“持绿型”小麦芽期耐盐机制及高温/暗胁迫下旗叶衰老过程的光合及叶绿素荧光特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐化、高温及遮荫等逆境是限制全球小麦生产力的主要非生物因子,而利用小麦-黑麦1BL/1RS易位染色体培育的“持绿”小麦新品种的产量得到大幅度的提高。为探讨其耐盐性,本研究对含有1BL/1RS易位染色体的三个“持绿”小麦新品种:川农12(CN12),川农17(CN17)和川农18(CN18),以及用作对照且同样含有1BL/1RS易位染色体的洛夫林10(LV10)和非易位系小麦基因型绵阳11(MY11)和中国春(CS)采用不同浓度的NaCl处理,测定了0 mM和100 mM NaCl条件下的胚芽鞘长度、相对伸长速率(RER)、鲜重、干重、渗透势,以及脯氨酸、可溶性糖、Na+、K+的含量等形态及生理学参数。另外,为阐明高温及暗胁迫对活体旗叶衰老过程的影响,本实验选取具有明显“持绿”特性的小麦品种CN17和正常衰老型小麦品种MY11进行对比研究。我们分别研究了长期的高温和暗胁迫对开花后旗叶的叶绿素含量、光合特性和叶绿素荧光参数的影响。从而为小麦的超高产栽培及育种提供理论支持。主要得到以下研究结果:
     1.相对胚芽鞘长度(盐胁迫条件下胚芽鞘长度与对照条件下的比值)比绝对胚芽鞘长度作为小麦耐盐性鉴定的更可靠指标。
     2.本研究中100 mM浓度的NaCl溶液能够很好地区分不同小麦材料对盐的耐性强弱。结合100mMNaCl胁迫下多个生理及形态指标的变化程度,本实验供试的六个小麦品种的耐盐性由强到弱依次是:LV10>CN17>CN18>CN12>CS> MY11。
     3.在100 mM NaCl胁迫条件下CN12、CN17和CN18的胚芽鞘相对长度显著比MY11大,且这三个姊妹系品种之间的耐盐性也存在着一定的差异。综合所有的证据,可以认为在MY11的遗传背景下,1RS对小麦的耐盐性有一定的贡献。
     4.在盐胁迫条件下,CN18的胚芽鞘具有高的选择吸收K+的能力,从而能够更加有效地排除Na+。通过隔离Na+于液泡中,降低了细胞质中的Na+,从而使CN12具有更强的忍受高Na+浓度条件的能力。良好的渗透调节能力则是小麦品种CN17的主要耐盐机制。
     5.CN18 Na+含量的变化与CN12和CN17明显不同,表明易位染色体的断裂点的不同影响其对盐的耐性能力,并从一定程度上改变了其盐耐性机制。LV10的耐盐水平比CN12、CN17和CN18高的原因在于其不同的系谱来源和培育环境。
     6.与大田中自然生长的植株衰老表现不同,对照条件下,“持绿”型小麦品种CN17表现出叶片边缘先于茎杆及叶脉区衰老的现象。主要原因在于本实验中对照条件的光照强度远比大田条件下弱,致使CN17的源和库之间的不平衡关系发生变化,由库受限变为源不足。
     7.在对照条件下,光合作用速率的首次降低,是光合器官的活性及气孔因素对突然变化的环境作出反应所致,之后气孔因素成为主要原因,而在MY11旗叶衰老的最后阶段,光化学器官受到严重破坏。而在整个胁迫处理时间内,CN17的光合器官仅受到一定程度的破坏。
     8.热胁迫条件下,MY11和CN17的旗叶均比对照条件下加速了衰老进程。但CN17的光化学器官比MY11更耐热胁迫。
     9.高温所引起光合参数的下降主要源于光合器官受到破坏。而CN17通过降低热耗散率来应对光能捕获率的下降,从而暂时在一定程度上维持了PSⅡ反应中心的捕光潜力和电子传递能力。
     10.与对照条件下植株的旗叶相比,将整株成年小麦放入连续的暗环境中,小麦旗叶的衰老被诱导发生。
     11.在暗胁迫条件下,CN17的光合器官反而比MY11先受到损害。CN17失去了比MY11“持绿”的优势。CN17和MY11具有不同的源库关系是该现象出现的主要原因。
Soil salinization, high temperature and dim light are major abiotic stresses influencing wheat productivity world widely, while wheat-rye 1BL/1RS translocated chromosome has been successfully used in wheat yield improvement for growing 'stay green' wheat cultivars. To determine the salt-tolerance of them, three new 'stay green' wheat cultivars with 1BL/1RS translocated chromosome Chuannong12 (CN12), Chuannong17 (CN17) and Chuannong18 (CN18) were treated with various NaCl concentration, and Lovrin10 (LV10) also with the1BL/IRS translocated chromosome, and wheat genotypes both Mianyangll (MY11) and Chinese Spring (CS) without the translocated chromosome were used as the controls. Several morphological and physiological parameters coleoptile length, relative elongation rate(RER), fresh weight, dry weight, osmotic potential, and contents of solutes such as proline, soluble sugars, Na+ and K+ were recorded under both 0 and 100mM NaCl conditions. On the other hand, in order to illuminate the effects of heat/darkness stress on the senescence process of intact flag leaves,'stay green' wheat cultivar CN17 and normal senescence-type wheat cultivar MY11 were investigated. We studied the effects of long-time heat and darkness stress on chlorophyll content, photosynthetic characteristics and chlorophyll fluorescence of flag leaf during the senescence period for the purpose of providing theoretical evidence of super-high-yield cultivation and breeding of wheat. The main results are as follows:
     1. The compared percentage of coleoptile length (the coleoptile lengths of the treated to those of the control) is perhaps a more reliable index in screening salt-tolerance of wheat than coleoptile length.
     2. In this study,100 mM NaCl concentration showed strong ability to differentiate the salt-tolerance. Combining the different degrees of change in the physiological and morphological parameters under 100 mM NaCl condition suggested that the salt-tolerant ability from strong to weak was:LV10>CN17>CN18>CN12>CS>MY11.
     3. Statistical analysis showed that CN12, CN17 and CN18 had higher average compared percentages of coleoptile length than MY11 had, when under 100 mM NaCl concentration level, and the larger P value would result from the different salt-tolerant levels among the three sister lines were also obviously in this study. Together all the evidences, we can draw a conclusion IRS in certain wheat genetic background would have some contribution to salt-tolerance.
     4. Under salt stress conditions, the coleoptile of CN18 might have higher K+ versus Na+ selectivity that could exclude Na+ more effectively, while CN12 had stronger tolerance to high Na+ concentration conditions resulted from the reduction of cytosolic Na+ by sequestering Na+ in the vacuoles. However, the osmotic adjustment probably played an important role in the salt-tolerant mechanism of CN17.
     5. The different changes of Na+ contents between CN18 and both CN12 and CN17and also showed the breakpoint of the translocated chromosome influence salt-tolerance ability as well as modifying salt-tolerant response mechanisms. The different pedigree and original environment might be an important reason for salt-tolerant level of LV10 was much higher than that of CN12, CN17 and CN18.
     6. For 'stay-green' wheat CN17, Under CK condition, the distal parts of flag leaves were senescence earlier than veins. This phenomenon was different from flag leaves of CN17 that came from field growing conditions. The main reason was that the illumination intensity of CK condition was much lower than those of field growing conditions. Under CK condition, the sourses of CN17 were insufficient.
     7. Under CK condition, Pn was influenced by both the stomatal factor and photosynthetic activity for the abrupt shift of surroundings. After this time, stomatal factor is the main aspect limiting photosynthesis. At the late senescence stage of MY11, activities of the photosynthetic apparatus were the main limiting factor. During the whole process of treatment, the photosynthetic apparatus of CN17 were destroyed only a little.
     8. Under heat treatment condition, the senescence processes were induced in both flag leaves of CN17 and MY11. While the photochemical apparatus in CN17 had higher heat tolerance than those in MY11.
     9. The main reason of decrease of Pn under heat stress condition is the destruction of photosynthetic apparatus. To reply the decreasing of the efficiency of excitation capture, CN17 decreased heat dissipation rate. So the maximum photochemical efficiency of PS II and the electron transport rate were protected to a certain extent.
     10. Compared with flag leaves of plants under CK condition, senescence could be induced in wheat flag leaf when put the whole adult plants into continuous darkness condition.
     11. Under darkness condition, photosynthetic apparatus of CN17 were injured earlier than those in MY11. CN17 had lost its 'stay green' function compared with MY11. The different relationship between sources and sinks in CN17 and MY11 is the main reason for the phenomenon.
引文
[1]Agastian P., Kingsley S.J. and Vivekanandan M. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica,2000,38,287-290.
    [2]Alamgir A.N.M. Electrophoretic characterization of root membrane proteins of one wheat and four cultivars of rice seedlings growth under salinity stress. Chittagong Univ Studi Sci.,1995,19: 225-233.
    [3]AliDinar H.M., Ebert G. and Ludders P. Growth, chlorophyll content, photosynthesis and water relations in guava (Psidium guajava L.) under salinity and different nitrogen supply. Gartenbau., 1999,64:54-59.
    [4]Al-Khatib K. and Paulsen G.M. High temperature effects on photosynthetic in temperate and tropical cereals. Crop Sci.,1999,39:119-125.
    [5]Al-Khatib K. and Paulsen G.M. Mode of high temperature injury to wheat during grain development. Physiol. Plant,1984,61:363-368.
    [6]Andrews J.R., Bredenkamp G.J. and Baker N.R. Evaluation of the role of state transitions in determining the efficiency of light utilisation for CO2 assimilation in leaves. Photosyn. Res.,1993, 38:15-26.
    [7]Ashraf M. and O'Leary J.W. Responses of newly developed salt-tolerant genotype of spring wheat to salt stress:yield components and ion distribution. Agron.Crop Sci.,1996,176:91-101.
    [8]Ashraf M., Shahbaz M. and McNeilly T. Phylogenetic relationship of salt tolerance in early green revolution CIMMYT wheats. Environl. Exp. Bot.,2005,53:173-184.
    [9]Barnett K.H. and Pearce R.B. Source-sink ratio alteration and its effect on physiological parameters in maize. Crop Sci.,1983,23:294-299.
    [10]Bates L.S., Waldren R.P. and Teare I.D. Rapid determination of free proline for water stress studies. Plant Soil,1973,39:205-207.
    [11]Becker W. and Apel K. Differences in gene expression between natural and artificially induced leaf senescence. Planta,1993,189:74-79.
    [12]Biswal B., Choudhury N.K., Sahu P. et al. Senescence of detached fern leaves. Plant Cell Physiol., 1983,24:1203-1208.
    [13]Biswal U.C. and Biswal B. Photocontrol of leaf senescence. Photochem. Photobiol.,1984,39: 875-879.
    [14]Biswal U.C., Kasemir H. and Mohr H. Phytochrome control of degreening of attached cotyledons and primary leaves of mustard (Sinapis alba L.) seedlings. Photochem. Photobiol.,1982,35: 237-241.
    [15]Blank A. and McKeon T.A. Expression of three Rnase activities during natural and dark-induced senescence of wheat leaves. Plant Physiol.,1991,97:1409-1413.
    [16]Bleecker A.B. and Patlerson S.E. Last exit:seneseence. abscission, and meristem arrest in Arobidopsis. Plant Cell,1997,9:1169-1179.
    [17]Blumenthal C.S., Barlow E.W.R and Wrigley C.W. Growth environment and wheat quality:the effect of heat stress on dough properties and gluten proteins. J. Cereal Sci.,1993,18:2-21.
    [18]Bradbury M. and Baker N.R. A quantitative determination of photochemical and non-photochemical quenching during the slow phase of chlorophyll fluorescence induction curve of bean leaves. Biochem.Biophys. Acta,1984,765:275-281.
    [19]Breins M. and Larher F. Osmoregulation in halophytic higher plant as aomparatire study of soluble carbohydrate, polyols betaines and free proline. Plant Cell Environ.,1982,5:287-292.
    [20]Buchanan-Wollaston V. The molecular biology of leaf senescence. J. Exp. Bot.,1997,48:181-199.
    [21]Buchanan-Wollaston V., Earl S., Harrison, E. et al. The molecular analysis of leaf senescence-agenomics approach. Plant Biotechnol. J.,2003,1:3-22.
    [22]Buchanan-Wollaston V., Page T., Harrison E. et al. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescencein Arabidopsis. Plant J.,2005,42:567-585.
    [23]Cai R.G., Zhang M., Yin Y. P. et al. Photosynthetic characteristics and antioxidative metabolism of flag leaves in responses to nitrogen application during grain filling of field-grown wheat. Agric. Sci. in China,2008,7:157-167.
    [24]Chaisompongpan N., Li PH., Davis D.W. et al. Photosynthetic response to heat stress in commonbean genotypes differing in heat acclimation potential. Crop Sci.,1990, (30):100-104.
    [25]Chartzoulakis K. and Klapaki G. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci. Hortic.,2000,86:247-260.
    [26]Chen S.Y., Xia GM., Quan T.Y. et al. Introgression of salt-tolerance from somatic hybrids between common wheat and Thinopyrum ponticum. Plant Sci.,2004,167:773-779.
    [27]Chen Z., Newman I. and Zhou M. Screening plants for salt tolerance by measuring K+ flux:a case study for barley. Plant Cell Environ.,2005,28:1230-1246.
    [28]Chhipa B.R. and Lal P. Na/K ratios as the basis of salt tolerance in wheat. Aust. J. Agric. Res.,1995, (6):533-539.
    [29]Christensen L.E., Below F.E. and Hageman R.H. The effect of ear removal on senescence and metabolism of maize. Plant Physiol.,1981,68:1180-1185.
    [30]Clark R.B. and Duncan R.R. Selection of plants to tolerate soil salinity, acidity, and mineral deficiencies. International Crop Sci.,1993,1:371-379.
    [31]Cornish K., Radin J.W., Turcotte E.L. et al. Enhanced photosynthesis and stomatal conductance of Pima cotton (Gossypium barbadense L.) bred for increased yield. Plant Physiol.,1991,97: 484-489.
    [32]Cornish P.S. and Hindmarsh S.著.余显权,赵德刚译.小麦种子体积对胚芽鞘长度的影响.种子,1991,53:72-74.
    [33]Cosgrove D.J. and Li Z.C. Role of expansin in cell enlargement of oat coleoptiles. Plant Physiol. 1993,103:1321-1328.
    [34]Crafts-Brandner S.J., Below F.E., Harper J.E. et al. Differential senescence of maize hybrids following ear removal. I. Whole plant. Plant Physiol.,1984,74:360-367.
    [35]Daskalyuk A.P., Ostaplyuk A.N., Lysova I.N. et al. Growth of wheat seedlings and polypeptide composition of proteins as affected by salt stress. Fiziologiya-I-Biokhimiya Kul'turnykh Rastenii, 1992,24:554-560.
    [36]DeEll J.R., van Kooten O., Prange R. et al. Application of chlorophyll fluorescence techniques in postharvest physiology. Hort. Rev.,1999,23:69-107.
    [37]Demming-Adams B. and Adams Ⅲ W.W. Chlorophyll and carotenoid composition in leaves of Euonymus kiautschovicus acclimated to different degrees of light stress in the field. Austral. J. Plant Physiol.,1996,23:649-659.
    [38]Demming-Adams B. and Adams Ⅲ W.W. Photoprotection and other responses of plants to high light stress. Ann. Rev. Plant Physiol. & Plant Mol. Biol.,1992,43:599-626.
    [39]El-Hendawy S.E., Hu Y.C., Yakout G.M., et al. Evaluating salt tolerance of wheat genotypes using multiple parameters. Eur. J. Agron.,2005,22:243-253.
    [40]El-Shintinawy F. and Elshourbagy M.N. Alleviation of changes in protein metabolism in NaCl-stressed wheat seedlings by thiamine. Biol. Plant.,2001,44:541-545.
    [41]El-Shintinawy F. Photosynthesis in two wheat cultivars differing in salt susceptibility. Photosynthetica,2000,38:615-620.
    [42]Epstein E. In better crops for food. Ciba Fundation Symposium,1983,97:61-82.
    [43]Farooq S. and Azam F. The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties. J. Plant Physiol.,2006,163:629-637.
    [44]Farooq S., Aslam Z., Niazi M.L.K. et al. Salt tolerance potential of wild resources of tribe Triticeae-Ⅰ. Screening of perennial genera. Pak J Sci Ind Res,1988; 31:506-511.
    [45]Farooq S., Niazi M.L.K., Iqbal N. et al. Salt tolerance potential of wild resources of the tribe Triticeae-II. Screening of species of genus Aegilops. Plant Soil,1989,119:255-260.
    [46]Flowers T.J. and Yeo A.R. Breeding for salt tolerance in crop plants:Where next? Aust. J. Plant Physiol.,1995,22:875-884.
    [47]Frommer W.B., Ludewig U. and Rentsch D. Taking transgenic plants with a pinch of salt. Science, 1999,285:1222-1223.
    [48]Fuse T., Iba K., Satoh H. et al. Characterisation of rice mutant having an increased susceptibility to light stress and high temperatures. Physiol. Plant,1993,89:799-804.
    [49]Gadallah M.A.A.. Effects of proline and glycinebetaine on Vicia faba response to salt stress. Biol. Plant.,1999,42:249-257.
    [50]Garcia A.B., Almeida E J., Iyer S. et al. Effects of osm oprotectants upon NaCI stress in rice. Plant Physiol.,1997,115:159-169.
    [51]Garg B.K. and Gupta I.C. Physiology of salt tolerance of arid zone crops, VI. Wheat Curr. Agric., 1999,23:1-24.
    [52]Genty B., Briantais J.M. and Baker N.R. The relationship between the quantum of photosynthetic eletron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta.,1989,990: 87-92.
    [53]Ghassemi F., Jakeman A.J.and Nix H.A. (Eds.).Salinisation of land and water resources. in: Human Cause, Extent, Management and Case Studies, UNSW Press, Sydney, Astralia, and CAB International, Wallingford, UK,1995, pp.1-50.
    [54]Giles K.L., Cohen D. and Beardsell M.F. Effects of water stress on the ultrastrueture of leaf cell of Sorphum bicolor. Plant Physiol.,1976,57:11-14.
    [55]Gong Y.H., Zhang J., Gao J.F. et al. Slow Export of Photoassimilate from Stay-green Leaves during Late Grain-Filling Stage in Hybrid Winter Wheat(Triticum aestivum L.). J. Agronomy & Crop Sci.,2005,191:292-299.
    [56]Greenway H. and Munns R. Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol.,1980,31:149-190.
    [57]Grover A. and Mohanty P. Leaf senescence-induced alterations in structure and function of higher plant chloroplasts. In:Abrol Y.P., Mohanty P.G. (Eds.), Photosynthesis:Photoreactions to Plant Productivity. Kluwer Academic Publishers, Dordrecht,1992, pp.225-255.
    [58]Grover A. How do senescing leaves lose photosynthetic activity? Curr. Sci.,1993,64,226-234.
    [59]Grover A., Sabat S.C. and Mohanty P. Effect of temperature on photosynthetic activities of senescent detached wheat leaves. Plant Cell Physiol.,1986,27,117-126.
    [60]Grumet R. and Hanson A.D. Geneties evidence for an osmoregulary function of glycinebetaine accumulation in barley. Aust J Plant Physiol,1986,13:353-364.
    [61]Gumdalia J.D., Patel M.S. and Polara K.B. Differential genetic salt tolerance of wheat in simulated saline soils. Gujarat Agric Univ. Res. J.,1995,21:12-21.
    [62]Hajibagheri M.A., Harvey D.M.R.and Flowers T.J. Quantitative ion distribution within root cells of salt-sensitive and salt-tolerant maize varieties. New Phytol.,1987,105:367-379.
    [63]Harding S.A., Guikema J.A., and Paulsen G.M. Photosynthetic Decline from High Temperature Stress during Maturation of Wheat:Ⅰ. Interaction with Senescence Processes. Plant Physiol., 1990,92,648-653.
    [64]Hays D.B., Do J.H., Mason R.E. et al. Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Sci.,2007, 172:1113-1123.
    [65]Hernandez J.A., Campillo A., Jimenez A. et al. Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytol.,1999,141:241-251.
    [66]Hernandez J.A., Olmos E., Corpas F.J. et al. Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci.,1995,105:151-167.
    [67]Hoagland D.R. and Arnon D.I. The water culture method for growing plants without soil. University of California Berkeley College Agricultural Experiment Station,1950, Circular 347.
    [68]Hohl M. and Schopfer P. Cell-wall tension of the inner tissues of the maize coleoptile and its potential contribution to auxin-mediated organ growth. Planta,1992,188:340-344.
    [69]Hortensteiner S. Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends in Plant Sci.,2009,14(3):155-162.
    [70]Hsensel L.L, Grbic V., Baumgarten D.A. et al. Developmental and age-related progresses that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell,1993,5: 553-564.
    [71]Huang S.B., Spielmeyer W., Lagudah E.S. et al. A sodium transporter (HKT7) is a candidate for Naxl, a gene for salt tolerance in durum wheat. Plant Physiol.,2006,142:1718-1727.
    [72]Humbeck K., Quast S. and Krupinska K. Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. Plant Cell & Enviorn., 1996,19:337-344.
    [73]Inoue N., Amano T. and Khoko K. Seedling establishment of rice sown on soil surface in flooded paddy field 1-varietal difference in seedling establishment. Japanese J. Crop Sci.,1997,66: 632-639.
    [74]Jajoo A., Mathur S. and Bharti S. Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem Ⅱ in wheat leaves. Plant Physiol. & Biochem.,2010,48:16-20.
    [75]Khan M.A. Experimental assessment of salinity to lerance of Ceriops tagal seedlings and saplings from the Indus delta. Pakistan. Aquat. Bot.,2001,70:259-268.
    [76]Khan M.A., Ungar, I.A. and Showalter A.M. Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum. Commun. Soil Sci. Plant Anal.,2000,31: 2763-2774.
    [77]King G.A., Davies K.M., Stewart R.J. et al. Similarities in gene expression during the postharvest-induced senescence of spears and natural foliar senescence of asparagus. Plant Physiol., 1995,108:125-128.
    [78]King I.P., Forster B.P., Law C.L. et al. Introgression of salt-tolerance genes from Thinopyrum bessarabicum into wheat. New Phytol,1997,137:75-81.
    [79]Kingston-Smith A.H., Thomas H. and Foyer C.H. Chlorophyll a fluorenscence, enzyme and antioxidant analyses provide evidence for the operation of alterative electron sinks during leaf senescence on a stay-green mutant of Festuca pratensis. Plant Cell & Environ.,1997,20: 1323-1337.
    [80]Konno H., Yamasaki Y. and Sugimoto M. et al. Differential changes in cell wall matrix polysaccharides and glycoside-hydrolyzing enzymes in developing wheat seedlings differing in drought tolerance. J. Plant Physiol.,2008,165:745-754.
    [81]Lamp E. and Lawton M. Programed cell death, mitochondria and the plant hypersensitive response. Nature,2001,411:948-853.
    [82]Leegood R.C. and Edwards G. Carbon metabolism and photorespiration:temperature dependence in relation to other environmental factors. In:Baker N.R. (ed) Photosynthesis and the environment. Kluwer Academic Publishers, Dordrecht,1996, pp:191-221.
    [83]Leopold A.C. Senescence in plant development. Science,1961,134:1727-1732.
    [84]Leshem Y.Y. Oxygen free radicals and plant senescence. What's New in Plant Physiol.,1981,12: 1-4.
    [85]Levitt J. Responses of plants to environmental stresses(2nd Volume). New York:Academic Press, 1980, pp:365-390.
    [86]Lichtenthaler H.K. and Burkart S. Photosynthesis and high light stress. Bulgarian J.Plant Physiol, 1999,25(3-4):3-16.
    [87]Lim P.O., Kim H.J. and Nam H.G. Leaf senescence. Ann. Rev. Plant Biol.,2006,58:115-136.
    [88]Lindsay M.P., Lagudah E.S. and Hare R.A. A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct. Plant Biol.,2004,31:1105-1114.
    [89]Liu X., Shi J. and Zhang X.Y. et al. Screening salt tolerance germplasms and tagging the tolerance gene(s) using microsatellite (SSR) markers in wheat. Acta Bot. Sinica,2001,9:948-954.
    [90]Luo P.G., Ren Z.L., Wu X.H. et al. Structural and biochemical mechanism responsible for the stay-green phenotype in common wheat. Chinese Sci. Bull.,2006,21:2595-2603.
    [91]Luo P.G, Zhang H.Y. and Shu K. Stripe rust(Puccinia striiformis f. sp. tritici) resistance in wheat with the wheat-rye 1BL/1RS chromosomal translocation. Can. J. Plant Pathol.,2008,2:254-259.
    [92]Luo P.G, Zhang H.Y. and Shu K. The physiological genetic effects of 1BL/1RS translocated chromosome in 'stay green' wheat cultivar CN17. Can. J. Plant Sci.,2009,89:1-10.
    [93]Mano Y. and Takeda K. Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica,1997,94:263-272.
    [94]Martin C. and Thimannk K.V. The role of protein synthesis in the senescence of leaves. Plant Physiol.,1972,49:64-71
    [95]Masclaux C., Valadier M.H., Brugiere N. et al. Characterization of the sink/source transition in tobacco shoots in regulation to nitrogen management and leaf senescence. Planta,2000,211: 510-518.
    [96]Mehta P., Jajoo A., Mathur S. et al. Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiol. and Biochem.,2010,48:16-20.
    [97]Meloni D.A., Oliva M.A. and Ruiz H.A. et al. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J. Plant Nutr.,2001,24:599-612.
    [98]Miller T.D. Growth stages of wheat:identification and understanding improve crop management. Better Crops with Plant Food,1992, http://croptesting.tamu.edu/wheat/docs/mime-5.pdf
    [99]Morgan J.M. The use of coleoptile responses to water stress to differentiate wheat genotypes for osmo-regulation, growth and yield. Ann Bot.,1988,62:193-198.
    [100]Munns R. Comparative physiology of salt and water stress. Plant Cell Environ.,2002,25: 239-250.
    [101]Nagy E.D., Christoph E., Molnar-Lang M. et al. Genetic mapping of sequence-specific PCR-based markers in t he short arm of the 1BL/IRS wheat-rye translocation. Euphytica,2003, 132:243-250.
    [102]Nooden L.D. and Leopold A.C. Phytohormones and the endogenous regulation of senescence and abscission. In:Phytohormones and Related Compounds, Vol.2, Letham D.B., Goodwin P.B. and Higgins T.J.V. (Eds). Amsterdam:Elsevier,1978, pp.1-51.
    [103]Nooden L.D., Guiamet J.J. and John I. Senescence mechanisms. Physiologia Plantarum,1997, 101(4):746-753.
    [104]Pastenes C. and Horton P. Effect of high temperatures on photosynthesis in beans. I. Oxygen evolution and Ch1 fluorescence. Plant Physiol.,1996,112:1245-1251.
    [105]Patterson T.G. and Mass D.N. Senescence in field-grown wheat. Crop Sci.,1979,19:635.
    [106]Peterson R.B., Sivak M.N. and Walker D.A. Relationship between steady-state fluorenscence yield and photosynthetic efficiency in spinach leaf tissue. Plant Physiol.,1998,88:158-163.
    [107]Pitman M.G. In:salinity tolerance in plants:Strategies for crop improvement. Staples R.C. and Toenniessen G.H. (Eds). NewYork:John wiley and sons,1984. pp:93-123.
    [108]Quirino B.F., Nob Y.S., Himelblau E. et al. Molecular aspects of leaf senescence. Trends Plant Sci.,2000,5:278-282.
    [109]Quirino B.F., Reiter W.D. and Amasino R.M. One of two tandem Arabidopsis genes homologous to monosaccharide transporters is senescence-associated. Plant Mol. Biol.,2001,46: 447-457.
    [110]Rajaram S., Mann C.E., Ortiz-Ferrara G. et al. Adaptation, stability and high yield potential of certain IRS.1BL CIMMYT wheats [A]. In Proc. Intl. Wheat. Genet. Symp.,6th [C], Kyoto, Japan. 1983, pp:613-621.
    [111]Rajasekaran L.R., Aspinall D., Jones G.P. et al. Stress metabolism. IX. Effect of salt stress on trigonelline accumulation in tomato. Can. J. Plant Sci.,2001,81:487-498.
    [112]Ren Z.L. and Zhang H.Q. Induction of small-segment-translocation between wheat and rye chromosomes. Sci. in China (Series C),1997,40:323-331.
    [113]Rhodes D. and Hanson A.D. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol. Plant Mol. Biol.,1993,44:357-384.
    [114]Rose J.K.C, Cosgrove D.J., Albersheim P. et al. Detection of expansin proteins and activity during tomato ontogeny. Plant Physiol.,2000,123:1583-1592.
    [115]Rubio F., Gassmann W. and Schroeder J.I. Sodium-driven potassium uptake by the plant potassium transports HKT1 and mutations conferring salt tolerance. Science,1995, (270): 1660-1663.
    [116]Sabry S.R.S, Smith L.T. and Smith G.M. Osmoregulation in spring wheat under drought and salinity stress. J.Genetics&Breeding,1995,49(1):55-60.
    [117]Sairam R.K., Rao K.V. and Srivastava G.C. Differential response of wheat genotypes to longterm salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci.,2002,163:1037-46.
    [118]Schachtman D.P. and Schroeder J.I. Structure and transport mechanism of high affinity potassium uptake transporter from higher plants. Nature,1994, (370):655-658.
    [119]Schreiber U., Bilger W. and Neubauer C. Chlorophyll fluorescence as a non-destructive indicator for rapid assessment of in vivo photosynthesis. Ecol. Stud.,1994,100:49-70.
    [120]Setimela P.S., Andrews D.J., Partridge J. et al., Screening sorghum seedlings for heat tolerance using a laboratory method. Eur. J. Agronomy,2005,23:103-107.
    [121]Shieh M.W. and Cosgrove D.J. Expansins. J Plant Res.,1998,111:149-157.
    [122]Simon-Sarkadi L., Kocsy G. and Sebestyen Z. Deletions of chromosome 5A affect free amino acid and polyamine levels in wheat subjected to salt stress. Environ. and Experi. Bot.,2007,60: 193-201.
    [123]Singh K.N. and Rana R.S. Genetic variability and character association in wheat varieties grown in sodic soil. J. Agric. Sci.,1985,55:723-726.
    [124]Singh N.K., Shepherd K.W. and Mcintosh R.A. Linkage mapping of genes for resistance to leaf, stem, and stripe rusts and ω-secalins on the short arm of rye chromosome 1R. Theor. Appl. Genet.,1990,80:609-616.
    [125]Smart C.M. Transley Review No64:gene expression during leaf senescence. New Phytol., 1994,126:419-448.
    [126]Snedecor G.W. and Cochran W.G. Statistical Methods. The Iowa State University Press, Ames, USA.1980.
    [127]Spiertz. J.H.J. The influence of temperature and light intensity on grain growth in relation to the carbohydrate and nitrogen economy of the wheat plant. Neth. J. Agric. Sci.,1977,24:182-197
    [128]Stressman D., Miller A., Spalding M. et al. Regulation of photosynthesis during Arabidopsis leaf developmentin continous light. Photosyn. Res.,2002,72:27-37.
    [129]Szabolcs I. Soils and salinisation, in:Pessarakali M. (Eds). Handbook of Plant and Crop Stress, Marcel Dekker, NewYork,1994, pp.3-11.
    [130]Takemura T., Hanagata N., Sugihara K. et al. Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquat. Bot.,2000,68:15-28.
    [131]Tanaka T. and Matasushima S. Effects of light intensity and different shading methods during the ripening period on the percentage of ripened gains. Proc. Crop Sci. Soc. Japan,1971,40: 376-380.
    [132]Tang Z.X., Ren Z.L., Wu F. et al. The selection of transgenic recipients from new elite wheat cultivars and study on its plant regeneration system. Agri. Sci. China,2006,6:417-424.
    [133]Thebud R. and Santarius K.A. Effects of high temperature stress on various biombranes of leaf cells in Situ and in Vivo. Plant Physiol.,1987,70:200-205.
    [134]Thimann K.V. and Satler S. Relation between senescence and stomatal opening:senescence in darkness. Proc Natl Acad Sci USA,1979,76:2770-2773.
    [135]Thimann K.V. Senescence in Plants. CRC Press, Florida, USA,1982, pp:85-115.
    [136]Thomas H. and Howarth C. Five ways to stay green. J. Exp. Bot.,2000,51:329-337.
    [137]Tollenaar M. and Daynard T.B. Effect of source:sink ratio on dry mater accumulation and leaf senescence of maize. Can. J. Plant Sci.,1982,62:855-860.
    [138]Trethowan R.M., Singh R.P., EsPino J.H. et al. Coleoptile length variation of near-isogenic Rht lines of modern CIMMYT bread and durum wheats. Field Crops Res.,2001,70:167-176.
    [139]Veirerskov B. Irradiance-dependent senescence of isolated leaves. Physiol Plant.,1987,71: 316-320.
    [140]Villareal R.L., Banuelos 0., Mujeeb-Kazi A. et al. Agronomic performance of chromosome 1B and T1BL.1RS near isolines in the spring bread wheat SeriM82. Euphytica,1998,103: 195-202.
    [141]Villareal R.L., Mujeeb-Kazi A., Rajaram S. et al. Associated effects of chromosome 1B/1R translocation on agronomic traits in hexaploid wheat. Breed Sci.,1994,44:7-11.
    [142]Wang F.H., Wang X.Q. and Sayre K. Comparison of conventional, flood irrigated, flat planting with furrow irrigated, raised bed planting for winter wheat in China. Field Crops Res.,2004,87: 35-42.
    [143]Wang Q., Zhang Q.D., Jiang GM. et al. Photosynthetic characteristics of two superhigh-yield hybrid rice. Acta Bot. Sinica,2000,42:1285-1288.
    [144]Wang R.R.C, Li X.M., Hu Z.M. et al. Development of salinity-tolerant wheat recombinant lines from a wheat disomic addition line carrying a Thinopyrum junceum chromosome. Int J Plant Sci,2003,164:25-33.
    [145]Wang Y. and Nil N. Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J.Hortic.Sci.Biotechnol.,2000,75:623-627.
    [146]Wardlaw I.F. The early stages of gain development in wheat:Response to light and temperature in single variety. Aust. J. Biol. Sci,1970,23:765-774.
    [147]Weaver L.M. and Amasino R.M. Senescence is induced in individually darkened Arabidopsis leaves, but inhibited in whole darkened plants, Plant Physiol.,2001,127:876-886.
    [148]Wingler A., Von-Schaewen A., Leegood R.C. et al. Regulation of Leaf Senescence by Cytokinin, Sugars, and Light. Plant Physiol.,1998,116:329-335.
    [149]Wittenbach V.A. Induced senescence of intact wheat seedlings and its reversibility. Plant Physiol.,1977,59:1039-1042.
    [150]Woolhouse H.W. Leaf senescence. In:Smith H., Grierson D. (Eds.), The Biology of Plant Development. Blackwell Scientific Publications, Oxford,1987. pp.256-284.
    [151]Wu S.J., Ding L. and Zhu J K. SOS1, a genetic locus essential for salt-tolerance and potassium acquisition. Plant Cell,1996,8:617.
    [152]Xue Z.Y., Zhi D.Y., Xue GP. et al. Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci.,2004,167:849-859.
    [153]Yamane Y, Kashino Y. and Koike H. Effects of high temperatures on the photosynthetic systems in spinach:oxygen-evolving activities, fluorescence characteristics and the denaturation process. Photosynth. Res.,1998,57:51-59.
    [154]Yamane Y., Kashino Y. and Koike H. Increases in the fluorescence Fo level and reversible inhibition of photosystem 2 reaction by high-temperature treatments in higher plants. Photosynth. Res.,1997,52:57-64.
    [155]Yemm E.W. and Willis A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J.,1954,57:508-514.
    [156]Yoshida S. Molecular regulation of leaf senescence. Curr. Opin. Plant Biol.,2003,6:79-84.
    [157]Yoshiro M. and Kazuyoshi T. Mapping quantitative trait loci for salt tolerance at germination and the seeding stages in barley. Euphytica,1997,94:263-272.
    [158]Yshib A.Y. and Kiyosue T. Regulation of levels of proline as an osm olyte in plants under water stress. Plant Cell Physiol.,1997,83:1095-1102.
    [159]Zhang C.J., Chen G.X., Huang C.J. et al. Effects of drought on photosynthetic properties in flag leaves of a high-yield wheat cultivar Ningmai 9. Agric. Res. in the Arid Areas,2005,23: 52-57.
    [160]Zhang Y., Liu Z.H., Liu C. et al. Analysis of DNA methylation variation in wheat genetic background after alien chromatin introduction based on methylation-sensitive amplification polymorphism. Chinese Sci. Bull.,2008,1:58-69.
    [161]Zheng Y.H., Wang Z.L., Sun X.Z. et al. Higher salinity tolerance varieties of winter wheat relieved senescence at reproductive stage. Environl. Exp. Bot.,2008,62:129-138.
    [162]Zhu J.K. Salt and drought stress signal transduction in plants. Ann. Rev. Plant Biol.,2002,53: 247-273.
    [163]Zhu X.G., Wang Q., Zhang Q.D. et al. Effects of photoinhibition and its recovery on photosynthetic function of winter wheat under salt stress. J. Integr. Plant Biol.,2001,43: 1250-1254.
    [164]安黎哲,张立新.NaCl对小麦根质膜NADPH氧化酶活性的影响.西北植物学报,2006,12:2463-2467.
    [165]陈德明,余仁培.盐胁迫下不同小麦品种的耐盐性极其离子特征.土壤学报,1998,1:88-94.
    [166]陈文峻,蒯本科.植物的滞绿突变.植物生理学通讯,1999,4:321-324.
    [167]杜胜利,马德华.生物技术与常规育种相结合培育优良蔬菜新品种.农业与技术,2002,2:58-62.
    [168]郭房庆,汤章城.NaCl胁迫下抗盐突变体和野生型小麦Na+、K+累积的差异分析.植物学报,1999,5:515-518.
    [169]郭峰.不同光照条件对超高产小麦叶片光合特性的影响.[硕士学位论文].泰安:山东农业大学.2008.
    [170]贺明荣,王振林,高淑萍.不同小麦品种于粒重对灌浆期弱光的适应性分析,作物学报,2001,5:640-644.
    [171]胡廷章.植物的衰老.重庆三峡学院学报,2001,1:89-92.
    [172]惠红霞,许兴,李树华等.宁夏春小麦抗盐生理研究.宁夏农学院学报,2001,1:18-20.
    [173]李连朝,王学臣.水分亏缺对植物细胞壁的影响及其与细胞延伸生长的关系.植物生理学通讯,1996,5:322-327.
    [174]李晴,朱玉贤.植物衰老的研究进展及其在分子育种中的应用.分子植物育种,2003,3:289-296.
    [175]李永庚,于振文,梁晓芳等.小麦产量和品质对灌浆期不同阶段低光照强度的响应.植物生态学报,2005,5:807-813.
    [176]梁超,王超,杨秀风等.德抗961小麦耐盐生理特性研究.西北植物学报,2006,10:2075-2082.
    [177]梁超,张学英,杨秀凤等.耐盐丰产小麦品种德抗961的耐盐生理机制.山东农业科学,2007,1:46-49.
    [178]刘洪展.高温胁迫对不同衰老型小麦品种光合机构的影响.[硕士学位论文].泰安:山东农业大学.2002.
    [179]刘霞,尹燕枰,姜春明等.花后不同时期弱光和高温胁迫对小麦旗叶荧光特性及籽粒灌浆进程的影响.应用生态学报,2005,11:2117-2121.
    [180]刘旭,史娟,张学勇等.小麦耐盐种质的筛选鉴定和耐盐基因的标记.植物学报,2001,9:948-954.
    [181]刘艳丽,许海霞,刘桂珍等.小麦耐盐性研究进展.中国农学通报,2008,11:202-207.
    [182]罗培高,张怀渝,张怀琼等.小麦条锈病抗性材料的遗传组成分析.湖北农业科学,2005,1:10-13.
    [183]马雅琴,翁跃进.春小麦品种耐盐性鉴定评价.作物学报,2005,1:58-64.
    [184]米海莉,许兴,马雅琴等.小麦品种耐盐性的研究.干旱地区农业研究,2003,1:134-138.
    [185]任天恒.黑麦1R染色体的遗传多样性及其在小麦基因组内的表达.[硕士学位论文].成都:电子科技大学.2009.
    [186]任燕,Graybosch R.A.,王涛.小麦中的1BL/1RS染色体易位.麦类作物学报,2006,3:152-158.
    [187]任正隆,何祖才,张怀琼等.“协调型”小麦新品种川农17的高产纪录.四川农业大学学报,2003a,2:85-87
    [188]任正隆,张怀琼,付体华等.高产、抗病、抗衰老的小麦新品种-川农12和川农17.麦类作物学报,2003b,2:97.
    [189]山仑.旱地农业技术发展趋向.中国农业科学,2002,7:848-855.
    [190]沈成国,关军锋,王晓云等.植物衰老生理与分子生物学.北京:中国农业出版社,2001,pp:1.
    [191]沈银柱,刘植义.两个近似等位基因系小麦叶片游离脯氨酸含量的比较.河北师范大学学报:自然科学版,1996,3:80-82.
    [192]史忠良,马爱萍,仇松英.光照强度对小麦不同品种结实率及千粒重的影响.山西农业科学,1998,4:16-18.
    [193]孙金月,赵玉田,常汝镇等.小麦细胞壁糖蛋白的耐盐性保护作用与机制研究.中国农 业科学,1997,4:9-15.
    [194]汤日圣,刘晓忠,陈以峰等.4PU-30延缓杂交水稻叶片衰老的效果和作用.作物学报,1998,2:231-236.
    [195]唐宗祥.重复序列引起小麦染色体结构、基因组及性状的改变.[博士学位论文].雅安:四川农业大学.2006.
    [196]田敏,饶龙兵,李纪元等.植物细胞中的活性氧及其生理作用.植物生理学通讯,2005,2:235-241.
    [197]王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性对策.植物学通报,1997,14(增刊):25-30.
    [198]王宝山,赵可夫.小麦叶片中Na、K提取方法的比较.植物生理学通讯,1995,1:50-52.
    [199]王晨阳,朱云集,夏国军等.后期高温条件下小麦旗叶光合参数的变化及其相关性分析.华北农学报,2003,3:8-11.
    [200]王芳,段迪,段培等.不同耐盐性小麦胚芽鞘伸长对NaCl胁迫的响应.作物学报,2007,12:2053-2058.
    [201]王芳.芽鞘法鉴定小麦耐盐性及其机理研究.[硕士学位论文].济南:山东师范大学.2007.
    [202]王焕文,杨秀风,王明友等.盐度对小麦光合效应和Na+、C1-积累量的影响.土壤肥料,1996,5:17-18.
    [203]王玮,邹琦,杨军等.水分胁迫条件下抗旱性不同小麦品芽鞘生长的动态分析.植物生理学通讯,1999,5:359-362.
    [204]王玮,邹琦.胚芽鞘长度作为冬小麦抗旱性鉴定指标的研究.作物学报,1997,4:459-467.
    [205]王艳青,陈雪梅,李悦.植物抗逆中的渗透调节物质及其转基因工程进展.北京林业大学学报,2001,4:66.
    [206]翁跃进.茶淀红麦耐盐基因的RFLP分子标记.河北农业科学,1999,1:1-5.
    [207]吴长艾.不同小麦品种的光破坏防御机理的研究.[硕士学位论文].泰安:山东农业大学.2001,pp:20-23.
    [208]伍泽堂.超氧自由基与叶片衰老时叶绿素破坏的关系.植物生理学通讯,1991,4:277-279.
    [209]希尔T.A.著.江洪,张永平译.内源植物生长物质.北京:科学出版社.1986,pp:66-74.
    [210]肖凯,张荣铣.外界条件对作物叶片衰老的影响.国外农学:麦类作物,1994,3:41-43.
    [211]许大全.光合作用气孔限制分析中的一些问题.植物生理学通讯,1997,4:241-245.
    [212]许大全.光合作用效率.上海:上海科学技术出版社,2002a,pp:4.
    [213]许大全.光合作用效率.上海:上海科学技术出版社,2002b,pp:29.
    [214]许大全.气孔的非均匀关闭与光合作用的非气孔限制.植物生理学通讯,1995,4:246.
    [215]许雯,孙梅好,朱亚芳等.甘氨酸甜菜碱增强青菜抗盐的作用.植物学报,2001,8:809-814.
    [216]杨德光.小麦耐盐种质遗传多样性.[博士后研究工作报告].北京:中国农业科学院.2003.
    [217]杨颖丽,徐世键,保颖等.盐胁迫对两种小麦叶片蛋白质的影响.兰州大学学报,2007,1:70-74.
    [218]杨足君,任正隆.抗白粉病基因Pm8在四川小麦中遗传表达初步研究.四川农业大学学报,1997,4:452-456.
    [219]张超强,杨颖丽,王莱等.盐胁迫对小麦幼苗叶片H2O2产生和抗氧化酶活性的影响.西北师范大学学报,2007,1:72-75.
    [220]张士功.甜菜碱对NaCl胁迫下小麦细胞保护酶活性的影响.植物学通报,1999,4:429-432.
    [221]张文俊,胡含.小麦-黑麦易位系的创制和利用.遗传,1995,17(增刊):1-5.
    [222]赵可夫,李法曾.中国盐生植物,北京:科学出版社.1999.
    [223]赵可夫,李军.盐浓度对3种单子叶盐生植物渗透调节剂及其在渗透调节中贡献的影响.植物学报,1999,12:1287-1292.
    [224]周继泽,柳德钧,程国强.小麦灌浆期遮光生理效应研究.河南职技师院学报,1995,3:12-15.
    [225]周阳,何中虎,张改生等.1BL/1RS易位系在我国小麦育种中的应用.作物学报,2004,6:531-535
    [226]朱建峰,田增荣,余玲等.小麦耐盐性基因型差异研究.甘肃农业科技,1996,8:7-8.
    [227]朱中华,段留生.内源激素对小麦叶片衰老调控的系统分析.作物学报,1998,2:176-181.
    [228]庄巧生,董玉琛,郑殿升.国外小麦品种在中国的利用.中国农学通报,1994,1:36-40.
    [229]庄巧生,杜振华.中国小麦育种进展.北京:中国农业出版社,1996,pp:287-293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700