铜—锌合金及不锈钢仿生耦合表面润湿性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属表面润湿性能的研究是当今世界范围内的科研热点和难点。具有疏水能力的金属表面,可以减小水的流动阻力,从而降低输送成本。或者,在相同动力下,提高舰船水面航行速度或提高载重量;具有超疏水能力的金属表面可以实现自清洁,从而提高其抗污染、抗腐蚀的能力;提高金属表面的亲水能力,可以增强金属表面与工作介质的亲和度。不论是使金属表面由亲水转为疏水甚至超疏水,或使金属表面亲水能力增强,都具有重要的研究意义。
     本文从工程仿生学出发,以铜-锌合金及不锈钢为研究对象,通过制备仿生耦合表面,改善其表面润湿性能并获得成功。主要工作包括:
     1.应用纳米制造技术,利用大孔模板,在铜-锌合金表面制备形态、结构与高表面能材料三元仿生耦合表面,实现了铜-锌合金表面由亲水向疏水的转变。实际接触角由亲水状态的82.5°提高到疏水状态的126.1°,滚动角小于5°。
     2.应用化学修饰技术,在铜-锌合金表面制备形态、结构及低表面能材料三元仿生耦合表面,实现了铜-锌合金表面由疏水向超疏水的转变。实际接触角达到161.3°,滚动角小于4.6°。
     3.应用激光掩膜微细加工技术,在铜-锌合金表面制备几何非光滑形态仿生表面,实现了铜-锌合金表面亲水能力增加,实际接触角由光滑表面的82.5°减小到31.5°,并建立了表面单元体特征参数与实际接触角关系的非线性数学模型。
     4.应用激光精细加工技术,在不锈钢表面制备几何非光滑形态仿生表面,实现了不锈钢表面亲水能力增加,实际接触角由光滑表面的84°减小到60.1°。
In this article, the key work is to have the wettability of representative metal:Cu-Zn Alloyl surface improved.
     Many biology in nature show special wettability because of unique shape, structure on their skin and the difference of materials between body and outside surface when experienced millions of millions years evolution, such as duck belly feather shows superhydrophobicy as the interaction between spine barbs and surface lipoid; On the other side, some biology show superhydroplibicy. In the view of bionics, it is the result of coupling with modality, structure and materials.
     The research for solid surface wettabiltyt is focus on two directions: To make the hydrophilic surface change into hydrophobic or superhydrophobic surface or to make the hydrophilic capacity increase. Many progress have been made by constructing modality, structure and material bionic coupling surface in nonmetal area.
     Three ways were used to make hydrophilic metallic surface change to be hydrophobic surface: (1) To fabricate micro-nanometer scale nonsmooth modality. The first step is making self-assembly template, then depositing metal in the gap, at last removing template. The successful work is on Au surface by Mamdouh E.Abdelsalam. No report has been found in China. (2) To fabricate superhydrophobic metallic surface through the interaction of shape and material. Main ways include chemical eroding, anode oxidation, laser etching and so on. Then the low surface energy material was used to make a thin film on the surface. In this way, the duality bionic coupling surface was made, the metallic surface may be superhudrophobic; (3) To create new matter by chemical reaction.
     Opposite above, to make the capability increase by copying shape of biology skin come true, the main factors are had the contact area increased.
     On the hydrophobic metallic surface, water resistance would be low, bear the weight of ship or the velocity would be increase at the same cost or power; On the superhydrophobic surface, self-cleaning, anti-eroding, antipollution would be true. Hydrophilic metallic surface could be used at medicine, industry and so on. Up to now, research for wettability of metal has been the rush area in the world.
     Cu ? ZnAlloy and stainless steel is a kind of important industrial raw and processed material, It has been widely used to make pipeline, shafting and high strength parts of automobile and ship.
     In this work, we use laser photography, laser fine processing and nanometer technology to fabricate modality, structure duality bionic coupling metallic surface and modality, structure and material ternary bionic coupling metallic surface. By this way, Cu ? ZnAlloy surface is from hydrophilic to superhydrophobic successfully. On the other hand, Cu ? ZnAlloy and stainless steel surface hydrophilic capability increase by fabricating geometry non-smooth shape bionic surface. By our work, two directions progress are made.
     1.Geometry non-smooth shape has been fabricated by means of Patankar model on Cu ? ZnAlloy and apparent contact was test. It has been shown that the hydrophilic capability increase 62% or the apparent contact angle decrease from 82.5°to 31.5°. Linearity tropical equation is below Yi = 28 .0532+0.1730X1i +0.1918X2i+1.1165X3i+εi
     Among factors a(x2i),b(x1i),H(x3i), the key factor is H. Even ifβ≥0.0632, hydrophilic surface can not change to be hydrophobic surface. Nonlinear mathematics model is below
     Force model. When a droplet sits on a solid surface, then
     Where, cosθ* denotes apparent contact, R 0 denotes the radius of sphere water droplet,γdenotes surface tension, Px denotes efficiency force to water droplet, T denotes temperature, p denotes environment press, k is a coefficient, d denotes the distance between two molecules.
     2. To make Self-assembling model on Cu - ZnAlloy surface, then deposit pure Cu to the model interval, fabricate shape, structure and high surface energy material ternary bionic coupling metallic surface. Cu - ZnAlloy surface is changed from hydrophilic to hydrophobic. The apparent contact angle increases from 82.5°to 126.1°or increases 53%; The sliding angle is about 5°. In the process of fabricating bionic coupling surface, the key factor is the radioξand the solid area fractionΦs.The change of apparent contact is close to Cassis-Baxter model, it is not keeping step with Wenzel model. Function of pure Cu is fabricating non-smooth shape and composite structure.
     3. On the basis of above work, to fabricate shape, structure and low surface energy material ternary bionic coupling metallic surface. Cu - ZnAlloy surface is changed to be superhydrophobic. The apparent contact angle increases from 82.5°to 161.3°; The sliding angle is about 4.6°.
     4. Non-smooth stainless steelbionics surface has been fabricated by laser fine processing and hydrophilic capability has been increased 28.8%. The relationship between roughness factor r and apparent contact angleθ* is
     The relationship betweenΦs apparent contact angleθ* is
引文
[1] Young, T. Philosophical Transactions of the Royal Society of London 1805, 95, 65.
    [2] Quéré, David, Rough ideas on wetting, Physica A 2002, 313, 32-46.
    [3] Adamson A.W., Physical Chemistry of Surfaces,5th ed., John Wiley &Sons:New York,1990,Chapter X, Section 4.
    [4] Pompe, T.; Herminghaus, S. Physical Review Letters 2000, 85, 1930-1933.
    [5] P.G.de Gennes, Wetting: Statics and dynamics, Rev. Mod. Phys.,1985,57(3):927-963.
    [6] Nishino T, Meguro M,Nakamae K, et al. Langmuir, 1999,15(13) :4321-4323.
    [7] Wenzel, R.N. Industrial and Engeneering Chemistry, 1936, 28, 988-994.
    [8] Cassie, A.B.D.; Baxter, S. Transactions of the Faraday Society, 1944, 40,546-551.
    [9] Bico, J.; Marzolin, C.; Quere, D. Europhys. Lett. 1999, 47 (2):220-226.
    [10] Patankar, N.A. Langmuir 2003, 19 :1249-1253.
    [11] B.He, N.A. Patankar,J. Lee, Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces, Langmuir,2003,19:4999-5003.
    [12] CassisA.B.D., Faraday Soc.,1948.3:11.
    [13] Bico J., Tordeux C., Quéré, David, Europhysics Letters,2001,55(2) :214-220.
    [14] Krupenkin Tom N., Taylor J. Ashley, Schneider Tobias M., Yang Shu, Langmuir,2004,20:3824-3827.
    [15] Otten A., Herminghaus S., Langmuir,2004,20:2405-2408.
    [16] Yoshimitsu Z., Hakajima A., Watanabe T., Hashimoto K., Langmuir,2002,18:5818-5822.
    [17] Dussan, E.B.; Chow, R.T.P. Journal of FluidMechanics 1983, 137, 1 –29.
    [18] Johnson, R.E.; Dettre, R.H. Advancments in Chemistry Series 1964, 43,12 –135.
    [19] E.B.V. Dussan, R.T. Chow, On the ability of drops or bubbles tostick to non-horizontal surfaces or solids, J. Fluid Mech., 1983,137:1-30.
    [20] C.G.L. Furmidge, Studies at phase interfaces I. The sliding of liquid drops on solid surface and a theory for spray retention, J. Colloid Sci.,1962,17:309-324.
    [21] Masashi Miwa, Akira Nakajima, Akira Fujishima, Kazuhito Hashimoto, and Toshiya Watanabe. Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces. Langmuir; (Research Article); 2000; 16(13); 5754-5760.
    [22] Quéré, David,Drops on a tilted plane, Langmuir,1998,14:2213-2216.
    [23] M.Callies, D. Quéré, On water repellency, Soft matter,2005 (1):55-61.
    [24] Onda, T.; Shibuichi, N.; Satoh, N.; Tsuji, K. Langmuir 1996, 12 (9), 2125-2127.
    [25] N.A. Patankar, Mimicking the lotus effect :influence of double roughness structures and slender pillars, Langmuir, 2004,20:8209-8213.
    [26] N.A. Patankar, Transition between superhydrophobic states on rough surfaces,Langmuir,2004,20:7097-7102.
    [27] B.He,J.Lee,N.A.Patankar, Contact angle hysteresis on rough hydrophobic surfaces,Colloids Surf.A,2004,248:101-104.
    [28] Y.Chen,B.He,J.Lee,N.A. Patankar, Anisotropy in the wetting of rough surfaces,J.Colloid Interface Sci.,2005,281:458-464.
    [29] K.Okumura,F.Chevy,D.Richard,D. Quéré,C.Clanet, Water spring : amodel for bouncing drops,Europhys. Lett,2003,62(2) :237-243.
    [30] P.Aussillous,D. Quéré, Liquid marbles, Nature,2001,411:924-927.
    [31] D.Richard, D. Quéré,Viscous drops rolling on a titled non-wettable solid, Europhys. Lett,1999,48(3):286-291.
    [32] A.Lafuma, D. Quéré, Superhydrophobic states, Nature Mater., 2003,2:457-460.
    [33] D. Quéré,A. Lafurma,J. Bico, Slippy and sticky microtextured solids, Nanotechnology,2003,14:1109-1112.
    [34] J.Bico, U.Thiele, D. Quéré, wetting of textured surfaces,Colloids Surf.A,2002,206 :41-46.
    [35] C.Ishino.K. Okumura,D. Quéré,Wetting transitions on rough surfaces,Europhys.Lett,2004,68(3) :419-425.
    [36] D.Richard,C.Clanet,D. Quéré,Contant time of a bouncingf drop,Nature,2002,417 :811.
    [37] 任露泉,尚广瑞,杨晓东,禽羽结构及羽表脂质对其润湿性能的影响.吉林大学学报(工学版),2005.02,213-218.
    [38] 佟金,孙霁宇,张书军,任露泉. 神农蜣螂前胸背板表面形态分形及润湿性 农业机械学报,2002 年 7 月,第 33 卷,第 4 期:74-76.
    [39] 房岩,孙刚,王同庆,丛茜,任露泉.蝴蝶翅膀表面非光滑形态疏水机理.科学通报,2007.03,354-357.
    [40] 任露泉; 王淑杰; 周长海; 赵维福.典型植物非光滑疏水表面理想模型.吉林大学学报(工学版),2006/S2,97-102.
    [41] 佟金,马海泉,任露泉.天然生物材料及其摩擦学.摩擦学报,2001,21(4):316.
    [42] 江雷.从自然到仿生的超疏水纳米界面材料.化工进展,2003,Vol22(12):1258-1264.
    [43] 杨雪,王红,龙春林.国产芋属花粉形态.云南植物研究,2003,25(5):603.
    [44] Alexander Otten, Stephan Herminghaus. How plants keep dry: A physicist,s point of view. Langmuir, 2004,20:2045.
    [45] Rijke.1965.The liquid repellency of a number of fluorochemical finished cotton fabrics.J.Colloid Sci.20:206-216.
    [46] Rijke.The water repellency and feather structure of cormorants, Phalacrocoracidae. J.Exp.Biol. 1968.48:185-189.
    [47] Rijke. Wettability and phylogenetic development of feather structure in water birds. J.Exp.Bion. 1970.52:469-479.
    [48] A.M.Elowson.Spread-wing postures and the water repellency of feathers:a test of Rijkes hypothesis.The Auk Vol 101: April 1984,371-383.
    [49] CONG Qian,CHEN Guang-hua,FANG Yan,REN Luquan. Super-hydrophobic characteristics of butterfly wing surface. Journal of Bionics Engineering(2004)Vol.1 No.4,249-255.
    [50] Neinhuis C,Barthlott W.Characterization and distribution of water-repellent,self-cleaning plant surfaces.Annals of Botany,1977,79:667-677.
    [51] 任露泉,陈德兴,胡建国.土壤动物减粘脱土规律初步分析.农业工程学报,1990, (01) ,15-20.
    [52] P. Wagner, R. Fürstner, W. Barthlott and C. Neinhuis. Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. Journal of Experimental Botany, 2003,Vol. 54, No. 385:1295-1303.
    [53] Barthlott W,Neinhuis C. Pruity of the sacred lotus or escape from contamination in biological surfaces. Planta,1997,202:1-8.
    [54] Ren Luquan, Tong Jin, Zhang Shujan, Chen Bingcong. Reducing sliding resistance of soil against bulldozing plates by unsmoothed bionics surfaces. Journal of Terramechanics, 1995, 32(6): 303-309
    [55] Gao Xuefeng, Jiang Lei. Water-repellent legs of water striders. Nature,2004,432(7013):36.
    [55] 李建桥,任露泉,陈秉聪,顾伟. 35 钢粘附特性研究. 农业工程学报,1993,9,(2): 19-25
    [56] 杨晓东,任露泉.动物毛发的形态结构及其功能特性研究.农业工程学报,2002,2(18):21.
    [57] Watson G S, Watson J A. Natural nano-structures on insects-possible functions of ordered arrays characterized by atomic force microscopy. Appl Sruf Sci,2004,235:139.
    [58] Onda T , Shibuichi S , Tsujii K, et al . Langmuir , 1996 , 12 :2125 —2127.
    [59] Shibuichi S , Yamamoto T , Onda T , et al . J . Phys. Chem. ,1996 , 100 : 19512 —19517.
    [60] Erbil H Y, Demirel A L , Avci Y, et al . Science , 2003 , 299 :1377 —1380.
    [61] Li S H , Li HJ , Jiang L , et al . J . Phys. Chem. B , 2002 , 106 :9274 —9276.
    [62] Sun T L , Wang GJ . JiangL , et al . J . Am. Chem. Soc. , 2003 ,125 : 14996 —14997.
    [63] Lau K K S , Bico J , Teo KB K, et al . Nano Letters , 2003 , 3 :1701 —1705.
    [64] Blossey R. Nature Materials , 2003 , 2 : 301 —306.
    [65] Kind H , Bonard J M, Emmenegger C , et al . Adv. Mater. ,1999 , 11 : 1285 —1289.
    [66] Gau H , Herminghaus S , Lenz P , et al . Science , 1999 , 283 :46 —49.
    [67] Guo Z G, Zhou F , Liu WM, et al . J . Am. Chem. Soc. , 2005 ,127 : 15670 —15671.
    [68] Abbott N L , Folkers J P , Whitesides GM. Science , 1992 , 257 :1380 —1382.
    [69] Wittmann J G, Smith P. Nature , 1991 , 352 : 414 —417.
    [70] Wang R , Hashimoto K, Fujishima A. Science , 1997 , 388 :431 —432.
    [71] Nakajima A , Hashimoto K, Watanabe T , et al . Langmuir , 2000 ,16 : 7044 —7047.
    [72] Nakajima A , Fujishima A , Hashimoto K. Adv. Mater. , 1999 ,11 : 1365 —1368.
    [73] Youngblood J P , McCarthy T J . Macromolecules , 1999 , 32 :6800 —6806.
    [74] Extrand C W. Langmuir , 2002 , 18 : 7991 —7999.
    [75] Patankar N A. Langmuir , 2003 , 19 : 1249 —1253.
    [76] Nakajima A , Fujishima A , Hashimoto K, et al . Adv. Mater. ,1999 , 11 : 1365 —1368.
    [77] Tadanaga K, Katata N , Minami T. J . Am. Ceram. Soc. , 1997 ,80 : 1040 —1042.
    [78] Tadanaga K, Katata N , Minami T. J . Am. Ceram. Soc. , 1997 ,80 : 3213 —3216.
    [79] Ogawa K, Soga M, Takada Y, et al . Jpn. J . Appl . Phys. ,1993 , 32 : L614 —L615.
    [80] Kijlstra J , Reihs K, Klamt A. Colloids and Surface A , 2002 ,206 : 521 —529.
    [81] Hozumi A , Sugimura H , Ushiyama K, et al . Langmuir , 1999 , 15 : 7600 —7604.
    [82] Xia YN , Whitesides GM. Angew. Chem. Int . Ed. , 1998 , 37 :550 —575.
    [83] 潘力佳( Pan L J ) , 何平笙( He P S) . 微细加工技术(Microfabrication Technology) , 2000 , 2 : 1 —6..
    [84] Furstner R , Barthlott W, Neinhuis C , et al . Langmuir , 2005 ,21 : 956 —961.
    [85] Grego SW, Jarvis TW, Stoner B R , et al . Langmuir , 2005 , 21 :4971 —4975.
    [86]D.Oner, T.J. McCarthy, Ultrahydrophobic surfaces. Effects of topography length scales on wettability, Langmuir,2000,16 :7777-7782.
    [87] A.Torkkeli, J. Saarilahti, A. Haara, H.Harma, T.Soukka, P.Tolomen, Electrostatic transportation of water droplets on superhydrophobic surfaces, IEEE Trans. Ind.App.,1998,34(4):732-737.
    [88] T.N. Krupenkin, J.A.Taylor, T.M. Schneider, S. Yang, From rolling ball to compledtwetting :the dynamic tuning of liquids on nanostructured surfaces, Langmuir,2004,20(10):3824-3827.
    [89] J.Y.Shiu, C.W. Kuo,P. Chen, C.Y. Mou, Fabrication oftunable superdrophobic surface by nanosphere lithography, Chem.Mater.,2004,16(4):561-563.
    [90] Hsieh C T , Chen J M, Kuo R R , et al . Applied Surface Science ,2005 , 240 : 318 —326.
    [91] J.Zhang,J.Li,Y.Han, Superhydrophobic PTFE surfaces by extension ,Macromol. Rapid Commun.,2004,25:1105-1108.
    [92] F.E.Bartell,J.W.Shepard, Surfaces roughness as related to hysteresis of contact angle.I. The system paraffin-watger-air, J.Phys.Chem,1953,57(2):211-215.
    [93] E. Bremus-Kobberling, A. Gillner, Laser structuring and modification of surface for chemical and medical micro components, Proceed. SPIE, 2003, 5063: 217-222.
    [94] M.T. Khorasani, H. Mirzadeh, P.G. Sammes, Laser induced surface modification of polydimethylsiloxane as a super-hydrophobic material, Radiat. Phys. Chem, 1996, 47(6): 881-888.
    [95] M.T. Khorasani, H. Mirzadeh, Z. Kermani, Wettability of porous polydimethylsiloxane surface: morphology study, Appl. Surf. Sci., 2005, 242: 339-345.
    [96] T. Sun, G. Wang, L. Feng, B. Liu, Y. Ma, L. Jiang, D. Zhu, Reversible switching between superhydrophilicity and superhydrophobicity, Angew. Chem., Int. Ed., 2004, 43: 357-360.
    [97] 管自生,张强,激光刻蚀硅表面的形貌及其对浸润性的影响。化学学报。2005,63(10): 880-884。
    [98] X. Song, J. Zhai, Y. Wang, L. Jiang, Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties, J. Phys. Chem.B., 2005,109(9): 4048-4052.
    [99] Zhao B , Brittain WJ . Macromolecules , 2000 , 33 : 342 —348.
    [100] Bico J , Queed M. Euro. Phys. Letter , 1999 , 47 : 220 —223.
    [101] Ma M, Hill R M, Lowery J L , et al . Langmuir , 2005 , 21 :5549 —5554.
    [102] Shang H M, Wang Y, Limmer S J , et al . Thin Solid Films ,2005 , 472 : 37 —43.
    [103] Guo Z G, Zhou F , Liu WM. Acta Chimica Sinica Sinica , 2006 ,64 : 761 —766.
    [104] Cao G, Tian H. J . Sol2Gel Sci . Technol . , 1998 , 13 : 305 —308.
    [105] Tadanaga K, Morinaga J , Matsuda A , et al . Chem. Mater. ,2000 , 12 : 590 —592.
    [106] Tadanaga K, Morinaga J , Matsuda A , et al . Journal of Sol2GelScience and Technology , 2000 , 19 : 211 —214.
    [107] K. Tadanaga, K. Kitamuro, A. Matsude, T. Minami, Formation of superhydrophobicalumina coating films with high transparency on polymer substrates by the sol-gel method, J. Sol-Gel Sci. Techn.,2003,26: 705-708.
    [108] K. Tadanaga, N. Katata, T. Minami, Super-water-repellent Al2O3 coating films with high transparency, J. Am. Ceram. Soc., 1997,80: 1040-1042.
    [109] K. Tadanaga, N. Katata, T. Minami, preparation of Super-water-repellent alumina coating film with high transparency on poly(ethylene terephthalate) by the sol-gel method, Chem. Lett., 2000: 864-865.
    [110] A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Preparation of transparent superhydrophobic boehmite and silica by sublimation of aluminum acetylacetonate, Adv. Mater., 1999, 11(16): 1365-1368.
    [111] W. Kubo, T. Tatsuma, Conversion of a solid surface form super-hydrophobic to super-hydrophobic by photocatalytic remote oxidation and photocatalytic lithography, Appl. Surf. Sci., 2005, 243: 125-128.
    [112] A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, A. Fujishima, Transparent superhydrophobic thin films with self-cleaning properties, Langmuir, 2000, 16: 7044-7047.
    [113] A. Nakajima, K. Abe, K. Hashimoto, T. Watanabe, Preparation of hard super-hydrophobic films with visible light transmission, Thin Solid Films, 2000,376: 140-143.
    [114] K. Tadanaga, N. Katata, T. Minami, Formation process of Super-water-repellent Al2O3 coating films with high transparency by the sol-gel method, J. Am. Ceram. Soc., 1997,80: 3213-3216.
    [115] A. Nakajima, C. Saiki, K. Hashimoto, T. Watanabe, Preparation of roughened silica film by coagulated colloidal silica for super-hydrophobic coating, J. Mater. Sci. Lett, 2001,20: 1975-1977.
    [116] S. Pilotek, H.K. Schmidt, Wettability of microstructured hydrophobic sol-gel coatings, J. Sol-Gel Sci. Techn., 2003,26, 789-792.
    [117] Y. Xu, D. Wu, Y.H. Sun, Z.X. Huang, X.D. Jiang, X.F. Wei, Z.H. Li, B.Z. Dong, Z.H. Wu, superhydrophobic antireflective silica films: fractal surfaces and laser-induced damage thresholds, Appl. Optics, 2005, 44(4): 527-533.
    [118] M. Hikita, K.Tanaka, T. Nakamura, T. Kajiyama, A. Takahara, Super-liquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups, Langmuir, 2005, 21: 7299-7302.
    [119] K. Satoh, H. Nakazumi, M. Morita, Preparation of super-water-repellent fluorinatedinorganic-organic coating films on nylon 66 by the sol-gel method using microphase separation, J. Sol-Gel Sci. Techn., 2003, 27: 327-332.
    [120] N.J. Shirtcliffe, G. McHale, M.I. Newton, C.C. Perry, Intrinsically superhydrophobic organosilica sol-gel foams, Langmuir, 2003, 19: 5626-5631.
    [121] J.T. Han, D.H. Lee, C.Y. Ryu, K. Cho, Fabrication of superhydrophobic surface from a supramolecular organosilane with quadruple hydrogen bonding, J. Am. Chem. Soc., 2004, 126;4796-4797.
    [122] A.V. Rao, M.M. Kulkami, D.P. Amalnerkar, T. Seth, Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor, J. Non-Cryst. Solids, 2003, 330: 187-195.
    [123] A. Roig, E. Molins, E. Rodriguez, S. Martinez, M. Moreno-Manas, A. Vallribera, Superhydrophobic silica aerogels by fluorination at the gel stage, Chem. Commun., 2004: 2316-2317.
    [124] Erbil H Y, Demirel A L , Avci Y, et al . Science , 2003 , 299 :1377 —1380.
    [125] Genzer J , Efimenko K. Science , 2000 , 290 : 2130 —2133.
    [126] F. Shi, Z. Wang, X. Zhang, Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders, Adv. Mater., 2005,17(8): 1005-1009.
    [127] X. Zhang, F. Shi, X. Yu, H. Liu, Y. Fu, Z. Wang, L. Jiang, X. Li, Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface, J. Am. Chem. Soc., 2004, 126: 3064-3065.
    [128] T. Soeno, K. Inokuchi, S. Shiratori, Ultra-water-repellent surface: fabrication of complicated structure of SiO2 nanoparticles by electrostatic self-assembled films, Appl. Surf. Sci., 2004, 237: 539-543.
    [129] R.M. Jisr, H.H. Rmaile, J.B. Schlenoff, Hydrophobic and ultrahydrophobic multilayer thin films from perfluorinated polyelectrolytes, Angew. Chem. Int. Ed., 2005, 44(3): 782-785.
    [130] L. Zhai, F.C. Cebeci, R.E. Cohen, M.F. Rubber, Stable Superhydrophobic coatings form polyelectrolyte multilayers, Nano Lett., 2004,7(7): 1349-1353.
    [131] N. Zhao, F. Shi, Z. Wang, X. Zhang, Combining layer-by-layer assembling with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces, Langmuir, 2005, 21(10): 4713-4716.
    [132] Zhao N , Xu J , Xie Q D , et al . Macromol . Rapid. Commun. ,2005 , 26 : 1075 —1080.
    [133] Xie Q D , Xu J , Feng L , et al . Adv. Mater. , 2004 , 16 : 302 —305.
    [134] Feng L , Li S H , Zhai J , et al . Angew. Chem. Int . Ed. , 2002 ,41 : 1221 —1226.
    [135] Miwa M, Nakajima A , Fujishima A , et al . Langmuir , 2000 , 16 :5754 —5760.
    [136] Sun TL , Wang GJ , Liu H , et al . J . Am. Chem. Soc. , 2003 ,125 (49) : 14996 —14997.
    [137] Y. Wu, M. Bekke, Y. Inoue, H. Sugimura, H. Kitaguchi, C. Liu, O. Takai, Mechanical durability of ultra water-repellent Thin film by microwave plasma-enhanced CVD, Thin Solid Films, 2004, 457: 122-127
    [138] Y. Wu, H. Sugimura, Y. Inoue, O. Takai, Thin films with nanotextures for transparent and ultra water-repellent coatings produced from trimethylmethoxysilane by microwave plasma CVD, Chem. Vapor Depos., 2002,8(2): 47-50.
    [139] H.T. Sahin, S. Manolache, R.A. Young, F. Denes, Surface fluorination of paper in CF4-RF plasma environments, Cellulose, 2002, 9: 171-181.
    [140] Y. Wu, H. Sugimura, Y. Inoue, O. Takai, Preparation of hard and ultra water-repellent silicon oxide films by microwave plasma-enhanced CVD at low substrate temperatures, Thin Solid Films, 2003, 435: 161-164.
    [141] K. Teshima, H. Sugimura, Y. Inoue, O. Takai, A. Takano, Wettablity of poly(ethylene terephthalate) substrates modified by a two-step plasma process: ultra water repellent surface fabrication, Chem. Vapor Depos., 2004, 10(6): 295-297.
    [142] A. Hozumi, O. Takai, Preparation of ultra water-repellent films by microwave plasma-enhanced CVD, Thin Solid Films, 1997, 303: 222-225.
    [143] I. Woodward, W.C.E. Schofield, V. Roucoules, J.P.S. Badyal, Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films, Langmuir, 2003,19: 3432-3438.
    [144] D.O.H. Teare, C.G. Spanos, P. Ridley, E.J. Kinmond, V. Roucoules, J.P.S. Badyal, Pulsed plasma deposition of super-hydrophobic nanospheres, Chem. Mater. 2002, 14: 4566-4571.
    [145] H. Liu, L. Feng, J. Zhai, L. Jiang, D. Zhu, Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity, Langmuir, 2004, 20(14): 5659-5661.
    [146] J.P. Youngblood, T.J. McCarthy, Ultrhydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma, Macromolecules, 1999, 32: 6833-6806.
    [147] Y. Zhang, E.T. Kang, K.G. Neoh, W. Huang, A.C.H. Huan, H. Zhang, R.N. Lamb, Surface modification of polyimide films via plasma polymerization and deposition of allylpentafluorobenzene, polymer, 2002,43: 7279-7288.
    [148] A. Chen, X. Peng, K. Koczkur, B. Miller, Super-hydrophobic tin oxide nanoflowers,Chem. Commun., 2004: 1964-1965.
    [149] S. Veeramasuneni, J. Drelich, J.D. Miller, G. Yamauchi, Hydrophobicity of ion-plated coatings, Prog. Org. Coat., 1997, 31: 265-270.
    [150] A. Duparre, M. Flemming, J. Steinert, K. Reihs, Optical coatings with enhanced roughness for ultrahydrophobic, low scatter applications, Appl. Optics, 2002,41(6): 3294-3298.
    [151] S. Tsoi, E. Fok, J.C. Sit, J.G.C. Veinot, Superhydrophobic, high surface area, 3-D SiO2 nanostructures through siloxane-based surface functionalization, Langmuir, 2004, 20: 10771-10774.
    [152] J.D. Miller, S. Veeramasuneni, J. Drelich, M.R. Yalamanchili, Y. Yamauchi, Effect of roughness as determined by atomic force microscopy on the wetting properties of PTFE thin films, Polym. Eng. Sci., 1996, 36: 1849-1853.
    [153] Li M, Lu Q H , Yin J , et al . Materials Chemistry and Physics ,2002 , 77 : 895 —898.
    [154] Li M, Lu Q H , Yin J , et al . Applied Surface Science , 2002 ,193 : 46 —51.
    [155] Brittain S , Paul K E , Zhao X M, et al . Physics World , 1998 ,11 : 31 —36.
    [156] Xia YN , Whitesides GM. Annu. Rev. Mater. Sci . , 1998 , 28 :153 —184.
    [157] Kim E , Xia Y N , Whitesides GM. Nature , 1995 , 376 : 581 —584.
    [158] Suh K Y, Choi S J , Back S J , et al . Adv. Mater. , 2005 , 17(5) : 560 —564.
    [159] Kim E , Xia Y N , Zhao X M, et al . Adv. Mater. , 1997 , 9 :651 —654.
    [160] Zhao X M, Xia YN , Whitesides GM. Adv. Mater. , 1996 , 8 :837 —840.
    [161] Xia YN , Kim E , Zhao XM, et al . Science , 1996 , 273 : 347 —349.
    [162] Sun M H , Luo C X, Xu L P , et al . Langmuir , 2005 , 21 :8978 —8981.
    [163] Hosono E , Fujihara S , Honma I , et al . J . Am. Chem. Soc. ,2005 , 127 (39) : 13458—13459.
    [164] Zhang X, Shi F , Yu X, et al . J . Am. Chem. Soc. , 2004 , 126 :3064 —3065.
    [165] Zhang J L , Li J , Han YC. Macromol . Rapid. Commun. , 2004 ,25 : 1105 —1108.
    [166] Xie Q D , Fan G Q , Zhao N , et al . Adv. Mater. , 2004 , 16 :1830 —1833.
    [167] Zhao N , Xie Q D , Wen L H , et al . Macromolecules , 2005 , 38 :8996 —8999.
    [168] Y. Kunugi, T. Nonaku, Y.B. Chong, N. Watanabe, Electro-organic reactions on organic electrodes, J. Electroanal. Chem., 1993, 353: 209-215.
    [169] S. Wang, L. Feng, H. Liu, T. Sun, X. Zhang, L. Jiang, D. Zhu, Manipulation of surface wettability between superhydrophobicity and superhydrophilicity on copper films, ChemPhysChem, 2005, 6: 1475-1478.
    [170] X. Yu, Z. Wang, Y. Jiang, F. Shi, X. Zhang, Reversible pH-responsive surfaces: from superhydrophobicity to superhydrophilicity, Adv. Mater., 2005, 17: 1289-1293.
    [171] M. Niemitz, G. Koβmehl, Wettability of poly(2,2’-bithieny-5,5’-diyl) layers, Angew. Mackromol. Chem, 1991, 185: 147-154.
    [172]Y. Jiang, Z. Wang, X. Yu, F. Shi, H. Xu, X. Zhang, M. Smet, W. Dehaen, Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: toward fabrication of superhydrophobic/superhydrophilic surfaces and pH-responsive surfaces, Langmuir, 2005, 21(5): 1986-1990.
    [173] H. Yan, K. Kurogi, H. Mayama, K. Tsujii, Environmentally stable super water-repellent poly(alkylpyrrole) films, Angew. Chem. Int. Ed., 2005, 44(22): 3453-3456.
    [174] M. Thieme, R. Frenzel, S. Schmidt, F. Simon, A. Hennig, H, Worch, K. Lunkwitz, D. Schamweber, Generation of ultrahydrophobic properties of aluminium – a first step to self-cleaning transparently coated metal surfaces, Adv. Eng. Mater., 2001, 3(9): 691-695.
    [175] K. Tsujii, T. Yamamoto, T. Onda, S. Shibuichi, Supper oil-repellent surfaces, Angew, Chem. Int. Ed. Engl., 1997, 36(9): 1011-1012.
    [176] M. Li, J. Zhai, H. Liu, Y. Song, L. Jiang, D. Zhu, Electrochemical deposition of conductive superhydrophobic zinc oxide thin films, J. Phys, Chem. B, 2003,107: 9954-9957.
    [177] S. Shibuichi, T. Yamamoto, T. Onda, K. Tsujii, Supper water- and oil-repellent surfaces resulting from fractal structure, J. Colloid Interface Sci., 1998,208: 287-294.
    [178] 金美花,冯琳,封心建,翟锦,江雷,白玉白,李铁津, 阵列聚合物纳米柱膜的超疏水性研究 ,高等学校化学学报, 2004,25(7): 1375-1377.
    [179]L. Huang, S.P. Lau, H.Y. Yang, E.S.P. Leong, S.F. Yu, S. Prawer, Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film, J. Phys. Chem. B., 2005, 109 (16): 7746-7748.
    [180] S. Li, H. Li, X. Wang, Y. Song, Y. Liu, L. Jiang, D. Zhu, Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes, J. Phys. Chem. B, 2002, 106: 9274-9276.
    [181] H. Li, X. Wang, Y. Song, Y. Liu, Q. Li, L. Jiang, D. Zhu, Super-“amphiphobic”aligned carbon nanotube films, Angew. Chem. Int. Ed., 2001, 40(9): 1743-1746.
    [182] 李书宏,冯琳,李欢军, 翟锦, 宋延林, 江雷, 朱道本,柱状结构阵列碳纳米管膜的超疏水性研究 ,高等学校化学学报,2003,24(2):340-342.
    [183] X.T. Zhang, O. Sato, A. Fujishima, Water ultrarepellency induced by nanocolumnar ZnOsurface, Langmuir, 2004, 20: 6065-6067.
    [184] 李欢军, 王贤宝, 宋廷林,刘云圻,李前树,江雷,朱道本,超疏水多孔阵列碳纳米管薄膜.高等学校化学学报,2001,22(5):759-761
    [185] X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, D. Zhu, Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films, J. Am. Chem. Soc., 2004, 126(1): 62-63.
    [186] 郭敏,刁鹏,蔡生民,刘忠范,表面修饰引发的 ZnO 纳米棒阵列膜的超疏水性,高等学校化学学报,2004,25(3): 547-549.
    [187] 翟锦,李欢军,李英顺, 李书宏,江雷,碳纳米管阵列超双疏性质的发现,物理, 2002, 31(8): 483-486.
    [188] L. Feng, S. Li, H. Li, J. Zhai, Y. Song, L. Jiang, D. Zhu, Super-hydrophobic surface of aligned polyacrylonitrile nanofibers, Angew. Chem. Int. Ed., 2002, 41(7): 1221-1223.
    [189] L. Feng, Y. Song, J. Zhai, B. Liu, J. Xu, L. Jiang, D. Zhu, Creation of a Superhydrophobic surface from an amphiphilic polymer, Angew. Chem. Int. Ed., 2003, 42(7): 800-802.
    [190] K.K.S. Lau, J. Bico, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G.H. Mckinley, K.K. Gleason, Superhydrophobic carbon nanotube forests, Nano Lett.,2003, 3(12): 1701-1705.
    [191] L. Feng, Z. Yang, J. Zhai, Y. Song, B. Liu, Y, Ma, Z. Yang, L. Jiang, D. Zhu, Superhydrophobicity of nanostructured carbon films in a wide range of pH values, Angew. Chem. Int. Ed., 2003, 42:4217-4220.
    [192] X. Feng, J. Zhai, L. Jiang, The fabrication and switchable superhydrophobic of TiO2 nanorod films, Angew. Chem. Int. Ed., 2005, 44: 5115-5118.
    [193]M. Jin, X. Feng, L. Feng, T. Sun, J. Zhai, T. Li, L. Jiang, Superhydrophobic aligned polystyrene nanotube films with high adhesive force, Adv. Mater., 2005, 17: 1977-1981.
    [194] X. Wu, L. Zheng, D. Wu, Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route, Langmuir, 2005, 21(7): 2665-2667.
    [195] Q. Xie, G. Fan, N. Zhao, X. Guo, J. Xu, J. Dong, L. Zhang, Y. Zhang, Facile creation of a bionic super-hydrophobic block copolymer surface , Adv. Mater., 2004,16(20): 1830-1833.
    [196] H.Y. Erbil, A.L. Demirel, Y. Avci, O. Mert, Transformation of a simple plastic into a Superhydrophobic surface, Science, 2003, 299: 1377-1380.
    [197] N. Zhao, J. Xu, Q. Xie, L. Weng, X. Guo, X. Zhang, L. Shi, Fabrication of biomimeticsuperhydrophobic coating with a micro-nano-binary structure, Macromol. Rapid Commun., 2005, 26: 1075-1080.
    [198] X. Lu, C. Zhang, Y. Han, Low-density polyethylene superhydrophobic surface by control of its crystallization behavior, Macromol. Rapid Commun., 2004, 25: 1606-1610.
    [199] X. Lu, J. Zhang, C. Zhang, Y. Han, Low-density polyethylene (LDPE) surface with a wettability gradient by tuning its microstructures, Macromol. Rapid Commun., 2005, 26(8): 637-642.
    [200] Q. Xie, J. Xu, L. Feng, L. Jiang, W. Tang, X. Luo, C.C. Han, Facile creation of a super-amphiphobic coating surface with bionic microstructure, Adv. Mater., 2004,16(4): 302-305.
    [201] T. Kako, A. Nakajima, H. Irie, Z. Kato, K. Uematsu, T. Watanabe, K. Hashimoto, Adhesion and sliding of wet snow on a super-hydrophobic surface with thdrophilic channels, J. Mater. Sci., 2004, 39: 547-555.
    [202] J.T.Han,X.R. Xu,K.Cho, Diverse access to artificial superhydrophobic surface using block copolymers,Langmuir,2005,21:6662-6665.
    [203] Q.Fu, G.V.R.Rao, S.B.Bassame,D.J.Keller,K.Artyushkova,J.E.Fulghum,G.P.Lopez,Reversible control of free energy and topography of nanostructured surfaces,J.Am.Chem.Soc.,2004,126:8904-8905.
    [204] Y.Inoue,Y.Yoshimura,Y.Keda,A.Kohno,Ultra-hydrophobic fluorine polymer by Ar-ion bombardment,Colloid Surface B,2000,19:257-261.
    [205] L.Yan, K. Wang, L. Ye, Super hydrophobic property of PVDF/CaCO3 nanocomposite coatings,J.Mater,Sci.Lett,2003,22:1713-1717.
    [206] D.H.Jung,I.J.Park, Y.K.Choi, S.B.Lee, H.S.P:ark, J.Rube, Perfluorinated polymer monolayers on porous silica for materials with super liquid repellent properties, Langmuir, 2002,18(16):6133-6139.
    [207] Z.Z.Gu, H.Uetsuka, K.Takahashi, R.Nakajima,H.Onishi,A.Fujishima,O.Sato,Structural color and the lotus effect,Angew.Chem.Int.Ed.,2003,42(8):894-897.
    [208] G. Yamauchi, J.D. Miller, H. Saito, K. Takai, T. Ueda, H. Takazawa, H. Yamamoto, S. Nislhi, Wetting characteristics of newly developed water-repellent material, Colloid Surface A, 1996, 116: 125-134.
    [209] D.A.Brevnov,M.J.Barela,M.J.Brooks,G.P.Lopez,P.B.Atanassov,Fabrication of anisotropic super hydrophobic/hydrophilic nanoporous membranes by plasma polymerization of C4F8 on anodic aluminum oxide,J.Electrochem.Soc.,2004,151(18):B484-B489.
    [210] K. Takeda, M. Sasaki, N. Kieda, K. Katayama, T. Kako, K. Hashimoto, T. Watanabe, A.Nakajima, Preparation of transparent super-hydrophobic polymer film with brightness enhancement property, J. Mater. Sci. Lett., 2001, 20: 2131-2133.
    [211] L.Feng, Z.Zhang, Z.Mai, Y.Ma, B.Liu, L.Jiang, D.Zhu, A super-hydrophobic and superolephilic coating mesh film for the separation of oil and water.Angew.Chem.Int.Ed.,2004,43:2012-2014.
    [212] R.Mohammadi, J.Wassink, A.Amirfazli, Effect of surfactants on wetting of super-hydrophobic surfaces,Langmuir,2004,20:9657-9662.
    [213] Jiang L , Zhao Y, Zhai J . Angew. Chem. Int . Ed. , 2004 , 43 :4338 —4342.
    [214] Feng L , Li S H , Jiang L , et al . Adv. Mater. , 2002 , 14 :1857 —1861.
    [215] LiH,Wang X,Song Y,et a1. [J].Angew.Chem.,2001,113:1793.
    [216] LiH,Wang X,Song Y,et a1.[J].Angew .Chem .1nt. ,2OO1,40: 1743.
    [217] Li H,Wang X,Song Y,et al [J] Chem .J Chin.Univ.,2001,22: 759.
    [218] Yuce M Y, Demirel A L , Menzel F. Langmuir , 2005 , 21 :5073 —5078.
    [219] Wu X D , Zheng L J , Wu D. Langmuir , 2005 , 21 : 2665 —2667.
    [220] Chen W, Youngblood J , Mcarthy T , et al . Langmuir , 1999 ,15 : 3395 —3399.
    [221] Feng L , Li S , Jiang L , et al . Angew. Chem. , 2002 , 114 :1269 —1273.
    [222] Han J T , Lee D H , Cho K, et al . J . Am. Chem. Soc. , 2004 ,126 : 4796 —4797.
    [223] Jisr R M, Rmaile H H , Schlenoff J B. Angew. Chem. Int . Ed. ,2005 , 44 : 782 —785.
    [224] Yan H , Kurogi K, Mayama H , et al . Angew. Chem. Int . Ed. ,2005 , 44 : 3453 —3456.
    [225] Jopp J , Grüll H , Yerushalmi2Rozen R. Langmuir , 2004 , 20 :10015 —10019.
    [226] Shiu J Y, Kuo C W, Chen P L , et al . Chem. Mater. , 2004 , 16(4) , : 561 —564.
    [227] Lu X Y, Zhang C C , Han Y C. Macromol . Rapid Commun. ,2004 , 25 , 1606 —1610.
    [228] Xie Q D , Xu J , Jiang L , et al . Adv. Mater. , 2004 , 16 : 302 —305.
    [229] Xie Q D , Xu J , Dong J Y, et al . Adv. Mater. , 2004 , 16 :1830 —1833.
    [230] Zhao N , Xu J , Xie Q D , et al . Macromol . Rapid. Commun. ,2005 , 26 : 1075 —1080.
    [231] Feng L , Song Y L , Zhai J , et al . Angew. Chem. Int . Ed. ,2003 , 42 : 800 —802.
    [232] Shirtcliffe, N. J.; McHale, G.; Newton, M. I.; Perry, C. C:Wetting and Wetting Transitions on Copper-Based Super-Hydrophobic Surfaces. Langmuir; 2005; 21(3):937-943.
    [233] Shirtcliffe, N. J.; McHale, G. Newton, M. I, et al. Adv. Mater.,2004,16:1929-1932.
    [234] Shi F, Wang Z Q, Zhang X. Adv. Mater., 2005,17:1005-1009.
    [235] Yu X, Wang Z Q, Zhang X, et al. Adv. Mater,2005,17 :1289-1293.
    [236] Chen A C, Peng X S, Koczkur K, et al. Chem. Commun.,2004:1964-1965.
    [237] 栗常红,肖怡等:一种多尺度仿生超疏水表面制备.无机化学报,2006,Vol22.No.5:785-788.
    [238] B.T.Qian, Z.Q. Shen, Fabrication of superhydrophobic surfaces by dislocation-selective chemical etch on aluminum, copper, and zine substrates, Langmuir, 2005,21(20):9007-9009.
    [239] 钱柏太,沈自求:控制表面氧化法制备超疏水CuO 纳米花膜.无机材料报,2006,Vol21,No.3:747-752
    [240] 陈志,耿兴国:不粘薄膜的微/纳米结构及其机理研究.材料保护.2005,Vol7,No.7:1-3.
    [241] M.Thieme, R.Frenzel, V.Hein, H.Worth: Metal surface with ultrahydrophobic properties: Perspective for corrosion protection and self-cleaning.JCSE,2003,Vol6,Paper C113:1-21.
    [242] Michael Thieme, Ralf Frenzel, Sylvia Schmidt, Frank Simon, Anja Hennig, Hartmut Worch, Klaus Lunkwitz,Dieter Schamweber. Generation of Ultrahydrophobic Properties of Aluminium-A first Step to Self-cleaning Transparently Coated Metal Surfaces. Advanced Engineering Materala,2001,vol3,No9:691-695.
    [243] 白硕,杨凌露,张茂峰,杨朝晖,张智峰,曹维孝.具有超疏水性质的图案化 Ag 膜.物理化学学报,2006,22(10):1296-1299.
    [244] Lee, W.; Jin, M.-K.; Yoo, W.-C.; Jang, E.-S.; Choy, J.-H.; Kim, J.-H.; Char, K.; Lee, J.-K. Nanostructured Metal Surfaces Fabricated by a Nonlithographic Template Method. Langmuir; 2004; 20(2);:287-290.
    [245] Abdelsalam, M. E.; Bartlett, P. N.; Kelf, T.; Baumberg, J.Wetting of Regularly Structured Gold Surfaces. Langmuir; 2005; 21(5);:1753-1757.
    [246] Shutao Wang, Lin Feng, and Lei Jiang. One-Step Solution-Immersion Process for the Fabrication of Stable Bionic Superhydrophobic Suirfaces. Advanced materials,2006,18:767-770.
    [247] Shen Tang,Oh-June Kwon,Na Lu and Ho-Suk Choi. Surface Free Energy Changes of Stainless Steel after One Atmospheric Pressrue Plasma Treatment.Korean J.Chem Eng.,2004,vol21(6):1218-1223.
    [248] M.C. Kim, S.H. Yanga, J.-H. Boob, J.G. Han. Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics. Surface and Coatings Technology: 2003,174 –175,839–844.
    [249] Teshima, K.; Sugimura, H.; Inoue, Y.; Takai, O.; Takano, A. Ultra-Water-Repellent Poly(ethylene terephthalate) Substrates. Langmuir,2003; 19(25); 10624-10627.
    [250] Hong, L.; Sugimura, H.; Furukawa, T.; Takai, O. Photoreactivity of Alkylsilane Self-Assembled Monolayers on Silicon Surfaces and Its Application to PreparingMicropatterned Ternary Monolayers. Langmuir,2003; 19(6); 1966-1969.
    [251] 谷国团,张治军,党鸿辛 . 低自由能固体表面的制备及其应用 . 化学进展,2002,14(3):159-166.
    [252] 黄祖洽,丁鄂江.表面浸润和浸润相变.上海科学技术出版社, 1994年10月第一版.
    [253] KijlstraJ .,R eihsK .,K larntA .,C olloidsan dS urfacesA ,2002,206:521-52.
    [254] KwokD .Y,LamC .N.C.,LiA .,ZhuK .,WuR .,Neumann.A. W ,Polym.Eng.Sci.,1998,38(10):1675.
    [255] In Jun Park,Soo-Bok L.,Chang K.C.,J.Appl.Polym.Sci.,1994,54:1449-145.
    [256] K amusewitz1- 1.,Po ssartW -Int.J. A dhesionA dhesives,19 85:211.
    [257] Owens D.K.,Wendt R.C.J.,Appl,Polym.Sci.,1969,13:1741.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700