压力蒸汽热处理对木材性能的影响及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材热处理是目前木材物理改性领域的一个研究热点,通过在隔绝氧气的条件下将木材加热到200℃左右进行处理,可以显著地提高木材的尺寸稳定性与生物耐久性。此外,与化学改性材相比,热处理木材在使用过程中不会向环境释放有毒化学物质,因而被认为是一种环境友好的产品。
     本文的研究重点在于比较在常压蒸汽条件下和在压力蒸汽条件下进行热处理的木材在物理、力学和加工性能上的差异,并通过对试材结构的化学分析与仪器分析揭示不同热处理材性能差异的内在机理。我们选取樟子松与柞木作为试验试材,得出以下结论:
     在相同热处理温度条件下,压力蒸汽对木材材性的影响大于常压蒸汽。压力蒸汽热处理材的主要力学性能指标,如抗弯弹性模量、抗弯强度、顺纹抗压强度、冲击韧性与硬度指标都低于常压蒸汽热处理材,但是统计分析的结果表明,两种试材在力学性能方面的差异多数并不显著。在木材的吸湿性和尺寸稳定性试验中,压力蒸汽热处理材的表现则优于常压蒸汽热处理材,试材在不同湿度条件下的平衡含水率更低,径弦向的湿胀率也更小。对两种不同热处理材进行的加工性能试验表明,压力蒸汽热处理材在切削加工过程中的刀体温度低于常压蒸汽热处理材,两者在加工面的表面质量上没有显著差异,但是压力蒸汽热处理材在加工过程中会有更多的细粉尘排放,因而需要配套更好的吸尘和防护设施。
     通过化学分析与仪器分析对试材结构进行的比较研究表明,不同热处理材在热处理过程中主要化学物质的反应和降解程度各不相同。相对于常压蒸汽热处理材,压力蒸汽热处理材半纤维素的降解更加显著,而木素与抽提物的含量则高于常压蒸汽热处理材。红外光谱分析进一步证实了上述结论,同时还发现木素的结构经过热处理后也发生了变化,但是木素在热处理过程中的具体变化模式还需要进一步探索。
     结合化学分析与仪器分析的结论,不难推断:压力蒸汽热处理材力学性能低于常压蒸汽热处理材是由于在压力蒸汽条件下木材的主要化学组分,特别是碳水化合物的分解更加明显,但是这种分解也导致木材中游离羟基数量的减少,使木材的吸湿性进一步变弱。另一方面,强度和吸湿性的进一步降低又是压力蒸汽热处理材在加工过程中功耗更小,排放粉尘更细的主要原因。
     上述研究表明,压力蒸汽热处理的优势在于热处理材的尺寸稳定性更优,在能量消耗更低的同时保证了产品的表面加工质量。虽然压力蒸汽热处理进一步降低了木材的强度,但是这种差异很多在统计上并不显著。需要指出的是,通过热重-红外分析我们发现,只要木材的热处理温度低于200℃其内部化学组分的分解是比较有限的,而在这一过程中木材吸湿性降低和纤维素结晶区比例的增加等因素反而有助于热处理材强度的增加,这就是热处理材某些强度指标,如抗弯弹性模量和顺纹抗压强度高于常规对照材的原因。因此综合来说,压力蒸汽热处理材是一种具有实际应用前景的木材热处理产品。
Research on wood heat treatment is currently active in the field of wood physical modification. By means of heating wood up to around 200℃in inert atmosphere, significant improvement on dimensional stability and biological durability can be obtained. Besides, when used, heat-treated wood will not release any toxic substance to the environment, making it an environmentally friendly product compared to chemically modified wood.
     In this paper, emphasis is put on the comparison of physical, mechanical and machining properties of heat-treated wood treated in atmospheric steam and pressurized steam, respectively. Chemical and instrument analysis have been performed to explore the underlying reasons for the property difference. Samples of Mongolian pine and Mongolian oak were chosen for the experiments, and results as follows were obtained:
     At the same treatment temperature, pressurized steam exerted more influence on properties of wood than atmospheric steam. Samples treated in pressurized steam were inferior to those treated in atmospheric steam when mechanical properties, such as Modulus of Elasticity (MOE), Modulus of Rupture (MOR), compressive strength parallel to grain, dynamic fracture toughness and hardness, are considered. However, most of these differences were not statistically significant. Pressurized-steam-treated samples performed better in experiments on hygroscopicity and dimensional stability. Lower equilibrium moisture content (EMC) and less swelling in both radial and tangential directions were found compared to atmospheric-steam-treated samples. Machining experiments showed that, when samples treated in pressurized steam were milled, temperature of the blade was lower. The roughness of the processed surface of both kinds of heat-treated samples was statistically the same. However, samples treated in pressurized steam intended to emit more fine sawdust, asking for better dust collecting system and respiratory protection device.
     Research on the change of wood structure was performed through chemical and instrument analysis. It was found that the main chemical components of samples treated in different pressure experienced different reaction and degradation. Hemicelluloses of samples treated in pressurized steam degraded more compared to samples treated in atmospheric steam. Meanwhile, the portion of lignin and extractives in the former was higher than in the latter. Those above were supported by the outcome of Fourier transform infrared spectroscopy (FTIR) analysis. Furthermore, the structure of lignin was found changed after heat treatment, although the exact pattern of the change needed further exploration.
     From the results of chemical and instrument analysis, we concluded that the lower strength of pressurized-steam-treated samples was attributed to more intense degradation of its main chemical components, especially the carbohydrates. Such degradation also decreased the number of free hydroxyl groups in the wood, making it absorb less moisture. The lower strength and hygroscopicity, in turn, were responsible for less energy consumption and finer dust emission of pressurized-steam-treated wood during machining process.
     Conclusions mentioned above showed that the benefit of pressurized steam heat treatment lied in better dimensional stability, less energy consumption during machining process and guaranteed surface quality of its products. Although pressurized steam made the strength of heat-treated wood even lower, in most cases, it was not statistically significant. What should be pointed out here is that, by means of thermogravimetry (TG)-FTIR analysis, we found that the degradation of wood components was limited if the treatment temperature was lower than 200℃. What's more, factors such as less hygroscopicity of wood and higher crystallinity of cellulose made positive contribution to the strength of wood. That's why some strength values like MOE and compressive strength parallel to grain of heat-treated samples were higher than the control ones. So, it can be concluded that pressurized-steam-treated wood has the potential of full scale application.
引文
[1] J. L. Bowyer, B. Shmulsky, J. G. Haygreen. Forest Products and Wood Science-An Introduction. Ames, IA : Iowa State Press (2003)
    [2] A. J. Stamm, L.A. Hansen. Minimizing wood shrinkage and swelling. Effect of heating in various gases. Industrial & Engineering Chemistry (1937)7: 831– 833
    [3] A. J. Stamm. Thermal Degradation of Wood and Cellulose. Industial and Engineering Chemistry (1956)48: 413~417
    [4] F. Kollmann, A. Schneider. On the sorption behaviour of heat stabilized wood. Holz Roh-Werkst (1963)21(3):77-85
    [5] F. Kollmann, D Fengel. Changes in the chemical composition of wood by thermal treatment. Holz als Rohund Werkstoff (1965)12:461-468
    [6] F. C. Beall, H.W. Eikner. Thermal Degradation of Wood Components: A Review of the Literature. U.S.D.A. Forest Service Research Paper, FPL 130(1970)
    [7] W. E. Hillis. High temperature and chemical effects on wood stability Part 1: General considerations. Wood Sci. Technol. (1984)18: 281 - 293
    [8] W. E. Hillis, A. N. Rozsa. High temperature and chemical effects on wood stability Part 2. The effect of heat on the softening of radiata pine. Wood Sci. Technol. (1985)19:57-66
    [9] W. E. Hillis, A. N. Rozsa. High temperature and chemical effects on wood stability Part 3: The effect of heat on the rigidity and the stability of radiata pine. Wood Sci. Technol. (1985)19:93-I02
    [10] W. E. Hillis, A. N. Rozsa. High temperature and chemical effects on wood stability Part 4: Testing for the Stability of Dried Pine Wood. Holzforschung (1987) 41: 115-118
    [11] J. A. Santos. Mechanical behaviour of Eucalyptus wood modified by heat. Wood Sci. Technol. (2000)34: 39-43
    [12] Y. Kubojima, T. Okano, M. Ohta. Vibrational properties of Sitka spruce heat-treated in nitrogen gas. J Wood Sci (1998) 44:73-77
    [13] Y. Kubojima, T. Okano, M. Ohta. Bending strength and toughness of heat-treated wood. J Wood Sci (2000)46:8-15
    [14] N. Ayadi, F. Lejeune, F. Charrier, B. Charrier, A. Merlin. Color stability of heat-treated wood during artificial weathering. Holz als Roh- und Werkstoff (2003)61: 221–226
    [15] Anne-Marja Manninena, P. Pasanenb, J. K. Holopainen. Comparing the VOC emissions between air-dried and heat-treated Scots pine wood. Atmospheric Environment (2002)36: 1763–1768
    [16] M. Hakkou, M. Petrissans, A. Zoulalian, P. Gerardin. Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polymer Degradation and Stability (2005)89: 1-5
    [17] B. F. Tjeerdsma, M. Boonstra, A. Pizzi, P. Tekely, H. Militz. Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh- und Werkstoff (1998)56: 149-153
    [18] B. F. Tjeerdsma, H. Militz. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh- und Werkstoff (2005) 63: 102–111
    [19] J. Bourgois, R. Guyonnet. Characterization and analysis of torrefied wood. Wood Sci. Technol. (1988)22:143-155
    [20] D.P. Kamdem, A. Pizzi, A. Jermannaud. Durability of Heat-treated Wood. Holz als Roh- und Werkstoff (2002) 60: 1–6
    [21] D.P. Kamdem, A. Pizzi, M.C. Triboulot. Heat-treated Timber: Potentially Toxic Byproducts Presence and Extent of Wood Cell Wall Degration. Holz als Roh- und Werkstoff (2000)58: 253–257
    [22] A. V. Lykov. On Systems of Differential Equations for Heat and Mass Transfer in Capillary Porous Bodies. Inzhenerno-Fizicheskii Zhurnal (1974)26: 18-25
    [23] Jen Y. Liu, S. Cheng. Solutions of Lykov equations of heat and mass transfer in capillary-porous bodies. Int. J. Heat Mass Transfer. 34(1991):1747-1754
    [24] D. Kocaefe, R. Younsi, S. Poncsak, Y. Kocaefe. Comparison of different models for the high-temperature heat-treatment of wood. International Journal of Thermal Sciences (2007)46: 707–716
    [25] A. O. Rapp. Review on Heat Treatments of Wood. BFH The Federal Research Centre for Forestry and Forest Products Information and Documentation, Hamburg (2001)
    [26] M. Boonstra. A Two-stage Thermal Modification of Wood. A PhD thesis in Applied Biological Sciences: Soil and Forest Management. Henry Poincare University-Nancy, France(2008)
    [27] M. Akgul, E. G. skaya, S. Korkut. Crystalline structure of heat-treated Scots pine [Pinus sylvestris L.] and Uludag fir [Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)] wood. Wood Sci Technol (2007)41: 281–289
    [28] H. Wikberg, S. L. Maunu. Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohydrate Polymers (2004)58: 461–466
    [29] B. Sundqvist. Colour changes and acid formation in wood during heating. Doctoral thesis: Divisions of Wood Material Science, Lulea University of Technology-Skeria, Sweden(2004)
    [30] H. N. Rosen, R. E. Bodkin. Steam Drying Lumber above Atmospheric Pressure. In: Proceedings (Western Dry Kiln Clubs) 32nd(1981)
    [31] S. Pang, H. Pearson. Experimental Investigation and Practical Application of Superheated Steam Drying Technology for Softwood Timber. Drying Technology. (2004)22(9): 2079–2094
    [32] A. N. Haslett, B. Davy. M. Dakin, R. Bates. Effect of Pressure Drying and Pressure Steaming on Warp and Stiffness of Radiata Pine Lumber. Forest Prod. J. (1999)49(6):67-71
    [33] A. N. Haslett, M. Dakin. Effect of Pressure Steaming on Twist and Stability of Radiata Pine Lumber. Forest Prod. J. (2001)51(2):85-87
    [34] C. A. Lenth, A.N. Haslett. Moisture uptake patterns in pressure steaming of Radiata Pine. Holz als Roh- und Werkstoff (2003)61: 444-448
    [35]程万里,刘一星,齐华春,師岡敏朗,則元京.木材过热蒸汽干燥过程中的收缩应力(I)--径向收缩应力特征.东北林业大学学报. (2004)32(6): 32~34
    [36]齐华春,程万里,刘一星.高温高压过热蒸汽处理木材的力学特性及化学成分变化.东北林业大学学报. (2005)33(3): 44~46
    [37] C. A. Lenth, F.A. Kamke. Equilibrium Moisture Content of Wood in High-temperature Pressurized Environments. Wood and Fiber Science, (2001)33(1): 104-118
    [38] M. Borrega, P. Karenlampi. Mechanical behavior of heattreated spruce (Picea abies) wood at constant moisture content and ambient humidity. Holz Roh- Werkst (2008)66:63–69
    [39] M. Borrega, P. Karenlampi. Effect of relative humidity on thermal degradation of Norway spruce (Picea abies) wood. J Wood Sci (2008)54:323–328
    [40] S. Poncsak, D. Kocaefe, M. Bouazara, A. Pichette. Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Sci Technol (2006)40: 647–663
    [41] Jun Li Shi, D. Kocaefe, J. Zhang. Mechanical behaviour of Quebec wood species heat-treated using ThermoWood process. Holz Roh Werkst (2007)65: 255–259
    [42] D. Kocaefe, B. Chaudhry, S. Poncsak, M. Bouazara, A. Pichette. Thermogravimetric study of high temperature treatment of aspen: effect of treatment parameters on weight loss and mechanical properties. J Mater Sci (2007) 42:854–866
    [43]曹永建,吕建雄,孙振鸢,黄荣凤,周永东,吴玉章.国外木材热处理工艺进展及制品应用.林业科学(2007)43:104-109
    [44]顾炼百,李涛,涂登云.超高温热处理实木地板的工艺及应用.木材工业(2007)5: 4-7
    [45]李延军,唐荣强,鲍滨福.高温热处理木材工艺的初步研究.林产工业(2008)2: 16-18
    [46]程大莉,蒋身学,张齐生.杉木热处理材的耐腐性研究.木材工业(2008)6: 11-13
    [47]丁涛,顾炼百,江宁.高温热处理实木地板的尺寸稳定性.木材工业(2008)6: 37-40
    [48]国家林业局. 2008中国林业发展报告.http://www.forestry.gov.cn/portal/main/s/62 /content72.html
    [49] B. Esteves, H. M. Pereira. Wood Modification by Heat Treatment: A Review. BioResource (2009)4: 370~404
    [50]顾炼百,涂登云,于学利.炭化木的特点及应用.中国人造板(2007)5: 30-37
    [1] R. H. Newman, J. A. Hemmingson. Carbon-13 NMR distinction between categories of molecular order and disorder in cellulose. Cellulose(1995)2: 95–110
    [2]顾炼百,李涛,涂登云,江宁.超高温热处理实木地板的工艺及应用.木材工业(2007)5: 4~7
    [3] A. O. Rapp. Review on Heat Treatments of Wood. BFH The Federal Research Centre for Forestry and Forest Products Information and Documentation, Hamburg (2001)
    [4] D. Kocaefe, B. Chaudhry, S. Poncsak, M. Bouazara, A. Pichette. Thermogravimetric study of high temperature treatment of aspen: effect of treatment parameters on weight loss and mechanical properties. J Mater Sci (2007) 42:854–866
    [5] S. Poncsak, D. Kocaefe, M. Bouazara, A. Pichette. Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Sci Technol (2006)40: 647–663
    [6] Finnish Thermowood Association. Thermowood Handbook. www.thermowood.fi
    [7] H. Wikberg, S. L. Maunu. Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohydrate Polymers (2004)58: 461–466
    [8] M. J. Boonstra, B. Tjeerdsma. Chemical analysis of heat treated softwoods. Holz als Roh - und Werkstoff (2006) 64: 204–211
    [9] J.O. Brito, F.G. Silva, M.M. Le?o, G. Almeida. Chemical composition changes in eucalyptus and pinus woods submitted to heat treatment. Bioresource Technology (2008)99: 8545–8548
    [10] J. Li, G. Henriksson, G. Gellerstedt. Carbohydrate reactions during high-temperature steam treatment of aspen wood. Appl Biochem Biotechnol. (2005)125(3):175-88
    [11] S. Yildiza, E. D. Gezerb, U. C. Yildiza. Mechanical and chemical behavior of spruce wood modified by heat. Building and Environment (2006) 41: 1762–1766
    [12] D. Johansson, T. Moren. The potential of colour measurement for strength prediction of thermally treated wood. Holz als Roh- und Werkstoff (2006) 64: 104–110
    [13] Y. Zhang, L. Cai. Effects of steam explosion on wood appearance and structure of sub-alpine fir. Wood Sci Technol (2006) 40: 427–436
    [14] B. Sundqvist, O. Karlsson, U. Westermark. Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness. Wood Science and Technology (2006)40: 549–561
    [15] B. Esteves, A. V. Marque, I. Domingos, H. Pereira. Heat-induced colour changes of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Science and Technology (2008)42: 369–384
    [16]李涛,顾炼百,江宁.高温热处理对水曲柳材色的影响.林业科学(2009)45(12): 149~153
    [17] M. Borrega, P. P. K?renlampi. Effect of relative humidity on thermal degradation of Norway spruce (Picea abies) wood. J Wood Sci (2008) 54:323–328
    [18]黄达章.东北经济木材志.北京:科学出版社,1964, PP17~21,85~90
    [19]邓邵平,杨文斌,陈瑞英,林金春.人工林杉木木材力学性质对高温热处理条件变化的响应.林业科学(2009)45(2): 105~111
    [20] Elisabeth Windeisen, Gerd Wegener. Behaviour of lignin during thermal treatments of wood. Ind. Crops Prod. (2007), doi:10.1016/j.indcrop.2007.07.015
    [1] F. C. Beall. H.W. Eikner. Thermal Degradation of Wood Components: A Review of the Literature. U.S.D.A. Forest Service Research Paper, FPL 130(1970)
    [2] M. J. Boonstra, B. Tjeerdsma. Chemical analysis of heat treated softwoods. Holz als Roh - und Werkstoff (2006) 64: 204–211
    [3] R. H. Newman, J. A. Hemmingson. Carbon-13 NMR distinction between categories of molecular order and disorder in cellulose. Cellulose (1995)2: 95–110
    [4]黄达章.东北经济木材志.北京:科学出版社,1964, PP17~21,85~90
    [5] H. Wikberg, S. L. Maunu. Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohydrate Polymers (2004)58: 461–466
    [6] B. F. Tjeerdsma, H. Militz. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh- und Werkstoff (2005) 63: 102–111
    [7] B. F. Tjeerdsma, M. Boonstra, A. Pizzi, P. Tekely, H. Militz. Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh- und Werkstoff (1998) 56: 149-153
    [8] D. P. Kamdem, A. Pizzi. Heat-treated timber: potentially toxic byproducts presence and extent of wood cell wall degradation. Holz als Roh- und Werkstoff (2000) 58:253-257
    [9] B.Sundqvist, O. Karlsson, U. Westermark. Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness. Wood Sci Technol (2006) 40: 549–561
    [10] H. Wikberg, S. L. Maunu. Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohydrate Polymers (2004)58: 461–466
    [11] M. Akgul, E. G. skaya, S. Korkut. Crystalline structure of heat-treated Scots pine [Pinus sylvestris L.] and Uludag fir [Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)] wood. Wood Sci Technol (2007)41:281–289
    [12] E. Windeisen, C. Strobel, G. Wegener. Chemical changes during the production of thermo-treated beech wood. Wood Sci Technol (2007) 41:523–536
    [13] O. Faix, E. Jakab, F. Till, T. Szekely. Study on low mass thermal degradation products of milled wood lignins by thermogravimetry-mass-spectrometry. Wood Sci. Technol.(1988) 22:323-334
    [14] M. Borrega, P. P. K?renlampi. Effect of relative humidity on thermal degradation of Norway spruce (Picea abies) wood. J Wood Sci (2008) 54:323–328
    [15] S. S. Kelley, T. G. Rials, W. G. Glasser. Relaxation behaviour of the amorphous components of wood. Journal of Materials Science (1987)22: 617-624
    [16] D. Fenger, G. Wegener. Wood: Chemistry, Ultrastructure, Reactions. Berlin: Walter de Gruyter, 1984: 26~65
    [17] J. Bourgois, M. C. Bartholin, R. Guyonnet. Thermal treatment of wood: analysis of the Obained Product. Wood Sci. Technol.(1989)23:303~310
    [18] R. Alen, R. Kotilainen, A. Zaman. Thermochemical behavior of Norway spruce (Picea abies) at 180–225℃. Wood Science and Technology (2002)36: 163~171
    [19] M. J. Prins, K. J. Ptasinski, F. J.J.G. Janssen. Torrefaction of wood, Part 2. Analysis of products. J. Anal. Appl. Pyrolysis (2006)77: 35~40
    [20] G. N. Inari, M. Petrissans, J. Lambert, J. J. Ehrhardt, P. Gerardin. XPS characterization of wood chemical composition after heat-treatment. Surf. Interface Anal. (2006)38: 1336~1342
    [21] G. N. Inari, M. Petrissans, A. Petrissans, P. Gerardin. Elemental composition of wood as a potential marker to evaluate heat treatment intensity. Polymer Degradation and Stability. (2009)94: 365~368
    [1] B. F. Tjeerdsma, H. Militz. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh- und Werkstoff (2005) 63: 102–111
    [2] M. Akgul, E. Gumuskaya, S. Korkut. Crystalline structure of heat-treated Scots pine [Pinus sylvestris L.] and Uludag fir [Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)] wood. Wood Sci Technol (2007) 41: 281–289
    [3] J.J. Weiland, R. Guyonnet. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz als Roh- und Werkstoff (2003) 61: 216–220
    [4] E. Windeisen, G. Wegener. Behaviour of lignin during thermal treatments of wood. Ind. Crops Prod. (2007), doi:10.1016/j.indcrop.2007.07.015
    [5] J. W. Robinson, E. M. S. Frame, G. M. Frame II. Undergraduate Instrument Analysis. Marcel Dekker, NewYork (2005), pp267
    [6] E. Windeisen, C. Strobel, G. Wegener. Chemical changes during the production of thermo-treated beech wood. Wood Sci Technol (2007) 41:523–536
    [7] B. F. Tjeerdsma, M. Boonstra, A. Pizzi, P. Tekely, H. Militz. Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh- und Werkstoff (1998) 56: 149-153
    [8] D. P. Kamdem, A. Pizzi, A. Jermannaud. Durability of heat-treated wood. Holz als Roh- und Werkstoff(2002)60:1-6
    [9] G. N. Inari, S. Mounguengui, S. Dumarcay, M. Petrissans, P. Gerardin. Evidence of char formation during wood heat treatment by mild pyrolysis. Polymer Degradation and Stability (2007)92: 997~1002
    [1] J. Bourgois, R. Guyonnet. Characterization and analysis of torrefied wood. Wood Sci. Technol. (1988)22:143-155
    [2] B. Sundqvist, O. Karlsson, U. Westermark. Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness. Wood Sci Technol (2006) 40: 549–561
    [3] R. Kotilainen. Chemical Changes in Wood during Heating at 150-260°C. Doctoral thesis, Department of Chemistry, University of Jyv?skyl?. Research Report No80, Finland(2000)
    [4] R. Alen, R. Kotilainen, A. Zaman. Thermochemical behavior of Norway spruce (Picea abies) at 180–225℃. Wood Science and Technology (2002) 36: 163–171
    [5] T. Streibel, R. Gei?ler, M. Saraji-Bozorgzad, M. Sklorz, E. Kaisersberger, T. Denner, R. Zimmermann. Evolved gas analysis (EGA) in TG and DSC with single photon ionisation mass spectrometry (SPI-MS): molecular organic signatures from pyrolysis of soft and hard wood, coal, crude oil and ABS polymer. J Therm Anal Calorim (2009) 96:795–804
    [6] [1] F. C. Beall. H.W. Eikner. Thermal Degradation of Wood Components: A Review of the Literature. U.S.D.A. Forest Service Research Paper, FPL 130(1970)
    [7] J. J. Weiland, R. Guyonnet. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz als Roh- und Werkstoff 61 (2003) 216–220
    [8] M. J. Boonstra, B. Tjeerdsma. Chemical analysis of heat treated softwoods. Holz als Roh- und Werkstoff (2006) 64: 204–211
    [9] B. F. Tjeerdsma, H. Militz. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh- und Werkstoff (2005) 63: 102–111
    [10] Qian Liu, Shurong Wang, Yun Zheng, Zhongyang Luo, Kefa Cen. Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. Journal of Analytical and Applied Pyrolysis (2008)82: 170-177
    [11] J. J. Weiland, R. Guyonnet, R. Gibert. Analysis de la Pyrolyse Menagee du Bois par un Couplage TG-DSC-IRTF. Journal of Thermal Analysis (1998)51: 265-274
    [12]彭云云,武书彬. TG-FTIR联用研究半纤维素的热裂解特性.化工进展(2009)28: 1478-1484
    [13] J. W. Robinson, E. M. Skelly Frame, G. M. Frame II. Undergraduate Instrument Analysis. Marcel Dekker, New York, NY: Marcel Dekker (2005)
    [14] A. O. Rapp. Review on Heat Treatments of Wood. BFH The Federal Research Centre for Forestry and Forest Products Information and Documentation, Hamburg (2001)
    [15] M. J. Prins, K. J. Ptasinski, F. J.J.G. Janssen. Torrefaction of wood, Part 2. Analysis of products. J. Anal. Appl. Pyrolysis (2006)77: 35~40
    [1]徐永吉.木材学.南京林业大学木材学教研室(2000)
    [2] J. L. Bowyer, B. Shmulsky, J. G. Haygreen. Forest Products and Wood Science-An Introduction. Ames, IA : Iowa State Press (2003)
    [3]中华人民共和国国家标准, GB1927~1943-91.木材物理力学性质试验方法
    [4] J. A. Santos. Mechanical behaviour of Eucalyptus wood modified by heat. Wood Science and Technology (2000) 34: 39-43
    [5] S. Poncsak, D. Kocaefe, M. Bouazara, A. Pichette. Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Sci Technol (2006) 40:647–663
    [6] D. Kocaefe, B. Chaudhry, S. Poncsak, M. Bouazara, A. Pichette. Thermogravimetric study of high temperature treatment of aspen: effect of treatment parameters on weight loss and mechanical properties. J Mater Sci (2007) 42:854–866
    [7] M. Borrega, P. P. Karenlampi. Mechanical behavior of heat-treated spruce (Picea abies)wood at constant moisture content and ambient humidity. Holz Roh Werkst (2008) 66: 63–69
    [8] B. Sundqvist, O. Karlsson, U. Westermark. Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness. Wood Sci Technol (2006) 40: 549–561
    [9] Gu Lianbai, Li Tao, Tu Dengyun, Jiang Ning. Research and Application of Heat-treatment of Solid Wood Flooring. In: Proceedings of 10th International IUFRO Division 5 Wood Drying Conference, Orono, Maine, USA, August 26-30, 2007, pp. 98-101
    [10] J. L. Shi, D. Kocaefe, J. Zhang. Mechanical behaviour of Quebec wood species heat-treated using ThermoWood process. Holz Roh Werkst (2007) 65: 255–259
    [11] F. Mburu, S. Dumarcay, J. F. Bocquet, M. Petrissans, P. Gerardin, Effect of chemical modifications caused by heat treatment on mechanical properties of Grevillea robusta wood. Polymer Degradation and Stability (2008)93: 401-405
    [12] M. Boonstra. A Two-stage Thermal Modification of Wood. A PhD thesis in Applied Biological Sciences: Soil and Forest Management. Henry Poincare University-Nancy, France(2008)
    [13] O. Unsal, N. Ayrilmis. Variations in compression strength and surface roughness of heat-treated Turkishriver red gum (Eucalyptus camaldulensis) wood. J Wood Sci (2005) 51:405–409
    [14] Y. Kubojima, T. Okano, M. Ohta. Vibrational properties of Sitka spruce heat-treated in nitrogen gas. J Wood Sci (1998)44:73-77
    [15] M. Akgul, E. G. skaya, S. Korkut. Crystalline structure of heat-treated Scots pine [Pinus sylvestris L.] and Uludag fir [Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)] wood. Wood Sci Technol (2007) 41: 281–289
    [16] B. F. Tjeerdsma, M. Boonstra, A. Pizzi, P. Tekely, H. Militz. Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh- und Werkstoff (1998)56: 149-153
    [17] B. F. Tjeerdsma, H. Militz. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh- und Werkstoff (2005) 63: 102–111
    [1] L. Greenspan. Humidity Fixed Points of Binary Saturated Aqueous Solutions. Journal of Research of the National Bureau of Standards - A Physics and Chemistry (1977)81A: 89~96
    [2] OIML R 121-The Scale of Relative Humidity of Air Certified against Saturated Salt Solutions. The International Organization of Legal Metrology (1996)
    [3] W. E. Hillis. High temperature and chemical effects on wood stability Part 1: General considerations. Wood Sci. Technol. (1984)18: 281 - 293
    [4] M. Borrega, P. P. Karenlampi. Mechanical behavior of heat-treated spruce (Picea abies) wood at constant moisture content and ambient humidity. Holz Roh Werkst (2008) 66: 63–69
    [5] G. Gündüz, P. Niemz, D. Aydemir. Changes in Specific Gravity and Equilibrium Moisture Content in Heat-Treated Fir (Abies nordmanniana subsp. bornmülleriana Mattf.) Wood. Drying Technology (2008)26: 1135–1139
    [6] S. Yildiza, E. D. Gezerb, U. C. Yildiz. Mechanical and chemical behavior of spruce wood modified by heat. Building and Environment (2006)41: 1762–1766
    [7] M. J. Boonstra, B. Tjeerdsma. Chemical analysis of heat treated softwoods. Holz als Roh - und Werkstoff (2006) 64: 204–211
    [8] J.O. Brito, F.G. Silva, M.M. Le?o, G. Almeida. Chemical composition changes in eucalyptus and pinus woods submitted to heat treatment. Bioresource Technology (2008)99: 8545–8548
    [9] L. X. Phuong, S. Shida, Y. Saito. Effects of heat treatment on brittleness of Styrax tonkinensis wood. J Wood Sci (2007) 53:181–186
    [10] M. Akgul, E. G. skaya, S. Korkut. Crystalline structure of heat-treated Scots pine [Pinus sylvestris L.] and Uludag fir [Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)] wood. Wood Sci Technol (2007) 41:281–289
    [11] J. Walker. Primary Wood Processing Principles and Practice. Dordrecht: Springer (2006): 84~85
    [12] J. L. Bowyer, B. Shmulsky, J. G. Haygreen. Forest Products and Wood Science-An Introduction. Ames, IA: Iowa State Press (2003): 170, 176
    [13] S. Metsa-Kortelainen, T. Antikainen, P. Viitaniemi. The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170 ?C, 190 ?C, 210 ?C and 230 ?C. Holz als Roh- und Werkstoff (2006) 64: 192–197
    [14] S. N. Kartal, Won-Joung Hwang, Y. Imamura. Water absorption of boron-treated and heat-modified wood. J Wood Sci (2007) 53:454–457
    [15] B. Esteves, A. V. Marques, I. Domingos, H. Pereira. Influence of steam heating on the properties of pine (Pinus pinaster) and eucalyptus (Eucalyptus globulus) wood. Wood Sci Technol (2007) 41:193–207
    [1] S. Korkut, S. Hiziroglu. Effect of heat treatment on mechanical properties of hazelnut wood (Corylus colurna L.). J Mater Design (2008), doi:10.1016/j.matdes.2008.07.009
    [2] O. Unsal, N. Ayrilmis. Variations in compression strength and surface roughness of heat-treated Turkish river red gum (Eucalyptus camaldulensis) wood. J Wood Sci (2005) 51:405–409
    [3] M. Kilic, S. Hiziroglu, E. Burdurlu. Effect of machining on surface roughness of wood. Building and Environment (2006)41: 1074–1078
    [4]王明枝,王洁瑛,李黎.木材表面粗糙度的分析.北京林业大学学报(2005)27(1): 14~18
    [5]黄达章.东北经济木材志.北京:科学出版社,1964, PP17~21,85~90
    [6]中华人民共和国国家标准. GB/T 12472-2003.产品几何量技术规范(GPS)表面结构轮廓法木制件表面粗糙度参数及其数值
    [7]中华人民共和国国家标准. GB/T 3505-2000.产品几何技术规范表面结构轮廓法表面结构的术语、定义及参数
    [8] Finnish Thermowood Association. Thermowood Handbook. www.thermowood.fi
    [9] A. Kisselbach. Modified Timber for Window Construction, Investigations of the Machinability. In: Proceedings of the 19th International Wood Machining Seminar, Nanjing, Jiangsu, China, October 21~23, 2009, pp101~108
    [10] D. S. Korkut, B. Guller. The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood. Bioresource Technology (2008)99: 2846–2851
    [11] J. Palmqvist, S.I. Gustafsson. Emission of dust in planing and milling of wood. Holz als Roh- und Werkstoff (1999)57: 164~170
    [12] K. Y. Kenneth, R. J. Cuthbert, G. S. Revell, S. G. Wassel, N. Summer. A Study on Dust Emission, Particle Size Distribution and Formaldehyde Concentration During Machining of Medium Density Fibreboard. Ann. occup. Hyg. (2000)44: 455~466

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700