery of Phosphorus from sewage and animal wastes, Holland,2001.
    [114]郑枫.北京高碑店污水处理厂一天回收3吨磷[N].人民日报,2004-12-02.
    [115]王绍贵,张兵,汪慧贞.以鸟粪石的形式在污水处理厂回收磷的研究[J].环境工程,2005, (6):78-80.
    [116]Noboru T., Akio K., Junichi K., et al.. Pilot plant tests on the novel process for phosphorus recovery from municipal wastewater[J]. Journal of Chemical Engineering of Japan,2003,36(10):1143-1146.
    [117]Pan S-H., Kwang Victor L., Liao P. H., et al.. Microwave pretreatment for enhancement of phosphorus release from dairy manure[J]. Journal of Environmental Science and Health Part B, Pesticides, food contaminants, and agricultural wastes,2006,41(4):451-458.
    [118]Suzuki Y., Kondo T., Nakagawa K., et al.. Evaluation of sludge reduction and phosphorus recovery efficiencies in a new advanced wastewater treatment system using denitrifying polyphosphate accumulating organisms[J]. Water Science and Technology,2006, 53(6):107-113.
    [119]Saktaywin W., Tsuno H., Nagare H., et al.. Advanced sewage treatment process with excess sludge reduction and phosphorus recovery[J]. Water Research,2005,39(5):902-910.
    [120]Hong K-J., Tarutani N., Shinya Y., et al.. Study on the recovery of phosphorus from waste-activated sludge incinerator ash[J]. Journal of Environmental Science and Health,2005, 40(3):617-631.
    [121]相会强,杨宏,巩有奎,等.改性粉煤灰去除磷酸盐的试验研究及机理分析[J].环境科学与技术,2005,28(5):18-20.
    [122]郭杰,曾光明,张盼月,等.污水处理厂污泥中磷的回收[J].环境科学与技术,2006,29(9):88-89,111.
    [123]Yamamoto T., Suga Y., Kaneki K., et al.. Effect of chemical constituents on the formation rate of carbon monoxide in Bright Tobacco [J]. Contribution to Tobacco Research, 1989,14(3):163-170.
    [124]牛学义.Phostrip侧流除磷工艺及其应用实例[J].给水排水,2002,28(11):8-12.
    [125]Battistoni P., Pavan P., Prisciandaro M., et al.. Struvite Crytallization:A feasible and rellabl way to fix Phosphorus in anaerobic supernatants[J]. Water Research,2000,34(11): 3033-3041.
    [126]袁芳,汪莉,宋永会,等.污水中磷的回收和利用途径[J].环境污染与防治,2006,28(7):548-551.
    [127]Nelson N.O., Mikkelsen R. L., Hestergerg D. L.. Struvite precipitation in anaerobic swine lagoon liquid:effect of pH and Mg:P ratio and determination of rate constant[J]. Bioresource Technology,2003,89(3):229-236.
    [128]Doyle J. D., Parsons S. A.. Struvite formation, control and recovery[J]. Water Research, 2002,36(16):3925-3940.
    [129]Lee S. I., Weon S.Y., Lee C.W., et al.. Removal of nitrogen and phosphate from wastewater by addition of bittern[J]. Chemosphere,2003,51(4):265-271.
    [130]Jaffer Y., Clark T. A., Pearce P., et al.. Potential phosphorus recovery by struvite formation[J]. Water Research,2002,36(7):1834-1842.
    [131]Suzuki K., Tanaka Y., Osada T., et al.. Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration[J]. Water Research,2002, 36(12):2991-2998.
    [132]Kumashiro K., Ishiwatari H., Nawamura Y.. A pilot plant study on using seawater as a magnesium source for struvite precipitation[C].2nd international conference on recovery of phosphate from sewage and animal wastes, Holland,2001.
    [133]孙博雅,陈洪斌.污水处理磷回收的研究进展[J].四川环境,2007,26(1):90-94.
    [134]Wilsenach J. A., Schuurbiers C. A. H., loosdrecht van M. C. M.. Phosphate and potassium recovery from source separated urine through struvite prcipitation[J]. Water Research,2007,41(2):458-466.
    [135]Warmadewanthi, Liu J. C. Recovery of phosphate and ammonium as struvite from semiconductor wastewater[J]. Separation and Purification Technology,2009,64(3):368-373.
    [136]佟娟,陈银广.剩余污泥水解酸化液磷去除的影响因素研究[J].环境工程学报,2007,1(4):1-5.
    [137]Uludag-Demirer S., Othman M.. Removal of ammonium and phosphate from the supernatant of anaerobically digested waste activated sludge by chemical precipitation[J]. Bioresource Technology,2009,100(13):3236-3244.
    [138]Pastor L., Mangin D., Ferrer J., et al.. Struvite formation from the supernatants of an anaerobic digestion pilot plant[J]. Bioresource Technology,2010,101(1):118-125.
    [139]王建森,宋永会,袁鹏,等.基于PHREEQC程序的磷酸铵镁结晶法污水处理工艺模型化研究[J].环境科学学报,2006,26(2):208-213.
    [140]Pastor L., Marti N., Bouzas A., et al.. Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants[J]. Bioresource Technology,2008, 99(11):4817-4824.
    [141]Harris W. G., Wilkie A. C., Cao X., et al.. Bench-scale recovery of phosphorus from flushed dairy manure wastewater [J]. Bioresource Technology,2008,99(8):3036-3043.
    [142]Kaikake K., Sekito T., Dote Y.. Phosphate recovery from phosphorus-rich solution obtained from chicken manure incineration ash[J]. Waste Management,2009,29(3):1084-1088.
    [143]江慧贞,王绍贵.以磷酸钙盐形式从污水厂回收磷研究[J].中国给水排水,2006, 22(9):93-96.
    [144]Metcalf& Eddy, Inc. Wastewater Engineering Treatment and Reuse (Fourth Edition)[M].北京:清华大学出版社,2002.
    [145]Henze Mongens, Harremoes, Poul LaCour Jan. Wastewater Treatment:Biological and Chemical Progress(Third Edition)[M]. New York:Springer-Verlag,2002.
    [146]徐亚同编.废水中氮磷的处理[M].上海:华东师范大学出版社,1994.
    [147]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].14版.北京:中国环境科学出版社,2002:105-284.
    [148]Dulekgurgen E., Dogruel S., Karahan O., et al.. Size distribution of wastewater COD fractions as an index for biodegradability[J]. Water Research,2006,40(2):273-282.
    [149]Sophonsiri C, Morgenroth E.. Chemical composition associated with different particle size fractions in municipal, industrial, and agricultural wastewaters[J]. Chemosphere,2004, 55(5):691-703.
    [150]Eskicioglu C., Kennedy K. J., Droste R. L., Characterization of soluble organic matter of waste activated sludge before and after thermal pretreatment[J]. Water Research,2006,40(20): 3725-3736.
    [151]刘淼,钱美荣,苏荣梅,等.羟基自由基氧化处理垃圾渗滤液中高浓度氨氮[J].水处理技术,2007,33(11):79-8 1,88.
    [152]Leslie Grady C. P., Daigger G. T., Lim H. C..废水生物处理[M].张锡辉刘勇弟,译.2版.北京:化学工业出版社,2002,p331-332.
    [153]Leiviska T., Nurmesniemi H., Poykio R., et al.. Effect of biological wastewater treatment on the molecular weight distribution of soluble organic compounds and on the reduction of BOD, COD and P in pulp and paper mill effluent[J]. Water Research,2008, 42(14):3952-3960.
    [154]Wang F., Lu S., Ji M.. Components of released liquid from ultrasonic waste activated sludge disintegration[J]. Ultrasonics Sonochemistry.2006,13(4):334-338.
    [155]Li D-H., Ganczarczyk J. J.. Structure of activated sludge flocs[J]. Biotechnology and Bioengineering,1990,35(1):57-65.
    [156]周健,罗勇,龙腾锐,等.胞外聚合物、Ca2+及pH值对生物絮凝作用的影响[J].中国环境科学,2004,24(4):437-441.
    [157]刘玉学,吴伟祥,朱荫湄,等.胞外聚合物对污泥脱水性能的影响及其提取方法研究[J].科技通报,2008,24(4):565-569.
    [158]李延军,李秀芬,华兆哲,等.好氧颗粒污泥胞外聚合物的产生及其分布[J].环境化学,2006,25(4):439-443.
    [159]Urbain V., Block J. C., Manem J.. Bioflocculation in activated sludge, an analytic approach[J]. Water Research,1993,27(5):829-838.
    [160]王红武,李晓岩,赵庆祥.胞外聚合物对活性污泥沉降和絮凝性能的影响研究[J]. 中国安全科学学报,2003,13(9):31-34.
    [161]Cescutti P., Toffanin R., Pollesello P., et al.. Structural determination of the acidic exopolysaccharide produced by a Pseudomonas sp. strain 1.15 [J]. Carbohydrate Research, 1999,315(1-2):159-168.
    [162]Sponza D. T.. Investigation of extracellular polymer substances(EPS) and physicochemical properties of different activated sludge flocs under steady-state conditions[J]. Enzyme and Microbial Technology,2003,32(3-4):375-385.
    [163]王雪梅,刘燕,华志浩,等.胞外聚合物对浸没式膜-生物反应器膜过滤性能的影响[J].环境科学学报,2005,25(12):1602-1607.
    [164]刘阳,张捍民,杨凤林.活性污泥中微生物胞外聚合物(EPS)影响膜污染机理研究[J].高校化学工程学报,2008,22(2):332-228.
    [165]刘燕,王越兴,莫华娟,等.有机底物对活性污泥胞外聚合物的影响[J].环境化学,2004,23(3):252-257.
    [166]Kopp J., Muller J., Dichtl D., et al.. Anaerobic digestion and dewatering characteristics of mechanically excess sludge[J]. Water Science and Technology,1997,36(11):129-136.
    [167]Gonze E., Pillot S., Valette E., et al.. Ultrasonic treatment of an aerobic activated sludge in a batch reactor[J]. Chemical Engineering and Processing,2003,42(12):965-975.
    [168]Vaxelaire S., Gonze E., Merlin G., et al.. Reduction by sonication of excess sludge production in a conventional activated sludge system:continuous flow and lab-scale reactor[J]. Environmental Technology,2008,29(12):1307-1320.
    [169]Rocher M., Roux G., Goma G., et al.. Excess sludge reduction in activated sludge process by integrating biomass alkaline heat treatment[J]. Water Science and Technology, 2001,44(2-3):437-444.
    [170]郝凌云,周荣敏,周芳,等.磷酸铵镁沉淀法回收污水中磷的反应条件优化[J].工业用水与废水,2008,39(1):58-61.
    [171]Stratful I., Scrimshaw M. D., Lester J. N.. Conditions influencing the precipitation of magnesium ammonium phosphate [J]. Water Research,2001,35(17):4191-4199.
    [172]Brett S., Guy J., Morse G. K., et al.. Phosphorus removal and recovery technologies[M]. London:Selper Publication,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700