新型金属氧化物薄膜晶体管的性能研究及工艺开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高性能薄膜晶体管(TFT)背板技术是以有源驱动有机发光二极管(AMOLED)为代表的平板显示(FPD)产业的共性技术和核心技术,也是FPD产业提高产品质量、降低生产成本的重要环节。随着大尺寸、高分辨、3D显示技术的快速发展,其对TFT背板的要求越来越高。然而,传统的非晶硅TFT迁移率较低,无法实现高分辨率显示;多晶硅TFT迁移率高,但其存在生产工艺复杂、设备投资高、均匀性差、良品率低等难以克服的问题,实现大面积显示成本较高;金属氧化物TFT(MOTFT)近年来备受业界关注,其迁移率较高、工艺简单、成本低,容易实现大面积制备,并且与非晶硅TFT生产线相兼容,成为目前业界的新焦点。因此,开展对新兴的、在FPD产业上较有应用前景的MOTFT的研究工作具有现实的意义。
     本论文研究了栅极绝缘材料及其制备工艺。由于栅极绝缘层决定着薄膜晶体管的击穿电压、泄漏电流等重要工作参数,因此获得高介电常数、高质量的栅极绝缘层显得极为重要。基于此,我们开发出了阳极氧化Al2O3薄膜制备新工艺,在氧化制备过程中使用数控系统对氧化信号进行编程,研制的Al2O3薄膜具有高介电常数(~10)、高击穿电场(~6MV/cm)、低泄漏电流(<10-8A/cm2)的优点。这种制备方法即避免使用贵重的真空设备,节约了成本,又提高了栅介质薄膜的大面积均一性,十分适合大尺寸AMOLED显示屏的制作。
     同时,为了解决栅极Al薄膜在高温下容易产生表面小丘的问题,本论文又研制了基于Al-Nd和Al-Ce合金栅极的阳极氧化Al2O3,以提高Al/Al2O3体系的热稳定性,得到的Nd:Al2O3和Ce:Al2O3绝缘层在高温下表面平整、膜层致密,完全能够抑制小丘的形成。研究表明,Nd或Ce会扩散进入到半导体内,对MOTFT的器件性能产生重要影响。其中,Ce元素产生电荷陷阱缺陷,严重恶化器件的电学性能;Nd元素则能抑制氧空位和杂乱的自由电子,改善器件的电学性能。因此,Nd与金属氧化物半导体具有较好的兼容性,基于阳极氧化Nd:Al2O3绝缘层的MOTFT在FPD产业上有较大的应用潜力。
     由于Al合金栅极的电阻率过高,增加了显示屏的信号延迟,其无法实现更大尺寸和要求高响应速度的视频显示。因此,我们发明了一种埋入式Al栅极结构,仅使用加厚的纯Al栅极和辅助的埋入材料(JSR-NN901),工艺简单,不增加光刻步骤,即能满足电阻率的要求,解决了信号延迟的问题,又能提高Al薄膜的热稳定性,抑制了小丘的产生。基于埋入式Al栅极的MOTFT展示出了低工作电压、高迁移率、高电学稳定性、高可靠性的特点。这种简单而有效的工艺技术很有希望应用在大尺寸、高响应速度的新型显示技术中。
     为了获得低成本、高分辨率的显示屏,在制备MOTFT源、漏电极的工艺过程中需要采用背沟道刻蚀结构。但是,由于金属氧化物半导体基本上对各种酸性刻蚀液和干法刻蚀等离子体都很敏感,很容易被腐蚀或受到损伤,因此刻蚀源、漏电极十分困难。经过研究,本论文提出了两种工艺方法:一种是采用弱酸性的H2O2基刻蚀液图形化源、漏电极,并利用低能量的SF6plasma对背沟道进行修饰;第二种是采用C纳米薄膜作为背沟道的缓冲层,此方法不受刻蚀液限制,具有普适性。上述两种方法均不需要特殊的设备,且不增加光刻掩膜版次数,制备出的MOTFT背沟道无损伤,表现出了优越的器件性能和良好的电学稳定性。其对设备无要求、低成本、宽工艺窗口的特点使得上述背沟道无损伤的MOTFT制造技术有很大应用潜力替代现有技术。
     结合上述方法,本论文进一步延伸其应用,利用MoO3作为背沟道的电荷存储层,研制了新型的非易失性存储器件,所制备的存储器件具有电荷保留时间长、重复性高、读写时间短、密度高的特点。其可制作全透明存储器的潜力,使真正的“全透明”显示屏成为可能。
     基于前面对MOTFT新结构、新制备工艺的研究开发,本论文改进了MOTFT驱动背板的工艺实现路线,使光刻掩膜版次数从7次减少到5次,并在此基础上进行工艺版图设计,成功实现了AMOLED显示屏的制作。最后,结合使用拥有自主知识产权的新型半导体材料体系,开发出了2-7英寸等多款MOTFT驱动背板,并成功驱动包括单色、彩色、透明、柔性等显示屏,实现了基于MOTFT的AMOLED图像和视频显示。因此,MOTFT在AMOLED等新型显示技术上的应用将会有很大的突破。
High-performance thin-film transistor (TFT) backplane technology is the basictechnology and center element in flat panel display (FPD) industry, such as active matrixorganic light-emitting diode (AMOLED). It is also the common key technology in otherFPDs industry to improve the quality of the display and reduce the production costs. With thelarge-size, high-resolution,3D displsy technologies rapid development, those increasinglyhigh requirements for TFT backplane. However, the traditional a-Si TFT has low carriermobility, so it is hard to achieve high-resolution display; and polysilicon (p-Si) TFT hashigher mobility, be widely used in high-resolution AMOLED, but the manufacturing processis complexity, the production costs is high, the uniformity is poor, and the yield is low, whichrestrict its development in the large-size FPDs. In recent years, the research on MOTFT hasgained huge progress. MOTFT is famous for its high mobility, good uniformity and goodstability. It is one of the most competitive TFTs in AMOLED. Therefore, it is very impormantto research the new AMOLED technologies based on MOTFT.
     This work firstly focuses on gate insulator. As the gate insulator layer determines thebreakdown voltage, the leakage currnet, and other important device operating parameters,thus obtaining a high dielectric constant, high-quality gate insulator layer is extremelyimportant. In order to meet the low cost, suitable for the preparation of large arearequirements in industry, we use the high dielectric constant Al2O3as the insulator anddeveloping a new anodizing process that avoids the use of expensive vacuum equipment.Anodized Al2O3prepared by using the improved anodic oxidation process exhibites a highdielectric constant (~10), a high breakdown electric field (~6MV/cm), and a low leakagecurret (<10-8A/cm2), which is very suitable for the production of large-size AMOLEDdisplays.
     However, the device has poor reliability because the Al hillocks damage the Al2O3insulator layer, due to the poor thermal stability of pure Al film under heat treatment. Thus,we propose Al alloy, such as Nd or Ce, as a gate to improve the thermal stability of Al/Al2O3structure, and achieved good results under high temperature. Experiments shows that Nd andCe ions are existence in the oxide film obtained by anodizing Al alloy, and they would diffuse into IZO film. The Ce ion could act as an electron trap, so the IZO-TFTs with Al-Ce gatewould experience seriously degradation. On the other hand, Nd ion is stable and would notproduce electron traps. Moreover, the existence of Nd would suppress undesirable freeelectron formation in the channel. Therefore, rare earth element Nd has a good compatibilitywith IZO, and anodizing Nd:Al2O3dielectric layer can actually be used in MOTFT devices,which has a great application potential in AMOLED displays.
     With the development of large-size display, Al alloy gate began to show the drawbacksof high resistivity, hence increase the signal delay of the displays. Therefore, we proposeusing buried thick Al gate structure to meet the low resistivity and solve the problem of signaldelay, which use only the thicking of pure Al and an auxiliary material named JSR-NN901.Pure Al film has mature preparation process and low cost, and thick Al further enhance thethermal stability of the pure Al can effectively suppress the generation of hillocks. MOTFTsprepared by this method exhibit high mobility, high electrical stability, high reliability.Therefore, MOTFTs with buried thick Al gate structure is a simple and effective technique,which has a great opportunity in the large-size TFT backplane manufacturing process.
     In order to obtain low cost and high resolution displays, the back-channel-etch (BCE)structure need to be used in the preparation of source/drain (S/D) electrodes. However, it isdifficulty to pattern them because metal oxide semiconductor materials are very susceptibleto most commonly used etchants and plasma treatment employed in wet-etch and dry-etchprocesses, respectively. Thus, we propose two methods to improve the performance for TFTbased on BCE structure: one is using H2O2-based etchant in combination with SF6plasmatreatment; the other is using an amorphous carbon (C) nanofilm inserted into the interfacebetween IZO and S/D electrodes as a barrier layer. The second method is not restricted byetchants, which has the universality characteristics. Experimental results show that thesemethods are simple and effective to fabricate high performance, high reliability MOTFT andwill be more and more attention in the production of high resolution MOTFT backplane.
     Then, we are inspired by the above results that the MoO3-residue layer may be associatedwith the operation mechanisms of some nonvolatile memories, thus providing the opportunityto extend the applications of metal oxide semiconductors to transparent memory devices thatcan be integrated with other transparent circuit elements. This also makes it possible to design freedom for system-on-panel applications for real, fully transparent displays.
     Based on the research on the MOTFT, we improve the traditional manufacture processof the MOTFT backplane, and develop a new type of process technology. Thus the number ofphotolithographic mask decreases from7times to5times. Then, we successfully achieved theproduction of AMOLED display. Finally, we develop a variety of2to7inch AMOLED basedon MOTFT backplane by using our new semiconductor material system, which hasindependent intellectual property rights, and realize images and video including monochrome,full color, transparent, and flexible display. Thus, we can see the future of the MOTFT.
引文
[1]曹镛,陶洪,邹建华,等.金属氧化物薄膜晶体管及其在新型显示中的应用[J].华南理工大学学报(自然科学版),2012,40(10):1-11
    [2] Weimer P. K., The TFT-A New Thin-Film Transistor[J]. Proc. IEEE,1962,50(6):1462-1469
    [3]陈志强,刘晓彦.低温多晶硅(LTPS)显示技术[M].北京:科学出版社,2006年4月:245-271
    [4] Moriguchi M.; Saitoh Y.; Yoshida T., et al. Gate Driver and Data Switching CircuitIntegrated LCD Panel by High Performance Bottom Gate Microcrystalline Si TFT[J].IDW,2009:253-256
    [5] Okabe T.; Yaneda T.; Aita T., et al. Microcrystalline Silicon Thin Film Transistors byExcimer Laser Annealing for Large-Sized TFT-LCDs[J]. IDW,2009:257-260
    [6] Lecomber P. G.; Spear W. E.; Ghaith A., Amorphous Silicon Field-Effect Device andPossible Application[J]. Electron. Lett,1979,15:179-182
    [7] Kamiya T.; Nomura K.; Hosono H., Present status of amorphous In-Ga-Zn-O thin-filmtransistors[J]. Sci. Technol. Adv. Mater.,2010,11(4):044305
    [8] Staebler D. L.; Wronski C. R., Reversible conductivity changes in discharge-producedamorphous Si[J]. Appl. Phys. Lett.,1977,31(4):292-294
    [9] Street R. A., Technology and applications of amorphous silicon[M]. Springer,2000,37:36-53
    [10] Jahinuzzaman S. M.; Sultana A.; Sakariya K., et al. Threshold voltage instability ofamorphous silicon thin-film transistors under constant current stress[J]. Appl. Phys. Lett.,2005,87(2):023502
    [11] Depp S. W.; Juliana A.; Huth B. G., Polysilicon FET Devices for Large Area Input/OutputApplications[J]. Proc.1980Int. Electron Device Mtg,1980:703-704.
    [12] Oana Y.. A240×360Element Active Matrix LCD with Integrated Gate-Bus DriversUsing PolySi TFTs[J]. SID Digest,1986:293-296
    [13]王中健,王龙彦,马仙梅,等.透明非晶态氧化物半导体薄膜晶体管的研究进展[J].液晶与显示,2009,24:210-216
    [14]谢强,李宏建,黄永辉,等.几种OL ED有源驱动电路中像素单元电路的分析[J].液晶与显示,2004,19(6):462-467
    [15] Tsumura A.; Koezuka H.; Ando T., Field-effect transistor with a polythiophene thinfilm[J]. Appl. Phys. Lett.,1986,49(18):1210-1212
    [16] Garnier F.; Hajlaoui R.; Yassar A., et al. All-polymer field-effect transistor realized byprinting techniques[J]. Science,1994,256:1684-1686
    [17] Haddon R. C.; Perel A. S.; Morris R. C., et al. C60thin film transistor[J]. Appl. Phys.Lett.,1995,67(1):121-123
    [18] Lin Y. Y.; Gundlach D. J.; Nelson S. F., et al. Stacked pentacene layer organic thin-filmtransistors with improved characteristics[J]. IEEE Electron Device Letters,1997,18(12):606-608
    [19] Jurchescu O. D.; Baas J.; Palstra T. M., Effect of impurities on the mobility of singlecrystal pentacene[J]. Appl. Phys. Lett.,2004,84(16):3061-3063
    [20]胡文平,刘云圻,朱道本.有机薄膜场效应晶体管[J].物理,1997,26:649-653
    [21]邱勇,胡远川,董桂芳,等.柔性全有机薄膜场效应晶体管的制备和性能[J].科学通报,2003,09期
    [22] Matsuoka K.; Kina O.; Koutake M., et al. High Resolution200ppi LCD Driven byEntirely Printed Organic TFT[J]. IDW’09,2009:717-720
    [23]胡远川.有机薄膜场效应晶体管及其载流子传输特性[D].清华大学:2004
    [24] Hoffman R.L.; Norris B.J.; Wager J.F., ZnO-based transparent thin-film transistors [J].Appl. Phys. Lett.,2003,82:733
    [25] Nomura K.; Ohta H.; Takagi A., et al. Room-temperature fabrication of transparentflexible thin-film transistors using amorphous oxide semiconductors[J]. Nature,2004,432(7016):488-492
    [26] Kwon J. Y.; Son K. S.; Jung J. S., et al. Bottom-gate gallium indium zinc oxide thin-filmtransistor array for high-resolution AMOLED display[J]. Electron Device Lett., IEEE,2008,29(12):1309-1311
    [27] Lim W.; Jang J. H.; Kim S.H., et al. High performance indium gallium zinc oxide thinfilm transistors fabricated on polyethylene terephthalate substrates[J]. Appl. Phys. Lett.,2007,93:082102
    [28] Wang L.; Yoon M. H.; Lu G., et al. High performance transparent inorganic-organichybrid thin film n type transistors[J]. Nature Materials,2006,5:893-900
    [29] Vygranenko Y.; Wang K.; Nathan A., Stable indium oxide thin-film transistors with fastthreshold voltage recovery[J],Appl. Phys. Lett.,2007,91:263508
    [30] Wang Y.; Ren F.; Lim W., et al. Room temperature deposited indium zinc oxide thinfilm transistors[J]. Appl. Phys. Lett.,2007,90:232103
    [31] Chiang H. Q.; Wager J. H.; Hoffman R. L., et al. High mobility transparent thin-filmtransistors with amorphous zinc tin oxide channel layer[J]. Appl. Phys.Lett.,2005,86:013503
    [32] Presley R. E.; Hong D.; Chiang H. Q., et al. Transparent ring oscillator based on indiumgallium oxide thin-film transistors[J]. Solid State electronics,2006,50:500-503
    [33] Cho D. H.; Yang S.; Byun C., et al. Transparent Al–Zn–Sn–O thin film transistorsprepared at low temperature[J]. Appl. Phys. Lett.,2008,93:142111
    [34] Nomura K.; Ohta H.; Ueda K., et al. Thin-Film Transistor Fabricated inSingle-Crystalline Transparent Oxide Semiconductor[J]. Science,2003,300:1269
    [35] Fortunato E.; Barquinha P.; Pimentel A., et al. Amorphous IZO TFTs with saturationmobilities exceeding100cm2/Vs[J]. Phys. Stat. Sol.(RRL),2007,1(1): R34-R36
    [36] Carcia P. F.; McLean R. S.; Reilly M. H., et al. A comparison of zinc oxide thin-filmtransistors on silicon oxide and silicon nitride gate dielectrics[J]. J. Appl. Phys.,2007,102:074512
    [37] Nomura K.; Kamiya T.; Yanagi H., et al. Subgap states in transparent amorphous oxidesemiconductor, In-Ga-Zn-O, observed by bulk sensitive x-ray photoelectronspectroscopy[J]. Appl. Phys. Lett.,2008,92(20):202117
    [38] Kamiya T.; Nomura K.; Hirano M., et al. Electronic structure of oxygen deficientamorphous oxide semiconductor a-InGaZnO4-x: Optical analyses and first-principlecalculations[J]. Phys. Stat. Sol.(C),2008,5(9):3098-3100
    [39] Kamiya T.; Nomura K.; Hosono H., Electronic structure of the amorphous oxidesemiconductor a-InGaZnO4-x: Tauc-Lorentz optical model and origins of subgap states[J].Phys. Stat. Sol.(A),2009,206(5):860-867
    [40] Wager J. F., Transparent electronics-display applications[J]. SID DIGEST,2007:1824-1825
    [41] Park S. K.; Hwang C.; Lee J., et al. Transparent ZnO Thin Film Transistor Array for theApplication of Transparent AM-OLED Display[J]. SID DIGEST,2006:25-29
    [42] Lee J.; Kim D.; Yang D., et al.42.2: World's Largest (15-inch) XGA AMLCD PanelUsing IGZO Oxide TFT[C]. SID DIGEST,2008,39(1):625-628
    [43] Jeong J. K.; Jeong J. H.; Choi J. H., et al.3.1: Distinguished Paper:12.1-Inch WXGAAMOLED Display Driven by Indium-Gallium-Zinc Oxide TFTs Array[C]. SID DIGEST,2008,39(1):1-4
    [44]夏普、LG及三星演讲,介绍透明氧化物半导体TFT的最新开发成果[EB/OL]. TAOS2010, http://china.nikkeibp.com.cn/news/flat/49867-20100127.html
    [45] Mo Y. G.; Kim M.; Kang C. K., et al.69.3: Amorphous oxide TFT backplane for largesize AMOLED TVs[C]. SID DIGEST,2010,41(1):1037-1040
    [46] Lu H. H.; Ting H. C.; Shih T. H., et al.76.3:32‐inch LCD Panel Using AmorphousIndium-Gallium-Zinc-Oxide TFTs[C]. SID DIGEST,2010,41(1):1136-1138
    [47]三星开发出采用氧化物半导体TFT驱动的70英寸液晶面板[EB/OL]. FPDI·GDhttp://china.nikkeibp.com.cn/news/flat/54002-20101110.html
    [48] LG发布55英寸OLED电视最终出货机型[EB/OL].http://article.pchome.net/content-1506098.html
    [49] Oh C. H.; Shin H. J.; Nam W. J., et al.21.1: Invited Paper: Technological Progress andCommercialization of OLED TV[C]. SID DIGEST,2013,44(1):239-242
    [50] Yao Q. J.; Li D. J., Fabrication and property study of thin film transistor using rfsputtered ZnO as channel layer[J]. J. Non-Cryst. Sol.,2005,351(40):3191-3194
    [51] Yao Q.; Li D., Indium oxide thin film transistors via reactive sputtering using metaltargets[J]. Phys. Stat. Sol.(A),2008,205(2):389-391
    [52] Li G. F.; Zhou J.; Huang Y. W., et al. Indium zinc oxide semiconductor thin filmsdeposited by dc magnetron sputtering at room temperature[J]. Vacuum,2010,85(1):22-25
    [53] Jiang X. Y.; Zhang Z. L.; Cao J., et al. White OLED with high stability and low drivingvoltage based on a novel buffer layer MoOx[J]. J Phys D: Appl Phys,2007,40(18):5553-5557
    [54] Huang H. Q.; Sun J.; Liu F. J., et al. Characteristics and time-dependent instability ofGa-doped ZnO thin film transistor fabricated by radio frequency magnetron sputtering[J].Chin. Phys. Lett.,2011,28(12):128502
    [55]上海天马微电子有限公司.有机发光显示器及驱动方法[P].中国, CN102034426A,2011-04-27
    [56]广州新视界AMOLED触控屏研发取得进展[R/OL].http://www.fpdisplay.con/news/2012-07/info-148272-656.html
    [57] Lee H. N.; Kyung J.; Sung M. C., et al. Oxide TFT with multilayer gate insulator forbackplane of AMOLED device[J]. J. Soc. Inf. Display,2008,16(2):265-272
    [58] Park J. S.; Kim T. W.; Stryakhilev D., et al. Flexible full color organic light-emittingdiode display on polyimide plastic substrate driven by amorphous indium gallium zincoxide thin-film transistors[J]. Appl. Phys. Lett.,2009,95(1):013503
    [59] Katsuhara M.; Yagi I.; Noda M., et al.44.2: Distinguished Paper: A Reliable FlexibleOLED Display with an OTFT Backplane Manufactured Using a Scalable Process[C]. SIDDIGEST,2009,40(1):656-659
    [60] Xu H.; Luo D.; Li M., et al. A flexible AMOLED display on the PEN substrate driven byoxide thin-film transistors using anodized aluminium oxide as dielectric[J]. J. Mater.Chem. C,2014,2(7):1255-1259
    [61]柔宇科技率先研制成功全球最薄可量产柔性显示屏[R/OL].http://www.yicai.com/news/2013/08/2930880.html
    [62]中国AMOLED产业现状及相关事业规划[EB/OL].http://display.ofweek.com/2012-04/ART-8100-2300-28607750.html
    [63]聚酰亚胺产业链[R/OL]. http://www.yicai.com/news/2013/08/2930880.html
    [64] Ito M.; Kon M.; Miyazaki C., et al." Front Drive" Display Structure for Color ElectronicPaper Using Fully Transparent Amorphous Oxide TFT Array[J]. IEICE Trans. Electron.,2007,90(11):2105-2111
    [65]彭俊彪,刘南柳,王坚.基于喷墨打印技术的聚合物电致发光显示[J].液晶与显示,2009,24(3):311-321
    [66] Park S.-H. K.; Hwang C. S.; Ryu M., et al. Transparent and Photo-stable ZnO Thin-filmTransistors to Drive an Active Matrix Organic-Light-Emitting-Diode Display Panel[J].Adv. Mater.,2009,21(6):678-682
    [67] Song J.; Lim J. H.; Ahn B., et al.10.3: Invited Paper: High Mobility Oxide TFTs forFuture LCD Applications[C]. SID DIGEST,2013,44(1):93-96
    [68]广州新视界研制出彩色柔性AMOLED屏[R/OL].http://www.newvision-cn.com/news_show.asp?id=38
    [69]透明彩色屏幕手机上市,透明显示技术日渐成熟[R/OL].http://www.shendu.com/news/android-4845.html
    [70]芬兰Canatu公司发布最新透明导电薄膜[EB/OL].http://www.fpdisplay.com/news/2013-10/info-163438-278.htm
    [71] Yin H.; Kim S.; Kim C. J., et al. Fully transparent nonvolatile memory employingamorphous oxides as charge trap and transistor’s channel layer[J]. Appl. Phys. Lett.,2008,93(17):172109
    [72] Chen M. C.; Chang T. C.; Huang S. Y., et al. Bipolar resistive switching characteristics oftransparent indium gallium zinc oxide resistive random access memory[J]. Electrochem.Solid-State Lett.,2010,13(6): H191-H193
    [73] Seo J. W.; Park J. W.; Lim K. S., et al. Transparent flexible resistive random accessmemory fabricated at room temperature[J]. Appl. Phys. Lett.,2009,95(13):133508
    [74] Chen Y. C.; Chang T. C.; Li H. W., et al. The suppressed negative biasillumination-induced instability in In-Ga-Zn-O thin film transistors with fringe fieldstructure[J]. Appl. Phys. Lett.,2012,101(22):223502
    [75] Takechi K.; Nakata M.; Eguchi T., et al. Comparison of ultraviolet photo-field effectsbetween hydrogenated amorphous silicon and amorphous InGaZnO4thin-filmtransistors[J]. Japan. J. Appl. Phys.,2009,48(1R):010203
    [76] Xu H.; Lan L.; Xu M., et al. High performance indium-zinc-oxide thin-film transistorsfabricated with a back-channel-etch-technique[J]. Appl. Phys. Lett.,2011,99(25):253501
    [77] Ryu S. H.; Park Y. C.; Mativenga M., et al. Amorphous-InGaZnO4thin-film transistorswith damage-free back channel wet-etch process[J]. ECS Solid State Lett.,2012,1(2):Q17-Q19
    [78] Kim M.; Jeong J. H.; Lee H. J., et al. High mobility bottom gate InGaZnO thin filmtransistors with SiOxetch stopper[J]. Appl. Phys. Lett.,2007,90(21):212114
    [79] Yabuta H.; Sano M.; Abe K., et al. High-mobility thin-film transistor with amorphousInGaZnO4channel fabricated by room temperature rf-magnetron sputtering[J]. Appl. Phys.Lett.,2006,89(11):112123
    [80] Boesen G. F.; Jacobs J. E. ZnO field-effect transistor[J]. Proc. IEEE,1968,56(11):2094-2095
    [81] Hosono H.; Yasukawa M.; Kawazoe H. Novel oxide amorphous semiconductors: transparent conducting amorphous oxides [J]. J. Non-Cryst. Solid.,1996,203:334-344
    [82]兰林锋.薄膜晶体管及其在有源矩阵有机发光二极管中的应用[D].华南理工大学:2010
    [83] Kawazoe H.; Yasukawa M.; Hyodou H., et al. P-type electrical conduction in transparentthin films of CuAlO2[J]. Nature,1997,389:939-942
    [84] Narushima S.; Ueda K.; Mizoguchi H., et al. P-type amorphous oxide semiconductor,ZnRh2O4, and room temperature fabrication of amorphous oxide P-N hetero-junctiondiodes[J]. Adv. Mater.,2003,15:1409
    [85] Fritzsche H.; Chen K. J. Drift-mobility measurements in amorphous semiconductorsusing traveling-wave method[J]. Phys. Rev. B,1983,28:4900-4902
    [86] Kamiya T.; Hosono H. Material characteristics and applications of transparentamorphous oxide semiconductors[J]. NPG Asia Mater.,2010,2(1):15-22
    [87] Hosono H. Ionic amorphous oxide semiconductors: Material design, carrier transport,and device application[J]. J. Non-Cryst. Solid.,2006,352:851–858
    [88] Kamiya T.; Nomura K.; Hosono H. Electronic structures above mobility edges incrystalline and amorphous In-Ga-Zn-O: percolation conduction examined by analyticalmodel[J]. Disp. Technol.,2009,5(12):462-467
    [89] Kamiya T.; Nomura K.; Hosono H. Origin of definite Hall voltage and positive slope inmobility-donor density relation in disordered oxide semiconductors[J]. Appl. Phys. Lett.,2010,96(12):122103
    [90] Takagi A.; Nomura K.; Ohta H., et al. Carrier transport and electronic structure inamorphous oxide semiconductor, a-InGaZnO4[J]. Thin solid films,2005,486(1):38-41
    [91] Nomura K.; Kamiya T.; Ohta H., et al. Carrier transport in transparent oxidesemiconductor with intrinsic structural randomness probed using single-crystallineInGaO3(ZnO)5films[J]. Appl. Phys. Lett.,2004,85(11):1993-1995
    [92] Lee D. H.; Kawamura K.; Nomura K., et al. Large photoresponse in amorphousIn-Ga-Zn-O and origin of reversible and slow decay[J]. Electrochem. Solid-State Lett.,2010,13(9): H324-H327
    [93] Jeong J. H.; Yang H. W.; Park J. S., et al. Origin of subthreshold swing improvement inamorphous indium gallium zinc oxide transistors[J]. Electrochem. Solid-State Lett.,2008,11(6): H157-H159
    [94] Ryu M. K.; Yang S.; Park S. H. K., et al. High performance thin film transistor withcosputtered amorphous Zn-In-Sn-O channel: Combinatorial approach[J]. Appl. Phys. Lett.,2009,95(7):072104
    [95] Jeong J. K.; Yang S.; Cho D. H., et al. Impact of device configuration on the temperatureinstability of Al-Zn-Sn-O thin film transistors[J]. Appl. Phys. Lett.,2009,95(12):123505
    [96] Nomura K.; Kamiya T.; Ohta H., et al. Defect passivation and homogenization ofamorphous oxide thin-film transistor by wet O2annealing[J]. Appl. Phys.Lett.,2008,93(19):192107
    [97] Nomura K.; Kamiya T.; Hirano M., et al. Origins of threshold voltage shifts inroom-temperature deposited and annealed a-In-Ga-Zn-O thin-film transistors[J]. Appl.Phys. Lett.,2009,95(1):013502
    [98] Suresh A.; Wellenius P.; Dhawan A.. Room temperature pulsed laser deposited indiumgallium zinc oxide channel based transparent thin film transistors[J]. Appl. Phys. Lett.,2007,90:123512
    [99] Nishi T.; Ishitani T.; Yamashita A., et al.7.3: Development of3.4in. QHD LCD HavingBlue Phase LC and Oxide Semiconductor TFTs[C]. SID DIGEST,2010,41(1):84-86
    [100] Jeong J. K.; Jeong J. H.; Yang H. W., et al.12.1-in. WXGA AMOLED display driven byInGaZnO thin-film transistors[J]. J. Soc. Infor. Display,2009,17(2):95-100
    [101] Lee D. H.; Chang Y. J.; Herman G. S., et al. A General Route to Printable High-MobilityTransparent Amorphous Oxide Semiconductors[J]. Adv. Mater.,2007,19(6):843-847
    [102] Lim J. H.; Shim J. H.; Choi J. H., et al. Solution-processed InGaZnO-based thin filmtransistors for printed electronics applications[J]. Appl. Phys. Lett.,2009,95(1):012108
    [103] Lai Y.; Yu C.; Chang F., et al. Solution Processed IGZO-TFTs with Various GateInsulator Layer Applied to Active Matrix LCD[J]. IDW,2009:1697-1700
    [104] Ryu M.; Park K.; Seon J., et al. AMOLED Driven by Solution-Processed OxideSemiconductor TFT[J]. SID DIGEST,2009:188-190
    [105] Kagan C. R.; Andry P.(eds.). Thin-film transistors[M]. CRC Press,2003
    [106] Sze S. M. Physics of Semiconductor Devices[J]. Wiley,1981,2:442
    [107] Kagan C. R.; Mitzi D. B.; Dimitrakopoulos C. D. Organic-inorganic hybrid materials assemiconducting channels in thin-film field-effect transistors[J]. Science,1999,286:945-947
    [108] Scheinert S.; Paasch G.; Doll T. The influence of bulk traps on the subthresholdcharacteristics of an organic field effect transistor[J]. Synthetic Metals,2003,139:233–237
    [109] Tober E. D.; Kanicki J.; Crowder M. S. Thermal annealing of light-induced metastabledefects in hydrogenated amorphous silicon nitride[J]. Appl. Phys. Lett.,1991,59(14):1723-1725
    [110] Lee J. M.; Cho I. T.; Lee J. H., et al. Bias-stress-induced stretched-exponential timedependence of threshold voltage shift in InGaZnO thin film transistors[J]. Appl. Phys.Lett.,2008,93(9):093504
    [111] Suresh A.; Muth J. F. Bias stress stability of indium gallium zinc oxide channel basedtransparent thin film transistors[J]. Appl. Phys. Lett.,2008,92(3):033502
    [112] Cross R. B. M.; De Souza M. M. Investigating the stability of zinc oxide thin filmtransistors[J]. Appl. Phys. Lett.,2006,89(26):263513
    [113] Li M.; Lan L.; Xu M., et al. Performance improvement of oxide thin-film transistorswith a two-step-annealing method[J]. Solid-State Electron.,2014,91:9-12
    [114] McDowell M. G.; Hill I. G. Influence of channel stoichiometry on zinc indium oxidethin-film transistor performance[J]. IEEE Trans. Electron Dev.,2009,56(2):343-347
    [115] Park W. J.; Shin H. S.; Du Ahn B., et al. Investigation on doping dependency ofsolution-processed Ga-doped ZnO thin film transistor[J]. Appl. Phys. Lett.,2008,93(8):083508
    [116] Gusev E. P.; Buchanan D. A.; Cartier E., et al. Ultrathin high-K gate stacks for advancedCMOS devices[C]. IEDM’01. Technical Digest,2001:20.1.1-20.1.4
    [117] Ragnarsson L. A.; Guha S.; Bojarczuk N. A., et al. Electrical characterization of Al2O3n-channel MOSFETs with aluminum gates[J]. IEEE Electron Dev. Lett.,2001,22(10):490-492
    [118] Guha S.; Cartier E.; Bojarczuk N. A., et al. High-quality aluminum oxide gatedielectrics by ultra-high-vacuum reactive atomic-beam deposition[J]. J. Appl. Phys.,2001,90(1):512-514
    [119] Nomura K.; Ohta H.; Ueda K., et al. All oxide transparent MISFET using high-kdielectrics gates[J]. Microelectronic engineering,2004,72(1):294-298
    [120] Kim U. J.; Son H. B.; Lee E. H., et al. Charge conversion effects of carbon nanotubenetwork transistors by temperature for Al2O3gate dielectric formation[J]. Appl. Phys.Lett.,2010,97(3):032117
    [121] Ren C.; Yang H.; Han D., et al. Fabrication process and leakage current conductionmechanisms of Al2O3gate dielectric thin films[J]. Chin. J. Semicond.,2003,24(10):1110-1114
    [122] Klein T. M.; Niu D.; Epling W. S., et al. Evidence of aluminum silicate formationduring chemical vapor deposition of amorphous Al2O3thin films on Si (100)[J]. Appl.Phys. Lett.,1999,75(25):4001-4003
    [123] Aguilar F. M.; Garcia M.; Falcony C. Optical and electrical properties of aluminumoxide films deposited by spray pyrolysis[J]. Appl. Phys. Lett.,1998,72(14):1700-1702
    [124] Ortiz A.; Alonso J. C.; Pankov V., et al. Characterization of amorphous aluminum oxidefilms prepared by the pyrosol process[J]. Thin Solid Films,2000,368(1):74-79
    [125] Xiong S.; Gu C.; Li J., et al. Gate insulator of Al gate a-Si TFT[J]. Optoelectronic Tech.,1995,15(2):117-121
    [126] Patil P. V.; Bendale D. M.; Puri P K., et al. Refractive index and adhesion of Al2O3thinfilms obtained from different processes-a comparative study[J]. Thin Solid Films,1996,288(1/2):120-124
    [127]熊绍珍,张建军. a-Si TFT复合栅绝层用阳极氧化Ta2O5的研究[J].材料研究学报,1994,8(3):257-262
    [128] Majewski L. A.; Schroeder R.; Voigt M., et al. High performance organic transistors oncheap, commercial substrates[J]. J. Phys. D: Appl. Phys.,2004,37(24):3367
    [129] Majewski L. A.; Schroeder R.; Grell M., et al. High capacitance organic field-effecttransistors with modified gate insulator surface[J]. J. Appl. Phys.,2004,96(10):5781-5787
    [130] Majewski L. A.; Schroeder R.; Grell M. Flexible high capacitance gate insulators fororganic field effect transistors[J]. J. Phys. D: Appl. Phys.,2004,37(1):21-24
    [131] Lan L.; Peng J. High-performance indium-gallium-zinc oxide thin-film transistors basedon anodic aluminum oxide[J]. IEEE Trans. Electron Dev.,2011,58(5):1452-1455
    [132] Lan L.; Xu M.; Li M., et al. P-25: A2-Inch AMOLED Display Using In-Zn-Oxide TFTswith Anodized Al2O3Gate Insulator[C]. SID Digest,2011,42(1):1185-1187
    [133]丁古巧.多孔阳极氧化铝模板的制备、表征以及在半导体纳米结构材料制备中的应用[D].上海交通大学:2007
    [134]李展望.多孔阳极氧化铝模板的制备及结构表征[D].武汉理工大学:2010
    [135]朱绪飞.多孔阳极氧化铝形成机理的研究[D].南京理工大学:2007
    [136] Li Q.; Yu Y. H.; Bhatia C. S., et al. Low-temperature magnetron sputter-deposition,hardness, and electrical resistivity of amorphous and crystalline alumina thin films[J]. J.Vac. Sci. Technol. A,2000,18(5):2333-2338
    [137] Wilk G.; Wallace R.; Anthony J. High-k gate dielectrics: current status and materialsproperties considerations [J]. J. Appl. Phys.,2001,89:5243-5275
    [138] Voigt M.; Bergmaier A.; Dollinger G., et al. Correlation of chemical composition andelectrical properties of rf sputtered alumina films[J]. J. Vac. Sci. Technol. A,2009,27:234-244
    [139] Gieraltowska S.; Wachnicki L.; Witkowski B. S., et al. Thin Films of High-k Oxidesand ZnO for Transparent Electronic Devices[J]. Chem. Vap. Deposition,2013,19(4-6):213-220
    [140] Luo D.; Lan L.; Xu M., et al. Role of rare earth ions in anodic gate dielectrics forindium-zinc-oxide thin-film transistors[J]. J. Electrochem. Soc.,2012,159(5): H502-H506
    [141] Ye P. D.; Wilk G. D.; Frank M. M. Processing and Characterization of III–V CompoundSemiconductor MOSFETs Using Atomic Layer Deposited Gate Dielectrics[M]. AdvancedGate Stacks for High-Mobility Semiconductors. Springer Berlin Heidelberg,2007:341-361
    [142] Takatsuji H.; Colgan E.; Cabral C., et al. Evaluation of Al(Nd)-alloy films forapplication to thin-film-transistor liquid crystal displays[J]. IBM Journal of Research andDevelopment.,1998,42(3.4):501-508
    [143]夏普公司.使用阳极氧化的开关器件的制造方法及阳极氧化互连[P].中国:CN95106491.6,2003-06-18
    [144] Kim D.; Heiland B.; Nix W. D., et al. Microstructure of thermal hillocks on blanket Althin films[J]. Thin Solid Films,2000,371(1):278-282
    [145] Iwamura E.; Ohnishi T.; Yoshikawa K. A study of hillock formation on Al-Ta alloyfilms for interconnections of TFT-LCDs[J]. Thin Solid Films,1995,270(1):450-455
    [146] Habazaki H.; Shimizu K.; Skeldon P., et al. Nanoscale enrichments of substrateelements in the growth of thin oxide films[J]. Corrosion science,1997,39(4):731-737
    [147] Kao M. T.; Lin J. F. Effects of deposition conditions of the Al film in Al/glassspecimens and annealing conditions on internal stresses and hillock formations[J]. ThinSolid Films,2012,520(16):5353-5360
    [148] Mizutani F.; Takaha H.; Ue M., et al. Chemically resistant anodic oxide films formed onAl-Nd alloy in non-aqueous electrolytes[J]. Surface and Coatings Technology,2003,169:147-150
    [149] Habazaki H.; Shimizu K.; Skeldon P., et al. Formation of amorphous anodic oxide filmsof controlled composition on aluminium alloys[J]. Thin Solid Films,1997,300(1):131-137
    [150] Mizutani F.; Takeuchi S.; Takaha H., et al. Formation and electric properties of anodicoxide films on Al-Nd sputtered films in nonaqueous electrolyte solutions[J]. J.Electrochem. Soc.,2001,148(10): B419-B424
    [151] Lan L.; Zhao M.; Xiong N., et al. Low-Voltage, High-Stability Indium-Zinc OxideThin-Film Transistor Gated by Anodized Neodymium-Doped Aluminum[J]. IEEEElectron Dev. Lett.,2012,33(6):827-829
    [152] Moon Y. K.; Lee S.; Kim W. S., et al. Improvement in the bias stability of amorphousindium gallium zinc oxide thin-film transistors using an O2plasma-treated insulator[J].Appl. Phys. Lett.,2009,95(1):013507
    [153] Sarma D. D.; Rao C. N. R. XPES studies of oxides of second-and third-row transitionmetals including rare earths[J]. J. Electron Spectrosc. Relat. Phenom.,1980,20(1):25-45
    [154] Wagner C. D.; Riggs W. M.; Davis L. E., et al. Handbook of X-Ray PhotoelectronSpectroscopy[J]. Perkin-Elmer Corporation: Minnesota, USA,1979
    [155] Praline G.; Koel B. E.; Hance R. L., et al. X-ray photoelectron study of the reaction ofoxygen with cerium[J]. J. Electron Spectrosc. Relat. Phenom.,1980,21(1):17-30
    [156] Chen M.; Pei Z. L.; Sun C., et al. Surface characterization of transparent conductiveoxide Al-doped ZnO films[J]. J. Cryst. Growth,2000,220(3):254-262
    [157] Lee K. W.; Kim K. M.; Heo K. Y., et al. Effects of UV light and carbon nanotube dopanton solution-based indium gallium zinc oxide thin-film transistors[J]. Curr. Appl. Phys.,2011,11(3):280-285
    [158] Chong E.; Jo K. C.; Lee S. Y. High stability of amorphous hafnium-indium-zinc-oxidethin film transistor[J]. Appl. Phys. Lett.,2010,96(15):152102
    [159] Jeong S.; Ha Y. G.; Moon J., et al. Role of Gallium Doping in Dramatically LoweringAmorphous-Oxide Processing Temperatures for Solution-Derived Indium Zinc OxideThin-Film Transistors[J]. Adv. Mater.,2010,22(12):1346-1350
    [160] Kumaki D.; Umeda T.; Tokito S. Influence of H2O and O2on threshold voltage shift inorganic thin-film transistors: Deprotonation of SiOH on SiO2gate-insulator surface[J].Appl. Phys. Lett.,2008,92(9):093309
    [161] Nomura K.; Kamiya T.; Ohta H., et al. Local coordination structure and electronicstructure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O:Experiment and ab initio calculations[J]. Phys. Rev. B,2007,75(3):035212
    [162] Lee J. Y.; Kwon J. H.; Chung H. K. High efficiency and low power consumption inactive matrix organic light emitting diodes[J]. Organic electronics,2003,4(2):143-148
    [163] Xie G.; Zhang Z.; Xue Q., et al. Highly efficient top-emitting white organiclight-emitting diodes with improved contrast and reduced angular dependence for activematrix displays[J]. Organic Electronics,2010,11(12):2055-2059
    [164] Kim W. S.; Moon Y. K.; Lee S., et al. Copper source/drain electrode contact resistanceeffects in amorphous indium-gallium-zinc-oxide thin film transistors[J]. Phys. Stat. Sol.(RRL),2009,3(7-8):239-241
    [165] Park J. S.; Kim T. S.; Son K. S., et al. Ti/Cu bilayer electrodes for SiNx-passivatedHf-In-Zn-O thin film transistors: Device performance and contact resistance[J]. Appl.Phys. Lett.,2010,97(16):162105
    [166] Russell S. W.; Rafalski S. A.; Spreitzer R. L., et al. Enhanced adhesion of copper todielectrics via titanium and chromium additions and sacrificial reactions[J]. Thin SolidFilms,1995,262(1):154-167
    [167] Shih P. S.; Chang T. C.; Chen S. M., et al. Application of high temperature depositedaluminum gate electrode to the fabrication of a-Si:H TFT[J]. Surf. Coat. Technol.,1998,108:588-593
    [168] Kugimiya T.; Goto H.; Kawakami N., et al. Current Path Analysis of the Direct ContactBetween ITO and Al-Ni Alloy Films[J]. J. Electrochem. Soc.,2009,156(5): H384-H389
    [169] Martin B. C.; Tracy C. J.; Mayer J. W., et al. A comparative study of hillock formationin aluminum films[J]. Thin Solid Films,1995,271(1):64-68
    [170] Kimura M.; Nakanishi T.; Nomura K., et al. Trap densities in amorphous-InGaZnO4thin-film transistors[J]. Appl. Phys. Lett.,2008,92(13):133512
    [171] Valletta A.; Mariucci L.; Fortunato G., et al. Surface-scattering effects in polycrystallinesilicon thin-film transistors[J]. Appl. Phys. Lett.,2003,82(18):3119-3121
    [172] Hoshino K.; Hong D.; Chiang H. Q., et al. Constant-voltage-bias stress testing ofa-IGZO thin-film transistors[J]. IEEE Trans. Electron Devices,2009,56(7):1365-1370
    [173] Park S. Y.; Song J. H.; Lee C. K., et al. Improvement in photo-bias stability ofhigh-mobility indium zinc oxide thin-film transistors by oxygen high-pressureannealing[J]. IEEE Electron Device Lett.,2013,34(7):894-896
    [174] Kwon J. Y.; Lee D. J.; Kim K. B. Review paper: Transparent amorphous oxidesemiconductor thin film transistor[J]. Electronic Mater. Lett.,2011,7(1):1-11
    [175] Marrs M. A.; Moyer C. D.; Bawolek E. J., et al. Control of threshold voltage andsaturation mobility using dual-active-layer device based on amorphous mixedmetal-oxide-semiconductor on flexible plastic substrates[J]. IEEE Trans. Electron Devices,2011,58(10):3428-3434
    [176] Lee J. S.; Chang S.; Koo S. M., et al. High-performance a-IGZO TFT with gatedielectric fabricated at room temperature[J]. IEEE Electron Device Lett.,2010,31(3):225-227
    [177] Kwon J. Y.; Son K. S.; Jung J. S., et al. The impact of device configuration on thephoton-enhanced negative bias thermal instability of GaInZnO thin film transistors[J].Electrochem. and Solid-State Lett.,2010,13(6): H213-H215
    [178] Park J.; Kim S.; Kim C., et al. High-performance amorphous gallium indium zinc oxidethin-film transistors through N2O plasma passivation[J]. Appl. Phys. Lett.,2008,93(5):053505
    [179] Zhao M.; Lan L.; Xu H., et al. Wet-etch method for patterning metal electrodes directlyon amorphous oxide semiconductor films[J]. ECS Solid State Lett.,2012,1(5): P82-P84
    [180] Reeves G. K.; Harrison H. B. Obtaining the specific contact resistance fromtransmission line model measurements[J]. IEEE Electron Device Lett.,1982,3(5):111-113
    [181] Shimura Y.; Nomura K.; Yanagi H., et al. Specific contact resistances betweenamorphous oxide semiconductor In-Ga-Zn-O and metallic electrodes[J]. Thin Solid Films,2008,516(17):5899-5902
    [182] Hung M. C.; Lin W. T.; Chang J. J., et al. Int. Workshop on TransparentAmorphous Oxide Semiconductor2010[C], Tokyo, Japan,2010,1:25-26
    [183] Lee S.; Paine D. C. On the effect of Ti on the stability of amorphous indium zinc oxideused in thin film transistor applications[J]. Appl. Phys. Lett.,2011,98(26):262108
    [184] Ide K.; Kikuchi Y.; Nomura K., et al. Effects of excess oxygen on operationcharacteristics of amorphous In-Ga-Zn-O thin-film transistors[J]. Appl. Phys. Lett.,2011,99(9):093507
    [185] Suresh A.; Novak S.; Wellenius P., et al. Transparent indium gallium zinc oxidetransistor based floating gate memory with platinum nanoparticles in the gate dielectric[J].Appl. Phys. Lett.,2009,94(12):123501
    [186] Kuo Y.; Nominanda H. Nonvolatile hydrogenated-amorphous-siliconthin-film-transistor memory devices[J]. Appl. Phys. Let.,2006,89(17):173503
    [187] Choi S. H.; Han M. K. Effect of channel widths on negative shift of threshold voltage,including stress-induced hump phenomenon in InGaZnO thin-film transistors underhigh-gate and drain bias stress[J]. Appl. Phys. Lett.,2012,100(4):043503
    [188] Urakawa S.; Tomai S.; Ueoka Y., et al. Thermal analysis of amorphous oxide thin-filmtransistor degraded by combination of joule heating and hot carrier effect[J]. Appl. Phys.Lett.,2013,102(5):053506
    [189] Shin D. C.; Park K. S.; Park B. R., et al. A study on the dry etching characteristics ofindium gallium zinc oxide and molybdenum by the CCP-RIE system for the4maskprocess[J]. Curr. Appl. Phys.,2011,11(5): S45-S48
    [190] Xu H. Y.; Liu Y. C.; Mu R;, et al. F-doping effects on electrical and optical properties ofZnO nanocrystalline films[J]. Appl. Phys. Lett.,2005,86(12):123107
    [191] Jeong S.; Ha Y. G.; Moon J., et al. Role of Gallium Doping in Dramatically LoweringAmorphous-Oxide Processing Temperatures for Solution-Derived Indium Zinc OxideThin-Film Transistors[J]. Adv. Mater.,2010,22(12):1346-1350
    [192] Ryu B.; Noh H. K.; Choi E. A., et al. O-vacancy as the origin of negative biasillumination stress instability in amorphous In-Ga-Zn-O thin film transistors[J]. Appl.Phys. Let.,2010,97(2):022108
    [193] Kanno H.; Holmes R. J.; Sun Y., et al. White Stacked Electrophosphorescent OrganicLight-Emitting Devices Employing MoO3as a Charge-Generation Layer[J]. Adv. Mater.,2006,18(3):339-342
    [194] Guo Y.; Liu Y.; Di C., et al. Tuning the threshold voltage by inserting a thinmolybdenum oxide layer into organic field-effect transistors[J]. Appl. Phys. Lett.,2007,91(26):263502
    [195] Luo D.; Xu H.; Li M., et al. Effects of Etching Residue on Positive Shift of ThresholdVoltage in Amorphous Indium-Zinc-Oxide Thin-Film Transistors Based onBack-Channel-Etch Structure[J]. IEEE Trans. Electron Devices,2014,61(1):92-97
    [196] Luo D.; Li M.; Xu M., et al. Highly stable amorphous indium-zinc-oxide thin-filmtransistors with back-channel wet-etch process[J]. Phys. Stat. Sol.(RRL),2014,8(2):176-181
    [197] Hino A.; Maeda T.; Morita S., et al. Facilitation of the four-mask process by thedouble-layered Ti/Si barrier metal for oxide semiconductor TFTs[J]. J. InformationDisplay,2012,13(2):61-66
    [198] Seo H. S.; Bae J. U.; Kim D. H., et al. Reliable Bottom Gate AmorphousIndium-Gallium-Zinc Oxide Thin-Film Transistors with TiOx Passivation Layer[J].Electrochem. Solid-State Lett.,2009,12(9): H348-H351
    [199] Lee J. E.; Shama B. K.; Lee S. K., et al. Thermal stability of metal Ohmic contacts inindium gallium zinc oxide transistors using a grapheme barrier layer[J]. Appl. Phys. Lett.,2013,102(11):113112
    [200] Takai K.; Oga M.; Sato H., et al. Structure and electronic properties of a nongraphiticdisordered carbon system and its heat-treatment effects[J]. Phys. Rev. B,2003,67(21):214202
    [201] Robertson J. Diamond-like amorphous carbon[J]. Mater. Sci. Eng. R,2002,37(4-6):129-281
    [202] Ferrari A. C.; Robertson J. Interpretation of Raman spectra of disordered andamorphous carbon[J]. Phys. Rev. B,2000,61(20):14095-14107
    [203] Onoprienko A A.; Artamonov V. V.; Yanchuk I. B. Effect of deposition and annealtemperature on the resistivity of magnetron sputtered carbon films[J]. Surf. Coat. Technol.,2003,172(2):189-193
    [204] Staryga E.; Bak G. W. Relation between physical structure and electrical properties ofdiamond-like carbon thin films[J]. Diamond Relat. Mater.,2005,14(1):23-34
    [205] Lan L.; Xu M.; Peng J., et al. Influence of source and drain contacts on the propertiesof the indium-zinc oxide thin-film transistors based on anodic aluminum oxide gatedielectrics[J]. J. Appl. Phys.,2011,110(10):103703
    [206] Chern J. G. J.; Chang P.; Motta R. F., et al. A new method to determine MOSFETchannel length[J]. IEEE Electron Device Lett.,1980,1(9):170-173
    [207] Laux S. E. Accuracy of an effective channel length/external resistance extractionalgorithm for MOSFET's[J]. IEEE Trans. Electron Devices,1984,31(9):1245-1251
    [208]徐华,兰林锋,李民,等.源漏电极的制备对氧化物薄膜晶体管性能的影响[J].物理学报,2014,63(3):38501
    [209] Li M.; Lan L.; Xu M., et al. Impact of Deposition Temperature of the Silicon Oxide
    Passivation on the Performance of Indium Zinc Oxide Thin-Film Transistors[J]. Jpn. J.
    Appl. Phys.,2012,51(7R):076501

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700