矿冶废渣在水污染治理中应用的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对工业、农业和城市废水中有机物、营养物质、重金属离子和酸性的有效去除是水处理的关键,大量廉价的选矿和冶炼废渣提供了更加经济的水处理材料,本研究选取钢铁选矿和冶炼废渣(磁铁矿选铁尾矿渣、含钛高炉渣、普通高炉渣、钢渣)、钛选矿废渣(磁铁矿选钛尾矿渣)和铝冶炼废渣(赤泥)作为研究对象,论证将其应用于环境治理尤其是水污染治理的可行性。
     首先对钢铁、钛、铝矿冶废渣进行物理、化学和矿物学特征分析,它们主要由Al、Fe、Mn氧化物矿物和Ca、Mg矿物组成。这些矿物由于具有特殊的表面吸附效应、沉淀效应、氧化还原效应、离子交换效应、孔道效应、结构效应、结晶效应等,对水中有机物、营养物质、重金属离子有很好的截留和去除能力,对酸有很好的中和能力。最主要的污染物去除机理源于表面吸附效应、沉淀效应、氧化还原效应和离子交换效应。
     一系列的圆柱试验用来检验钢铁、钛、铝矿冶废渣和填充物质石英砂对水中溶解性有机碳(DOC)、磷酸盐(PO4-P)、氨氮(NH3-N)、硝酸盐/亚硝酸盐氮(NOX-N)、溶解性有机氮(DON)和总氮(TN)的去除能力。结果表明,试验所用的钢渣和磁铁矿选铁尾矿渣对水中有机物和营养物质有良好的去除效果,对磷的去除效果尤佳。其它矿冶废渣对水中含磷营养物也有良好的去除效果,对有机物和含氮营养物有一定的去除效果。
     一系列的圆柱试验用来检验钢铁、钛、铝矿冶废渣和填充物质石英砂对水中重金属离子Cd2+、Co2+、Cu2+、Mn2+、Ni2+、Zn2+的截留能力以及对水中酸的中和能力。结果表明,各种矿冶废渣对水中重金属离子有很好的截留能力,对酸也有很好的中和能力。钢渣、赤泥和含钛高炉渣对水中重金属离子的截留能力最好。普通高炉渣、钢渣和磁铁矿选铁尾矿渣对水中酸的中和能力最好。
     使用PHREEQC地球化学模拟计算软件对圆柱中水和矿物之间的相互作用过程进行地球化学模拟分析,评估试验圆柱出水中的含Al、Fe、Mn、Ca、Mg矿物饱和指数(SI)的变化情况,这些矿物会强烈影响试验圆柱或以后在可渗透反应墙等应用中其它大多数主要和痕迹元素的形态分布。PHREEQC软件的模拟结果不但反映了矿冶废渣圆柱体系在去除水中污染物过程中矿物的溶解和沉淀情况,为了解以后在实际应用中体系内地球化学变化的情况提供依据,而且得到了污染物去除过程中可能影响各矿冶废渣去除能力的矿物成分。
     研究结果表明,钢铁、钛、铝矿冶废渣中Al、Fe、Mn氧化物矿物和Ca、Mg矿物含量对其污染物去除能力有很大的影响,Al、Fe、Mn氧化物矿物和Ca、Mg矿物含量都很高的钢渣对水中污染物的综合去除能力最好。钢铁、钛、铝矿冶废渣在水污染治理方面有很好应用前景,它们可作为具有过滤作用的垫层、湿地的基材以及可渗透反应墙的填充介质等,应用于:(1)治理地表水、地下水、城市和农业废水中的有机物和营养物污染;(2)防止垃圾场和排污渠污染物的扩散与蔓延;(3)处理重金属离子含量高的工业和矿山酸性废水。
Effective removal of organic pollutants, nutrients and metals and neutralisation of acidity in industrial, agricultural and domestic wastewater is pivotal to water re-use. Utilisation of abundant, low-cost mining and metallurgical waste residue materials potentially offers a cost-effective wastewater treatment option. Steel and iron-, titanium-, and aluminium-based mining and metallurgical waste residues were selected for this research, including:magnetite ore processing residue (MPR); Ti-containing blast furnace slag (TiBFS); blast furnace slag (BFS); steel slag (SS); magnetite-containing TiO2 processing residue (TiPR) and red sand (RS).
     The physical, chemical, and mineralogical characteristics of these mining and metallurgical waste residues were characterised. Physico-chemical characterization of these mineral-based waste residues showed that the materials were largely dominated by Fe, Al, Mn-oxides/(oxy)hydroxides and calcium-and/or magnesium-based minerals. The identified mineral phases indicated that the selected waste residues may have capacity for attenuation of contaminants in wastewater via adsorption, precipitation, redox reactions, ion-exchange, physical sequestration, structural incorporation, crystal formation or other mechanisms. Adsorption, precipitation, redox reactions, and ion-exchange processes are likely the most important attenuation mechanisms.
     A series of column sorption experiments were conducted to examine the removal of dissolved organic carbon (DOC), soluble reactive phosphorus (phosphate, PO4-P), ammonia (NH3-N), nitrate/nitrite (NOx-N), dissolved organic nitrogen (DON) and total nitrogen (TN) from surface water using the selected steel and iron-, titanium-and aluminium-based mining and metallurgical waste residues. Bassendean Sand, comprised of>98% SiO2, was selected for use as a reference material and comprised the nominally unreactive solid phase in all experimental columns. These column experiments demonstrated that steel slag and magnetite ore processing residue exhibited good attenuation of DOC and nutrients, especially phosphorus. Other selected mining and metallurgical waste residues exhibited good attenuation of phosphorus and some attenuation of DOC and nitrogen.
     A second series of column sorption experiments were conducted to examine the attenuation of Cd2+, Co2+, Cu2+, Mn2+, Ni2+ and Zn2+ and the neutralisation of acidity in synthetic acid drainage water using the selected steel and iron-, titanium-and aluminium-based mining and metallurgical waste residues. Bassendean Sand was again selected for use as a reference material and comprised the nominally unreactive solid phase in all expeirmental columns. These column experiments demonstrated that the selected mineral-based mining and metallurgical waste residues have substantial capacity for attenuation of metals and acid neutralisation. The steel slag, red mud, and Ti-containing blast furnace slag exhibited the best attenuation of metals. The blast furnace slag, steel slag and magnetite ore processing residue exhibited the best acid neutralisation.
     Geochemical modelling was undertaken to estimate the saturation index (SI) of a suite of mineral phases, in particular, relevant Al, Fe, Mn, Ca, and Mg minerals. Minerals comprised of these elements were modelled as it is likely that they will strongly influence the speciation of the majority of other major and trace elements in the column experiments or in a permeable reactive barrier application. Geochemical modelling using PHREEQC yielded information about the dissolution of mineral-based waste residues and the precipitation or in situ formation of secondary minerals in experimental columns during pollutant removal. This information provided a basis for understanding geochemical changes in the practical application. The potential dominating minerals influencing the pollutant removing are also derived in every selected mining and metallurgical waste residues column.
     This research demonstrated that the of Fe, Al, and Mn oxide/(oxy)hydroxide and calcium and magnesium content strongly influenced pollutant removal ability of steel and iron-, titanium-, and aluminium-based mining and metallurgical waste residues. The steel slag, which had high contents of both Fe, Al, and Mn oxide/(oxy) hydroxide and calcium-and magnesium-based minerals, exhibited the best pollutant removal ability. Steel and iron-, titanium-and aluminium-based mining and metallurgical waste residues exhibited potential for application in the treatment of wastewater. The mineral-based by-products examined in this study may be effective for the attenuation of nutrients and DOC in surface water, ground water, or other urban and agricultural water sources; the prevention of pollutant diffusion from dumps and sewers; or treatment of acidic, metal-rich industrial or mining wastewater. The use of mining and metallurgical waste residues in environmental remediation is largely influenced by the design of treatment structures. Mineral-based waste residues such as those examined in this report may be particularly useful as treatment media in constructed wetlands, drain liners, permeable reactive barriers or similar applications.
引文
[1]王莉红.钢铁矿冶固体废弃物的利用及其基础理论研究[D].云南师范大学,2005
    [2]朱桂林.钢铁渣研究开发的现状和发展方向[J].废钢铁,2001:16(1):1-5
    [3]毕林,林海.钢渣的综合利用[J].矿产保护与利用,1996.11(3):51-52
    [4]朱桂林.中国钢铁工业固体废物综合利用的现状和发展[J].废钢铁,2003.(1):12-16
    [5]杨华明,张广夜.钢铁资源化的现状与前景[J].矿产综合利用,1999(3:35-37
    [6]毕琳,林海.钢渣的综合利用[J].矿产保护与利用,1999.3:51-52
    [7]杨华明,张广业.钢渣资源化的现状与前景[J].矿产综合利用,1999.3:35-36
    [8]宋坚民.钢渣的综合利用[J].上海金属,1999.21(6):45-49
    [9]姜从盛,丁庆军,王发洲等.钢渣的理化性能及其综合利用技术发展趋势[J].国外建材科技,2002.23(3):3-5
    [10]聂永丰.三废处理工程技术手册.固体废物卷[M].北京化学工业出版社,2002
    [11]Shi C, Day R L. Early strength development and hydration of alkali, activated blast furnace slag and fly ash blends[J]. Adv Cem Res,1999.11:189-196
    [12]朱桂林.中国钢铁工业固体废物综合利用的现状和发展[J].废钢铁,2003(1):12-16
    [13]金霞,李辽沙,董元篪.国内外高炉渣资源化技术发展现状和展望[J].中国资源综合利用,2005.9:4-7
    [14]徐利华,刘明,邸云萍.利用矿山选钛尾矿制备金属陶瓷Ti-C-N复合材料的方法[S].北京科技大学.中华人民共和国国家知识产权局,2006
    [15]岳云龙,芦令超,常均,等.赤泥-碱矿渣水泥及其制品的研究[J].硅酸盐通,2001.1:46-49
    [16]王立堂.山铝赤泥不排放的探讨[J].轻金属,1997.6:17-20
    [17]潘志华,方永浩,赵成朋,等.碱矿渣-赤泥水泥的研究[J].碱酸盐通报,1999.3:34-40
    [18]颜祖兴.水泥赤泥混凝土开发应用研究[J].混凝土,2000.10:18-20
    [19]颜祖兴.水泥赤泥混凝土路用性能研究[J].中国公路学报,1996.9(2):6-8
    [20]李国昌,王萍,张秀英,等.赤泥对聚氯乙烯软膜透光率的影响[J].非金属矿,2001.24(4):28-30
    [21]王勇,陈光莲,周田君,等.赤泥聚氯乙烯材料耐热老化性能影响因素的探索[J].粉煤灰,2000.4:12-13
    [22]江培清,段予忠.联合法赤泥在建筑用PVC管中的应用[J].粉煤灰,1998.3:30-31
    [23]Predeep K M. Titanium recovery of raw materials[J]. Industry and Environment,1994.16(3): 42-45
    [24]张培新,林荣毅,阎加强.赤泥微晶玻璃的研究[J].有色金属,2000.52(4):77-79
    [25]张培新,闫加强.赤泥黑色玻璃结构的研究[J].分析测试学报,2000.19(4):1-4
    [26]蔡德龙,钱发军,邓挺,等,硅肥对花生增产作用试验研究[J].1995.14(4):48-51
    [27]Agyei, N.M., Strydom,C.A., and Potgieter, J.H.. An investigation of phosphate ion adsorption from aqueous solution by fly ash and slag[J]. Cement and Concrete Research,2000.30: 823-826
    [28]Sakadevan K, Bavor H J. Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems[J]. Water Research,1998.32:393-399
    [29]Johansson L. Blast furnace slag as phosphorous sorbents-column studies[J]. Science of the Total Environment,1999.229:89-97
    [30]Johansson L, Gustafsson J P. Phosphate removal using blast furnace slags and opoka-mechanisms[J]. Water Research,2000.34:259-265
    [31]Pratt C, Shilton A,Pratt S, et al. Phosphorus removal mechanisms in active slag filters treating waste stabilization pond effluent[J]. Environmental Science and Technology,2007. 41:3296-3301
    [32]Lena Johamsom.Blast furnace slag as phosphorus sorbents-colmnn studies[J].The Science of the Total Environment,1999.229:89-97
    [33]Seung H K,Vigneswarall H M.Adsorption of phosphorus in saturated slag media colonms[J]. Separatien and Purification Technology,1997.12:109-118
    [34]Bruno K, Hana K, Jmj L.Blast furnace slags as sorbents of phosphate from water solutions[J]. Water Rearch,2005.39:1795-1802
    [35]Ensar O,Removal of phosphate from aqueous solution with blast furnace slag[J]. Journal of Hazardous Materials,2004.8114:131-137
    [36]Ensar O. Thermodynamic and kinetic investigations of P adsorption On blast furnace stag[J]. Journal of Colloid and Interface Science,2005.281:62-67
    [37]黄理辉,张波,毕学军,等.高炉渣吸附除磷研究[J].化工环保,2004.24:296-298
    [38]郑轶容,李文兴,胡长胜.用高炉渣处理含磷废水的试验研究[J].河北冶金,2004.14(10):13-15
    [39]Barth E, Sass B, Chattopadhyay S. Evaluation of blast furnace slag as a means of reducing metal availability in a contaminated sediment for beneficial use purposes[J]. Soil and Sediment Contamination.2007.16:281-300
    [40]Chung H I, Kim S K, Yu J,et al. Permeable reactive barrier using atomized slag material for treatment of contaminants from landfills [J]. Geosciences Journal,2007.11:137-145
    [41]Simmons J, Ziemkiewicz P, Black D C.. Use of steel slag leach beds for the treatment of acid mine drainage[J]. Mine Water and the Environment,2002.21:91-99
    [42]Ochola C E, and Moo-Young H K. Establishing and elucidating reduction as the removal mechanism of Cr(VI) by reclaimed limestone residual RLR (modified steel slag) [J]. Environmental Science and Technology,2004.38:6161-6165
    [43]Proctor D M, Fehling K A, Shay E C, et al. Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags[J]. Environmental Science and Technology,2000.34:1576-1582
    [44]Bayless E R, Schulz M S. Mineral precipitation and dissolution at two slag-disposal sites in northwestern Indiana, USA[J]. Environmental Geology,2003.45:252-261
    [45]Bayless E R, Schulz M S. Mineral precipitation and dissolution at two slag-disposal sites in northwestern Indiana, USA[J]. Environmental Geology,2003.45:252-261
    [46]Bayless E R, Bullen T D, Fitzpatrick J A. Use of 87Sr/86Sr and d11B to identify slag-affected sediment in southern Lake Michigan[J]. Environmental Science and Technology,2004.38:1330-1337
    [47]Ochola C E, Moo-Young H K. Establishing and elucidating reduction as the removal mechanism of Cr(VI) by reclaimed limestone residual RLR (modified steel slag) [J]. Environmental Science and Technology,2004.38:6161-6165
    [48]Proctor D M, Fehling K A, Shay EC,et al. Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags [J]. Environmental Science and Technology,2000.34:1576-1582
    [49]Simmons J, Ziemkiewicz P, Black D C. Use of steel slag leach beds for the treatment of acid mine drainage[J]. Mine Water and the Environment,2002.21:91-99
    [50]冷光荣,程柏生.钢渣综合利用[J].江西冶金,2003.12:125-126
    [51]Akay G, Keskinler B, Cakili A. Phosphate removal from water by red mud using crossflow microfiltration[J]. Water Research,1998.32(3):717-726
    [52]Lopez'B E, Soto M, Arias A,et al. Adsorpbent propertyes of red mud andits use for wastewater treatment[J]. Water Research,1998.32(4):1314-1322
    [53]Snars K, Gilkes R, Hughes J. Effect of soil amendment with bauxite Bayer process residue (red mud) on the availability of phosphorus in very sandy soils[J]. Australian Journal of Soil Research,2003.41:1229-1241
    [54]Snars K, Hughes J C, Gilkes R J. The effects of addition of bauxite red mud to soil on P uptake by plants[J]. Australian Journal of Agricultural Research,2004.55:25-31
    [55]Akhurst D J, Jones G B, Clark M, et al Phosphate removal from aqueous solutions using neutralised bauxite refinery residues (BauxsolTM) [J]. Environmental Chemistry,2006.3: 65-74
    [56]Cheung K C, Venkitachalam T H, Scott W D. Selecting soil amendment materials for removal of phosphorus[J]. Water Science and Technology,1994.30:247-256
    [57]Ho G E, Mathew K, Gibbs R A. Nitrogen and phosphorus removal from sewage effluent in amended columns[J]. Water Research,1992.262:295-300
    [58]Koumanova B, Drame M, Popangelova M. Phosphate removal from aqueous solutions using red mud wasted in bauxite Bayer's process[J]. Resources, Conservation and Recycling,1997. 19:11-20
    [59]McPharlin I R, Jeffery R C, Toussaint L F, et al. Phosphorus, nitrogen, and radionuclide retention and leaching from a Joel Sand amended with red mud/gypsum[J]. Communications in Soil Science and Plant Analysis,1994.25:2925-2944
    [60]Robertson W J, Jeffery R.C, McPharlin I R.. Residues from bauxite-mining (red mud) increase phosphorus retention of a Joel sand without reducing yield of carrots[J]. Communications in Soil Science and Plant Analysis,1997.28:1059-1079
    [61]Shiao S J, Akashi K. Phosphate removal from aqueous solution from activated red mud[J]. Journal of the Water Pollution Control Federation,1977.49:280-285
    [62]Summers R N, Pech J D. Nutrient and metal content of water, sediment and soils amended with bauxite residue in the catchment of the Peel Inlet and Harvey Estuary, Western Australia[J]. Agriculture, Ecosystems and Environment,1997.64:219-232
    [63]Summers R N, Smirk D D, Karafilis D. Phosphorus retention and leachates from sandy soil amended with bauxite residue (red mud) [J]. Australian Journal of Soil Research,1996.34: 555-567
    [64]Ward S C, Summers R N. Modifying sandy soils with the fine residue from bauxite refining to retain phosphorous and increase plant yield[J]. Fertilizer Research,1993.36:151-156
    [65]Brunori C, Cremisini C, Massanisso P, et al. Reuse of a treated red mud bauxite waste: studies on environmental compatibility[J]. Journal of Hazardous Materials,2005.117:55-63
    [66]Vinod K G, Monika G,et al,Process development for the removal of lead and chromium from aqueous solutions using red mud--an aluminum industry waste[J]. Water Resouce,2001. 35(5):125-1134
    [67]Soner H, Altundogan S, Alttmdogan F T,et al. Arsenic removal from aqueous solutions by adsorption on red mud[J]. Waste Management,2000.20:761-767
    [68]Soner H A,Sema A, Fikret T,et al.Arsenic adsorption from aqueous solutions by activated red mud[J]. Waste Management,2002.22:357-363
    [69]Namasivayam D J, Arasi S E. Removal of congo red from wastewater by adsorption onto waste red mud[J]. Chemosphere,1997.34(2):401-417
    [70]Resat A, Esma T, Mehmet H, et al. Heavy metal cation retention by unconventional sorbents(red muds and fly ashes) [J]. Water Research,1998.32(2):430-440
    [71]Altundogan H S, Altundogan S, Tumen F, et al. Arsenic removal from aqueous solutions by adsorption on red mud[J]. Waste Management,2000.20:761-767
    [72]Altundogan H S, Altundogan S, Tumen F, et al. Arsenic adsorption from aqueous solutions by activated red mud[J]. Waste Management,2002.22:357-363
    [73]Genc H, Tjell J C, McConchie D, et al. Adsorption of arsenate from water using neutralized red mud[J]. Journal of Colloid and Interface Science,2003.264:327-334
    [74]Apak R, Atun G, Guclu K, et al. Sorptive removal of cesium-137 and strontium-90 from water by unconventional sorbents. Ⅰ. Usage of bauxite wastes (red muds) [J]. Journal of Nuclear Science and Technology,1995b.32:1008-1017
    [75]Cengeloglu Y, Arslan G, et al. Removal of boron from aqueous solution by using neutralized red mud[J]. Journal of Hazardous Materials,2007.142:412-417
    [76]Apak R, Tutem E, Hugul M, et al. Heavy metal cation retention by unconventional sorbents (red muds and fly ashes) [J]. Water Research,1998.32:430-440
    [77]Barrow N J. Possibility of using caustic residue from bauxite for improving the chemical and physical properties of sandy soils[J]. Australian Journal of Agricultural Research,1982.33:275-285
    [78]Bhattacharya A K, Venkobachar C. Removal of cadmium(Ⅱ) by low cost adsorbents [J]. Journal of Environmental Engineering-ASCE,1984.110:110-122
    [79]Brunori C, Cremisini C, Massanisso P, et al. Reuse of a treated red mud bauxite waste: studies on environmental compatibility[J].Journal of Hazardous Materials,2005.117:55-63
    [80]Huang C P, Ostovic F B. Removal of cadmium(II) by activated carbon adsorption [J]. Journal of the Environmental Engineering Division-ASCE,1978.104:863-878
    [81]Lombi E, Hamon R E, McGrath S P, et al. Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques [J]. Environmental Science and Technology,2003.37: 979-984
    [82]Lombi E, Zhao F J, Zhang G, et al. In situ fixation of metals in soils using bauxite residue: chemical assessment[J]. Environmental Pollution,2002.118:435-443
    [83]Lopez E, Soto B, Arias M, et al. Adsorbent properties of red mud and its use for wastewater treatment[J]. Water Research,1998.32:1314-1322
    [84]Lopez'B E, Soto M A, et al. Adsorpbent propertyes of red mud andits use for wastewater treatment[J]. Water Research,1998,32(4):1314-1322
    [85]Apak R, Tutem E, Hugul M, et al. Heavy metal cation retention by unconventional sorbents (red muds and fly ashes) [J].Water Research,1998.32:430-440
    [86]Ciccu R, Ghiani M, Serci A. et al. Heavy metal immobilization in the mining-contaminated soils using various industrial wastes[J]. Minerals Engineering,2003.16:187-192
    [87]Resat A, Gulten A, Kubilay G, Esma T, et al. Sorptive removal of Cesium-137 and Strontium-90 from water by unconventional sorbents. Usage of bauxite wastes(red muds) [J]. Journal of nuclear science and technology,1995.32(10):1008-1017
    [88]Barrow N J. Possibility of using caustic residue from bauxite for improving the chemical and physical properties of sandy soils[J]. Australian Journal of Agricultural Research,1982.33:275-285
    [89]McPharlin I R, Jeffery R C, Toussaint L F, et al. Phosphorus, nitrogen, and radionuclide retention and leaching from a Joel Sand amended with red mud/gypsum[J]. Communications in Soil Science and Plant Analysis,1994.25:2925-2944
    [90]Robertson W J, Jeffery R C, McPharlin I R. Residues from bauxite-mining (red mud) increase phosphorus retention of a Joel sand without reducing yield of carrots[J]. Communications in Soil Science and Plant Analysis,1997.28:1059-1079
    [91]Keo pal L K. Mineral hydroxides:From homogeneous to heterogeneous modeling[J]. Electrochim Acta,1996.41(14):2293-2305
    [92]Pokrovsky O S, Pokrovsky G S, Schott J. Gallium(Ⅲ)adsorption on carbonates and oxides: X-ray absorption fine structure spectroscopy study and surface complexation modeling [J]. J Colloid Interf Sci,2004.279(2):314-325
    [93]James R O. Surface ionization and complexation at the colloid/aqueous electrolyte interface[M]. Anderson M A, Rubin A J,1981.
    [94]Hiemstra T,Van Riemsdijk W H. A surface structural approach to ion adsorption:The charge distribution model[J]. J Colloid Interf Sci,1996.179(2):488-508
    [95]Weerasooriya R, Dharmasena B, Aluthpatabendi D. Copper. gibbsite interactions:an application of 1-pK surface eomplexation mod el[J]. Colloid Surface(A),2000.170(1): 65-77
    [96]王东升,杨晓芳,孙中溪.铝氧化物-水界面化学及其在水处理中的应用[J].环境科学学报,2007.27(3):353-362
    [97]Hiemstra T,Van Riemsdijk W H. A surface structural approach to ion adsorption:The charge distribution model[J]. J Colloid Interf Sci,1996.179(2):488-508
    [98]Madson L.Blokhus A M. Adsorp tion of benzoic acid on or-alumina and γ-boehmite[J]. J Colloid Interf Sci,1994.166(1):259-262
    [99]Mao Y,Fung B M. A study of the adsorp tion of acrylic acid and maleic acid from aqueous solutions onto alumina [J]. Colloid Interf Sci,1997.191(1):216-221
    [100]Lu A HThe application of environmental mineral materials to the treatment of contaminated soil, water and air[J]. Acta Petrologica et M ineralogica,1999.18(4):292-300
    [101]Lu A H New method of Cr(VI)-bearing wastewater treatment by natural iron sulphides[J]. Earth Science Frontiers,1998.5(1):243
    [102]Lu A H.Basic properties of environmental mineral materials:Natural self-purification of inorganic minerals[J]. Acta Petrologica et Mineralogica,2001.20(4):371-381
    [103]Suzuki T, Miyake M, Nagasawa H. Disposal of toxic ions by ion exchanger from crystal lattice of calcite[A]. New Developments in Ion Exchange[M]. Kodansha,1991
    [104]Suzuki T,Hatsushika T, Miyake M.Disposal of toxic ions by ion exchanger from crystal lattice of apatite[A]. New Developments in Ion Exchange[M]. Kodansha,1991.
    [105]Lu A H, Gao X, Qin S, et al. Cryptomelane (KxMn8-x 016):Natural active octahedral molecular sieve(0MS-2)[J].Chinese Science Bulletin,2003.48(9):920-923
    [106]鲁安怀.环境矿物材料基本性能-无机界矿物天然自净化功能[J].岩石矿物学杂志,2001.20(4):371-381
    [107]Edwards M and Benjamin M M. Adsorptive filtration using coated sand:a new approach for treatment of metal-bearing waste water[J]. J Water Pollute Contron,1989.61(9): 1523-1533
    [108]Saorjan G A Moden concepts in surface sciece and heterogeneous caralysis[J].J Phys. Chem,1990.94:1013-1023
    [109]卢小英,鲁安怀,陈洁,等.单斜与六方磁黄铁矿处理Cr(Ⅵ)废水过程中pH值变化规律[J].高校地质学报,2000.6(2):271-277
    [110]Ribbe P H. Sulfide mineralogy:Review in Mineralogy[M]. Mineralogy Society of America, 1974
    [111]Roberts A C, Bonardi M, Erdrc,et al.Y.Watter-site Hg4HgCrO6, A new mineral from clear creek claim, San Benito County, California[J]. P Mineralogical Record,1991.22(4): 269-272
    [112]Rayment, G.E. and Higginson, F.R. Australian Laboratory Handbook of Soil and Water Chemical Methods. Inkarta Press[S]. Melbourne,1992
    [113]Alice, Micenko. Sourcing'Contributing Areas to River Flow in Ellen Brook Western Australia, Using Environmental Indicators and Mixing Models [D]. Dissertation submitted in partial fulfillment of the requirements for Bachelor of Engineering (Environmental). University of Western Australia,2006.
    [114]Clesceri L S, Greenberg A E, Eaton A D. Standard Methods for the Examination of Water and Wastewater[S]. American Public Health Association. Washington, DC,1998.
    [115]Gondar D, Thacker S A, Tipping E, et al. Functional variability of dissolved organic matter from the surface water of a productive lake[J]. Water Res,2008.42:81-90
    [116]Patton C J, and Kryskalla J R. Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory-Evaluation of Alkaline Persulfate Digestion as an Alternative to Kjeldahl Digestion for Determination of Total and Dissolved Nitrogen and Phosphorous in Water[S]. U.S. geological Survey, Denver,2003
    [117]Merkel B J, Planer-Friedrich B(著),朱义年,王焰新(译).地下水地球化学模拟的原理及应用[M].中国地质大学出版社,2002
    [118]于天仁,陈志诚.土壤发生中的化学过程[M].北京:科学出版社,1990.
    [119]陈家坊.土壤胶体中的氧化物[J].土壤通报,1981.2:44-49
    [120]Schwertmann U, Bigbam J M, Murad E. The first occurrence of schwertmannite in a natural stream environment[J]. Eur.J.Mineral,1995.7:547-552.
    [121]Bigham J M, Schwertmann U, Traina S J,et al. Schwertmannite and the chemical modeling of iron in acid sulfate waters[J]. Geochim Cosmochim Acta,1996b.60:2111-2121.
    [122]Jonsson J, Persson P,Sjoberg S,et al.Schwertmannite precipitated from acid mine drainage:phase transformation, sulfate release and surface properties[J]. Appl.Geochem, 2005.20:179-191.
    [123]Waychunas G A,Kim C S, Banfield J F.Nanoparticulate iron oxide minerals in soils and sediments:unique properties and contaminant scanvenging mechanisms[J]. Journal of Nanoparticle Research,2005.7:409-433
    [124]Regenspurg S,Gobner A,Peiffer S,el al.Potential remobilization of toxic anions during reduction of arsenate and chromated schwertmannite by the dissimilatory Fe(III)-reducing bacterium Aeidiphilium Cryptum JF-5[J]. Water, Air and Soil Pollution,2002.2:57-67
    [125]Playford P E, Cockbain A E, et al. Geology of the Perth Basin Western Australia, pp. 311[R]. Geological Survey of Western Australia, Perth,1976.
    [126]Pollock P, Salama R, and Kookana R. A study of atrazine transport through a soil profile on the Gnangara Mound[J]. Western Australia, using LEACHP and Monte Carlo techniques. Aust. J. Soil Res,2002.40:455-464
    [127]Riimmler J, Bekele E, Toze S J. Preliminary Hydrogeological Characterisation for Proposed Covered Infiltration Galleries at CSIRO Laboratory, Floreat, Western Australia[R]. Client Report for Water Corporation, Western Australia. Water for a Healthy Country National Research Flagship report. CSIRO, Canberra,2005
    [128]Abeysinghe P B. Silica Resources of Western Australia:Western Australia Geological Survey[J]. Mineral Resources Bulletin,2003.21:228

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700