用户名: 密码: 验证码:
PTEN、GSK-3β、FAK在星形细胞瘤中的表达及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的
     胶质瘤是成人最常见的原发性脑肿瘤,而星形细胞瘤是最常见的神经上皮肿瘤,文献报道其发生率占颅内肿瘤的13-26%,占胶质瘤21.2-51.6%。尽管在其诊断和标准治疗,如手术、放射治疗和化疗等方面有了很大进展,这些肿瘤患者的预后依然很差。胶质瘤的治疗现状在相当程度上取决于对这些肿瘤生物学的深入理解。最近对胶质瘤的生物学研究发现酪氨酸激酶受体和信号转导通路在肿瘤发生发展中发挥重要的作用。磷酸化与去磷酸化在细胞内信息传递中起重要作用。PTEN(Phosphatase and tensin homology deleted on chromosome 10)是第一个具有磷酸酯酶活性的抑癌蛋白。PTEN负调控细胞周期及多种信号途径,抑制细胞粘附、细胞迁移、细胞分化、细胞衰老和细胞凋亡等多种生理活动,因此PTEN与肿瘤的关系备受关注,成为研究的热点。10q23染色体上PTEN肿瘤抑制基因和甲基化变异导致磷脂酰肌醇-3激酶(PI3K)信号转导通路失去控制,这已在至少60%的恶性胶质瘤中得到证实。杂合性缺失或突变引起的PTEN基因功能丧失与间变性星形细胞瘤和胶质母细胞瘤患者的生存率较低具有相关性,这表明PTEN基因对患者的预后具有重要作用。现代分子生物学认为,肿瘤的发生发展是多基因、多因素、多步骤,多阶段改变的复杂过程,单一基因改变的作用有其局限性,探讨多基因的协同作用可能会更有意义。目前PTEN基因抑癌机制还未完全研究清楚,联合检测GSK-3β、FAK在脑星形细胞瘤中表达的研究国内外文献尚未见报道。为进一步探讨PTEN基因与脑星形细胞瘤发生发展的关系,探求早期检测脑星形细胞瘤发生、分级、预后的指标及寻找抑制脑星形细胞瘤生长和侵袭的有效方法,本研究采用RT-PCR及免疫组化SP法检测了47例脑星形细胞瘤和12例非瘤脑组织中PTEN基因mRNA、GSK-3β基因mRNA、FAK蛋白的表达情况,并分析了PTEN与GSK-3β、FAK的相互关系。通过本实验研究,进一步阐明PTEN蛋白的表达在脑星形细胞瘤中的意义;阐明PTEN基因抑制脑星形细胞瘤的机制是否与上调FAK表达、下调GSK-3β表达有关,为进一步探讨脑星形细胞瘤发生发展机制及寻找抑制脑星形细胞瘤的途径提供理论基础。
     材料与方法
     收集2009年1月-2009年10月郑州大学第一、二、五附属医院神经外科手术切除、并经病理证实为星形细胞瘤的患者新鲜标本47例。所有病例均为首次发病,术前未行放疗、化疗及免疫治疗。有完整的临床病例资料。其中男性29例,女性18例,年龄19-73岁,平均39.51岁。根据WHO(2001)中枢神经系统肿瘤分类标准,对所有肿瘤进行组织学分类和分级,其中Ⅰ级7例,Ⅱ级21例,Ⅲ级14例,Ⅳ级5例。WHOⅠ-Ⅱ级星形细胞瘤合并为低度恶性组,WHOⅢ-Ⅳ级合并为高度恶性组。12例作为对照的非瘤脑组织,取自郑州市第二人民医院、郑大二附院神经外科因颅脑损伤、脑出血手术须行内减压术的患者。研究采用RT-PCR及免疫组化SP法检测了47例脑星形细胞瘤和12例非瘤脑组织中PTEN基因mRNA、GSK-3β基因mRNA、FAK蛋白的表达情况,并分析了PTEN与GSK-3β、FAK的相互关系。采用SPSS 11.0软件包处理数据,两样本率的比较采用四格表资料的χ2检验;多样本率的比较采用行列表资料的χ2检验;计量资料采用t检验;差异性分析用配对χ2检验;相关性检验用Spearman关联性分析。以α=0.05作为有统计学意义的判断标准。结果判定以P<0.05作为差异显著性检验水准。
     结果
     1.PTEN蛋白在非瘤脑组织中的阳性表达率为100%(12/12),在星形细胞瘤中的表达阳性率为53.2%(25/47),两者相比存在显著性差异(P<0.01)。PTEN蛋白在非瘤脑组织、星形细胞瘤Ⅰ级~Ⅱ级、Ⅲ级~Ⅳ级组中的表达阳性率分别为100.0%、67.9%(19/28)和31.6%(6/19)。星形细胞瘤Ⅰ级~Ⅱ级组中PTEN蛋白的表达高于星形细胞瘤Ⅲ级~Ⅳ级组,星形细胞瘤Ⅰ级~Ⅱ级与星形细胞瘤Ⅲ级~Ⅳ级间表达差异有统计学意义(P<0.05)。
     2.GSK-3β蛋白在非瘤脑组织中表达阳性率为66.7%(8/12),在星形细胞瘤中的表达阳性率为29.8%(14/47),两者相比存在显著性差异(P<0.05)。其蛋白在非瘤脑组织、星形细胞瘤Ⅰ级~Ⅱ级、Ⅲ级~Ⅳ级组中的表达阳性率分别为66.7%(8/12)、42.9%(12/28)和10.5%(2/19)。星形细胞瘤Ⅰ级~Ⅱ级组中GSK-3β蛋白的表达高于星形细胞瘤Ⅲ级~Ⅳ级组,星形细胞瘤Ⅰ级~Ⅱ级与星形细胞瘤Ⅲ级~Ⅳ级间表达差异有统计学意义(P<0.05)。
     3.FAK蛋白在非瘤脑组织中的阳性表达率为16.7%(2/12),在星形细胞瘤中的表达阳性率为53.2%(25/47),显著高于非瘤脑组织中的表达,两者相比存在显著性差异(P<0.01)。FAK蛋自在非瘤脑组织、星形细胞瘤Ⅰ级~Ⅱ级、Ⅲ级~Ⅳ级组中的表达阳性率分别为16.7%、35.7%(10/28)和78.9%(15/19)。星形细胞瘤Ⅰ级~Ⅱ级与星形细胞瘤Ⅲ级~Ⅳ级间表达差异有统计学意义(P<0.05)。
     4.PTEN蛋白和GSK-3β蛋白在瘤组织中表达的关系:在25例PTEN蛋白表达阳性的星型细胞瘤中GSK-3β蛋白表达阳性的有14例;在22例PTEN蛋白表达阴性的星型细胞瘤中GSK-3β蛋白表达阴性的有22例,经统计学分析两者表达呈正的相关关系(McNemar=0.628,P<0.01)。
     5.PTEN蛋白和FAK蛋白在瘤组织中表达的关系:在25例PTEN蛋白表达阳性的星型细胞瘤中FAK蛋白表达阳性者5例,在22例PTEN蛋白表达阴性的星型细胞瘤中FAK蛋白表达阴性者2例,经统计学分析两者表达呈负的相关关系(McNemar=-0.696, P<0.01)。
     结论
     1.PTEN蛋白在非瘤脑组织高表达,在星形细胞瘤组织中表达下调,并随星形细胞瘤病理级别的增高而表达降低,提示PTEN蛋白表达与星形细胞瘤的发生、分化、进展密切相关,检测PTEN蛋白表达有助于判断星形细胞瘤的生物学行为和恶性程度,并可以作为胶质瘤预后判断指标。
     2.星形细胞瘤中PTEN和FAK蛋白的异常表达呈负相关关系。提示FAK蛋白的表达上调与PTEN的表达下调在呈形细胞瘤中不是两个孤立的事件,两者可能存在某些关联,共同促进了星形细胞瘤的发生、发展。
     3.PTEN和GSK-3β在星形细胞瘤的发生发展进程中存在正相关性,提示可能PTEN通过GSK-3β促进肿瘤的发生发展。
Backgrounds and Objectives
     Gliomas are the most common primary brain tumor in adults, and astrocytomas, accounting for 13-26% in intracranial tumors and 21.2%~51.6% in gliomas, are the most frequent neuroepithelial neoplasms. But the prognosis for patients with these tumors remains poor despite advances in diagnosis and standard therapies such as surgery, radiation therapy, and chemotherapy. Progress in the treatment of gliomas now depends to a great extent on an increased understanding of the biology of these tumors. Recent insights into the biology of gliomas include the finding that tyrosine kinase receptors and signal transduction pathways play a role in tumor initiation and maintenance. Phosphorylation and dephosphorylation play an important role in intracellular signaling pathways. As the first identified tumor suppressor gene, PTEN (phosphatase and tensin homology deleted on chromosome 10) negatively regulate cell cycle and multiple signaling pathways, suppressing various physiological functions including cell adhesion, migration, differentiation, senescence, apoptosis and so on. Thus the ralationship between PTEN and tumors has attracted much attention and become a focus in medical research. Deregulation of phosphatidylin-ositol 3-kinase (PI3K) signaling pathways resulting from genetic alterations in the PTEN tumor suppressor gene on 10q23 at the level of LOH, mutation and methylation have been identified in at least 60% of glioblastoma. Loss of PTEN function by mutation or LOH correlates with poor survival in anaplastic astrocytoma and glioblastoma, suggesting that PTEN plays a role in patient outcome. In modern molecular biology, Tumor initiation and maintenance is considered to be a complex alteration process of multiple gene, multiβle factor, multiple procedure, multiple phase. The effect of single gene alteration is limited, therefore investigating the synergetic effect of polygenes may make difference. The studies nowdays has not identified clearly the tumor suppressing mechanism of PTEN, and there is no report about correlation between the expression of GSK-3β、FAK in the brain astrocytoma. In order to further explore the correlation between PTEN and the genesis and progress of astrocytoma, search markers indicating the generation, gradation and prognosis of astrocytoma, and look for usful ways to suppress the genesis and invation of astrocytoma, this research detects the expression of PTEN mRNA、GSK-3βmRNA、FAK gene and protein by immunohistochemisty in 47 cases of astrocytoma tissues and 12 cases of normal brain tisssues, and analyses the correlation between PTEN, GSK-3βand FAK. This article intends to interpret the role of PTEN protein expression in astrocytoma, investigate whether the mechanism of PTEN to suppress astrocytoma is concerned with up-regulation of FAK and down regulation of GSK-3β, and furthermore and provide certain theory basis on further detecting the mechanism of astrocytoma genesis and development and finding out the ways to suppress astrocytoma.
     Materials and methods
     47 cases of the fresh human astrocytomas tissues surgically ablated and identified by pathology were collected in the department of neurosurgery of the second affiliated hospital of Zhengzhou University from Jan,2009 to Oct,2009, including 29 cases of male and 18 cases of female,19-73 years old, mean 39.51 years of age. All cases are of intact datas and invaded for the first time. None was treated by radiotherapy, chemotherapy or immunotherapy.
     According to the WHO (2001) classification of central nervous system tumors, all tumors were histologically classificated and graded as 7 cases of gradeⅠ,21 cases of gradeⅡ,14 cases of gradeⅢ,5 cases of gradeⅣ. The WHO gradeⅠ-Ⅱastrocytomas merged into low-grade malignant group, and the WHO gradeⅢ-Ⅳmerged into high grade. The non-tumor brain tissues serving as control group were obtained from 12 patients requiring surgical decompression due to brain injury or cerebral hemorrhage in the neurosurgery department, in The Second People's Hospital of Zhengzhou and The Second Affiliated Hospital of Zhengzhou University. The study used RT-PCR and immunohistochemistry SP method to detect the expression of the PTEN gene mRNA, GSK-3B gene mRNA, FAK gene and protein in 47 cases of astrocytoma and 12 cases of non-tumor brain tissue, and analyzed the correlation of PTEN and GSK-3B, FAK. The data was analysed using SPSS software (version 11.0). Chi-square statistics were used for categorical comparisons of rate of sample. The t test was used for measurement data. Spearman rank-sum correlation was used to relate the expression of markers. A value of p<0.05 was considered statistically significant.
     Results
     1. Twelve of 12 non-tumor brain tissues were positive for PTEN protein with a positive rate of 100% and twentyfive of 47 astrocytoma tissues were positive for PTEN protein with a positive rate of 53.2%. The difference of PTEN expressions was statistically significant (P<0.01) in astrocytoma and non-tumor brain tissues. The positive rates of PTEN protein expression were respectively 100.0%,67.9% and 31.6% in non-tumor brain tissue, GradeⅠ~Ⅱastrocytoma group, gradeⅢ~Ⅳastrocytoma group. The expression of PTEN protein in GradeⅠ~Ⅱgroup is higher than that of gradeⅢ~Ⅳgroup with significant difference (P<0.05).
     2. Eight of 12 non-tumor brain tissues were positive for GSK-3Bprotein with a positive rate of 66.7% and fourteen of 47 astrocytoma tissues were positive for GSK-3B protein with a positive rate of 29.8%. The difference of GSK-3βexpressions was statistically significant (P<0.05) in astrocytoma and non-tumor brain tissues. The positive rates of GSK-3B protein expression were respectively 66.7%,42.9% and 10.5% in non-tumor brain tissue, GradeⅠ~Ⅱastrocytoma group, gradeⅢ~Ⅳastrocytoma group. The expression of GSK-3βprotein in GradeⅠ~Ⅱgroup is higher than that of gradeⅢ~Ⅳgroup with significant difference (P<0.05).
     3. The positive expression rate of FAK protein was 53.2% in astrocytomas and was significantly higher than that in non-tumor brain tissue, which was 16.7%(P <0.01). The positive rates of FAK protein expression were respectively 66.7%,42.9% and 10.5% in non-tumor brain tissue, GradeⅠ~Ⅱastrocytoma group and gradeⅢ~Ⅳastrocytoma group. The differentce of FAK protein expression between GradeⅠ~Ⅱgroup and gradeⅢ~Ⅳgroup was significant (P<0.05).
     4. The relationship between the expression of PTEN protein and GSK-3βprotein: Of the 25 cases with positive expression of PTEN protein in astrocytomas,14 cases were detected GSK-3βprotein expression; GSK-3βprotein expression was negative in all 22 cases with negative expression of PTEN protein in the astrocytomas, positive correlation between the two protein expression was confirmed via statistical analysis (contingency coefficient r= 0.628, P<0.01).
     5. The relationship between the expression of PTEN protein and FAK protein: Of the 25 cases with positive expression of PTEN protein in astrocytomas,5 cases were detected FAK protein expression; FAK protein expression was negative in 2 cases out of 22 cases with negative expression of PTEN protein in the astrocytomas. The statistical analysis showed a negative correlation between the expression of the two proteins (contingency coefficient r=-0.696, P<0.01).
     Conclutions
     1. PTEN protein is highly expressed in non-tumor brain tissue and it is down regulated in astrocytoma tissues, and reducing as the pathologic grade of astrocytomas increases, suggesting that PTEN gene mutation or deletion is closely related to the occurrence, differentiation, progress of astrocytoma. Detection of PTEN protein expression will help to determine the biological behavior, malignant degree and prognosis of astrocytomas.
     2. There is a negative correlation between the abnormal expression of PTEN protein and that of FAK protein in astrocytoma, indicatig that the increased expression of FAK protein and the decreased expression of PTEN in astrocytic tumors are not two isolated incidents, there may be some correlation between them, which work together to promote the occurrence and development of astrocytoma.
     3. There is a positive correlation between PTEN and GSK-3βin the occurrence and development process of human astrocytomas, suggesting that PTEN depend on GSK-3βto promote the development of tumors.
引文
[1]Kojima H, Shijubo N,Abe S. Thymidine phosphorylase and vascular enddothelial growth factor in patients with stage I lung adenocarcinoma[J]. Cancer,2002,94(4):1083-1093.
    [2]Besson A, Robbins SM, Yong VW. PTEN/MMAC1/TEP1in signal transduction and tumor regenesis[J]. Eur J Biochem,1999,263(3):605-611.
    [3]Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate[J]. J Biol Chem,1998,273(22): 13375-8.
    [4]Zhou P, Qian L, Ladecola C. Neuroprotection by PGE2 receptor EP1 inhibition involves the PTEN/AKT pathway[J]. Neurobiol Dis,2008,29(3):543-51.
    [5]Li DM, Sun H. PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces Glcell cycle arrest in human glioblastoma cells [J]. Proc Nati Acad Sci USA,1998,95(26): 15406-11.
    [6]Fumari FB, Huang HJ, Cavenee WK. The phosphoinositol phosphatase activity of PTEN meditateds a serum sensitive G1 growth in glioma cells[J]. Cancer Res,1998,58(22): 5002-8.
    [7]Tamura M, Gu J, Danen EH et al. PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix dependent phosphatidylinositol 3-kinase/Akt cell survival pathway[J]. J Biol Chem,1999,274(29):20693-703.
    [8]Han DC, Guan JL. Association of focal adhesion kinase with Crb7 and its role in cell migration[J]. J Biol Chem,1999,274(34):24425.
    [9]Li L, Ernsting BR, Wishart MJ, et al. A family of putative tumor suppressors is structurally and functionally conserved in human and yeast [J]. J Biol Chem,1997,273(47):2936-40.
    [10]Tamura M, Gu J, Matsumoto K, et al. Inhibition of cell migration, spreading and focal adhesions by tumor suppressor PTEN[J]. Science,1998,280(5369):1614-7.
    [11]Fumari FB, Lin H, Huang HS, et al. Growth suppression of glioma cells by PTEN requires a phosphatase catalytic domain [J]. Proc Nati Acad Sci USA,1997,94(23):12479-12484.
    [12]Steck PA, Pershouse MA, Jasser SA, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers[J]. Nati Genet,1995,15(4):356-62.
    [13]Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer[J]. Science,1997,275(5308):1943-7.
    [14]Teng DH, Hu R, Lin H, et al. MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines [J]. Cancer Res,1997,57(23):5221-5.
    [15]Fujisawa H, Reis RM, N ak amura M, et al. Loss of heterozygo sity on chromosome 10 is more extensive in primary (denovo) than in secondary glioblastom as[J]. Lab Invest,2000, 80(1):65-72.
    [16]Duerr EM, Rollbrocker B, Hayashi Y, et al.PTEN mutations in gliomas and glioneuronal tumors [J]. Oncogene,1998,16(17):2259-2264.
    [17]Rasheed BK, Stenzel TT, McLendon RE, et al. PTEN gene mut ations are seen in high-grade but not in low-grade gliomas [J]. Canc er Res,1997,57(19):4187-4190.
    [18]荆俊杰,章翔,吴景文,等.星形细胞瘤中PTEN和CB表达与侵袭性的关系.第四军医大学学报[J].2000,21(9):1109-1111.
    [19]Tohma Y, Gratas C, Biernat W, et al. PTEN(MMAC1) mutations are frequent in primary glioblastomas (denovo)but not in secondary glioblastomas[J]. J Neuropathol Exp Neurol, 1998,57(7):684-689.
    [20]Ermoian RP, Furniss CS, Lamborn KR, et al. Dysreg ulation of PTEN and protein kinase B is associated with glioma histolog y and patient survival [J]. Clin Cancer Res,2002,8(5): 1100-1106.
    [21]Hideaki K, Shunsuke K, Toshihiro K, et al. Functional evaluation of p53 and PTEN gene mutations in gliomas[J]. Clin Cancer Res,2000,6(10):3937-43.
    [22]Qingxia W, Laura C, Danielle K, et al. High-grade glioma formation results from postnatal PTEN loss or mutant epidemtal growth factor receptor expression in a transgenic mouse glioma model[J]. Cancer Res,2006,66(15):7429-37.
    [23]Tunca B, Bekar A, Cecener G, et al. Impact of novel PTEN mutations in Tukish patients with glioblastoma multiforme[J]. J Neurooncol,2007,82(3):263-9.
    [24]Idoate A, Soria E, Lozano D, et al. PTEN protein expression correlates with PTEN gene molecular changes but not with VEGF expression in astrocytomas[J]. Diagn Mol Pathol, 2003,12(3):160-5.
    [25]Fan X, Aalto Y, Sanko SG, et al. PTEN mutation, and therapemic role of PTEN in glioblastomas [J]. Int J Oncol,2002,21 (5):1141-50.
    [26]Doble BW, Woodgett JR. GSK-3:tricks of the trade for a multitasking kinase [J]. J Cel Sci, 2003,116(3):1175-1186.
    [27]Hoeflich K.P, Luo J, Rubie EA, et al. Requirement for glycogen synthase kinase-3βin cel survival and NF-kB activation [J], Nature,2000,406(5):86-90.
    [28]Castellino RC, Durden DL. Mechanisms of Disease:the P13K-AKT-PTEN signaling node-an intercept point for the control of angiogenesis in brain tumors[J]. Nati Clin Pract Neurol,2007,3(12):682-93.
    [29]Mellinghoff IK, Cloughesy TF, Mischel PS. PTEN-mediated resistance to epidermal growth factor receptor kinase inhibitors [J]. Clin Cancer Res,2007,13(2):378-81.
    [30]Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma [J]. Am J Pathol,2007,170(5):1445-53.
    [31]Bello, Ehrmann J, Sedlakova E, et al. Could changes in the regulation of the PI3K/PKB/ AKT signaling pathway and cell cycle be involved in astrocytic tumor pathogenesis and progression?[J]. Neoplasma,2007,54(4):334-41.
    [1]Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate[J]. J Biol Chem.1998, 29,273(22):13375-8.
    [2]Fumari FB, Lin H. Huang HS, et al. Growth suppression of glioma cells by PTEN requires a phosphatase catalytic domain[J]. Proc Nati Acad Sci USA,1997,94 (23):12479-12484.
    [3]Li DM, Sun H. PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces Glcell cycle arrest in human glioblastoma cells[J]. Proc Natl Acad Sci USA 1998,95(26): 15406-11.
    [4]Fumari FB, Huang HJ, Cavenee WK. The phosphoinositol phosphatase activity of PTEN meditateds a serum sensitive G1 growth in glioma cells[J]. Cancer Res 1998,58(22): 5002-8.
    [5]Cheney IW, Johoson DE. Vaillancourt MT,et al, Suppression of tumorigenicity of glioblastoma cells by adenovirus-mediated MMAC1/PTEN gene transfer[J]. Cancer Res, 1998,58(11):2331-2334.
    [6]Tamura M, Gu J, Danen EH, et al. PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix dependent phosphatidylinositol 3-kinase/Akt cell survival pathway[J]. J Biol Chem 1999,274(29):20693-703.
    [7]Han DC, Guan JL.Association of focal adhesion kinase with Crb7 and its role in cell migration [J].J Biol Chem,1999,274(34):24425-30.
    [8]Li L, Ernsting BR, Wishart MJ, et al. A family of putative tumor suppressors is structurally and functionally conserved in human and yeast[J]. J Biol Chem 1997,273(47):29403-6.
    [9]MaehamaT, Dixon JE. PTEN tumor suppressor:functions as a lipid phosphatase[J]. Tanpakushitsu Kakusan Koso.2000,45(14):2405-14.
    [10]BessonA Robbins SM, Yong VW. PTEN/MMAC1/TEP1 in signal transduction and tumorigenesis [J]. Eur J Biochem,1999,263(3):605-11
    [11]Tamura M, GuJ, Matsumoto K. et al. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN[J]. Science,1998,280(5369):1614-7.
    [12]Tamura M, Gu j, Danen EH, et al. PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix-dependent phosphatidylinositol 3-kinase/Akt cell survival pathway[J]. J Biol chem.,1999,274'29):20693-703.
    [13]Gu J, Tamura M,Yadama KM. Tumor suppressor PTEN inhibits integrin and growth Factor mediated mitogen activated protein (MAP) kinase signaling pathways[J]. J Cell Biol, 1998,143(5):1375-83
    [14]Fujisawa H, Reis RM, Nakamura M, et al. Loss of heterozygosity on chromosome 10 is more extensive in primary (de novo) than in secondary glioblastomas[J]. Lab Invest,2000, 80 (1):65-72.
    [15]Duerr EM, Rollbrocker B, Hayashi Y, et al. PTEN mutations in gliomas and glioneuronal tumors [J]. Oncogene,1998,16(17):2259-2264.
    [16]Rasheed BK, Stenzel TT, McLendon RE, et al. PTEN gene mutations are seen in high-grade but not in low-grade gliomas[J].Cancer Res,1997,57 (19):4187-4190.
    [17]荆俊杰,章翔,吴景文,等.星形细胞瘤中PTEN和CB表达与侵袭性的关系[J].第四军医大学学报,2000,21(9):1109-1111.
    [18]Tohma Y, Gratas C, Biernat W, et al. PTEN (MMAC1) mutations are frequent in primary glioblastomas (de novo) but not in secondary glioblastomas[J]. J Neuropathol Exp Neurol, 1998,57(7):684 689
    [19]Ermoian RP, Furniss CS, Lamborn KR. et al. Dysregulation of PTEN and protein kinase B is associated with glioma histology and patient survival[J]. Clin Cancer Res.2002,8 (5):1100-1106.
    [20]Kato H, Kato S, Kumabe T, et al. Functional evaluation of p53 and PTEN gene mutations in gliomas [J]. Clin Cancer Res,2000,6:3937-43.
    [21]Wei O, Clarke L, Scheidenhelm DK, et al. High-grade glioma formation results from postnatal PTEN loss or mutant epidemtal growth factor receptor expression in a transgenic mouse glioma model [J]. Cancer Res,2006,66(15):7429-37.
    [22]Tunca B, Bekar A, Cecener G, et al. Impact of novel PTEN mutations in Turkish patients with glioblastoma multiforme [J]. J Neurooncol,2007,82(3):263-9.
    [23]Idoate MA, Soria E, Lozano MD, et al. PTEN protein expression correlates with PTEN gene molecular changes but not with VEGF expression in astrocytomas[J].Diagn Mol Pathol,2003,12(3):160-5.
    [24]Fan X, Aalto Y, Sanko SG, et al. Genetic profile, PTEN mutation, and therapeumic role of PTEN in glioblastomas [J].Int J Oncol,2002,21 (5):1141-50.
    [25]Hu X, Pandolfi PP, Li Y, et al. mTOR promotes survival and astrocytic characteristics induced by Pten/AKT signaling in glioblastoma.[J]. Neoplasia 2005,7:356-68.
    [26]Guha A, Feldkamp MM, Lau N, et al. Proliferation of human malignant astrocytomas is dependent on Ras activation [J]. Oncogene 1997,15(23):2755-65.
    [27]Feldkamp MM, Lala P, Lau N, et al. Expression of activated epidermal growth factor receptors, Ras-guanosine triphosphate, and mitogen-activated protein kinase in human glioblastoma multiforme specimens[J]. Neurosurgery 1999,45(6):1442-53.
    [28]Rajasekhar VK, Viale A, Socci ND, et al. Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes [J]. Mol Cell 2003,12(4):889-901.
    [29]Holland EC. Gliomagenesis:genetic alterations and mouse models[J]. Nat Rev Genet 2001, 2(2):120-9.
    [30]Reilly KM, Loisel DA, Bronson RT, et al.Jacks T. Nfl; Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects[J]. Nati Genet 2000,26(1):109-13.
    [31]Ding H, Roncari L, Shannon P, et al. Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas[J]. Cancer Res 2001,61(9):3826-36.
    [32]Shannon P, Sabha N, Lau N, et al. Pathological and molecular progression of astrocytomas in a GFAP:12 V-Ha-Ras mouse astrocytoma model[J].Am J Pathol 2005,167(3):859-67.
    [33]Steck PA, Pershouse MA, Jasser SA, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers[J]. Nati Genet 1997,15(4):356-62.
    [34]Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer [J]. Science 1997,275(5308):1943-7.
    [35]Teng DH, Hu R, Lin H, et al. MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines [J]. Cancer Res 1997,5(23)7:5221-5.
    [36]Kolibaba KS, Druker BJ. Protein tyrosine kinases and cancer [J]. Biochem Biophys Acta 1997,1333(3):F217-48.
    [37]Datta SR, Brunet A, Greenberg ME. Cellular survival:a play in three Akts [J]. Genes Dev 1999,13(22):2905-27.
    [38]Holland EC. Glioblastoma multiforme:the terminator [J]. Proc Nati Acad Sci USA 2000, 97(9):6242-4.
    [39]Maher EA, Furnari FB, Bachoo RM, et al. Malignant glioma:genetics and biology of a grave matter[J]. Genes Dev 2001,15(11):13:1-33.
    [40]Wechsler-Reya R, Scott MP. The developmental biology of brain tumors [J]. Annu Rev Neurosci 2001,24:385-428.
    [41]Wu X, Senechal K, Neshat MS, etal. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway[J]. Proc Nati Acad Sci USA 1998,95(26):15587-91.
    [42]Cheng GZ, Park S, Shu S,et al. Advances of AKT pathway in human oncogenesis and as a target for anti-cancer drug discovery. [J]. Curr Cancer Drug Targets.2008,8(1):2-6.
    [43]Sun M, Wang G, Paciga JE, et al. AKT1/PKBalpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells [J]. Am J Pathol 2001,159(2):431-7.
    [44]Cheng JQ, Altomare DA, Klein MA, et al Transforming activity and mitosis-related expression of the AKT2 oncogene:evidence suggesting a link between cell cycle regulation and oncogenesis. Oncogene 1997,14(23):2793-801.
    [45]Holland EC, Celestino J, Dai C, et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice[J]. Nati Genet 2000,25(1):557.
    [46]Sonoda Y, Ozawa T, Aldape KD, et al. Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma [J]. Cancer Res 2001,61(18):6674-8.
    [47]Lian Z, Di Cristofano A. Class reunion:PTEN joins the nuclear crew [J]. Oncogene 2005, 24(50):7394-400.
    [48]Deleris P, Gayral S, Breton-Douillon M. Nuclear Ptdlns(3,4,5)P3 signaling:an ongoing story [J]. J Cell Biochem 2006,98(3):469 85.
    [49]Lindsay Y, McCoull D, Davidson L, et al. Localization of agonist-sensitive Ptdlns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression [J]. J Cell Sci 2006,119(Pt24): 5160-8.
    [50]Li AG, Piluso LG, Cai X, et al. Mechanistic insights into maintenance of high p53 acetylation by PTEN [J]. Mol Cell 2006,23(4):575-87.
    [51]Freeman DJ, Li AG, Wei G, et al. PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and-independent mechanisms [J]. Cancer Cell 2003,3(2):117-30.
    [52]Shen WH, Balajee AS, Wang J, et al. Essential role for nuclear PTEN in maintaining chromosomal integrity [J]. Cell 2007,128(1):157-70.
    [53]Okumura K, Zhao M, Depinho RA, et al. Cellular transformation by the MSP58 oncogene is inhibited by its physical interaction with the PTEN tumor suppressor [J]. Proc Nati Acad Sci 2005,102(8):2703-6.
    [54]Liu JL, Sheng X, Hortobagyi ZK, et al. Nuclear PTEN-mediated growth suppression is independent of Akt down-regulation [J]. Mol Cell Biol 2005,25(14):6211-24.
    [55]Metjian A, Roll RL, Ma AD, et al. Agonists cause nuclear translocation of phosphatidylinositol 3-kinase gamma. A Gbetagamma-dependent t pathway that requires the p110gamma amino terminus [J]. J Biol Chem 1999,274(39):27943-7.
    [56]Tanaka K, Horiguchi K, Yoshida T, et al. Evidence that a phosphatidylinositol 3,4,5-trisphosphate-binding protein can function in nucleus [J]. J Biol Chem 1999,274(7): 3919-22.
    [57]Ahn JY, Rong R, Liu X, et al. PIKE/nuclear PI 3-kinase signaling mediates the antiapoptotic actions of NGF in the nucleus [J]. EMBO J 2004,23(20):3995-4006.
    [58]Chung JH, Eng C. Nuclear-cytoplasmic partitioning of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) differentially regulates the cell cycle and apoptosis [J].Cancer Res 2005,65(18):8096-100.
    [59]Gil A, Andres-Pons A, Fernandez E, et al. Nuclear localization of PTEN by a Ran-dependent mechanism enhances apoptosis:involvement of an N-terminal nuclear localization domain and multiple nuclear exclusion motifs [J]. Mol Biol Cell 2006,17(9): 4002-13.
    [60]Zhou YH,Tan F, Hess KR, et al. The expression of PAX6.PTEN.vascular endothelial growth factor and epidermal growth factor recepetor in gliomas:relationship to tumor grade and survival [J].Clin Cancer Res,2003,9(9):3369-75.
    [61]Smith JS, Tachibana I, Passe M,et al. PTEN mutation,EGFRamplification, and outcome in patients with anaplastic astroeytoma and glioblastoma multiforme [J]. J Nati Cancer Inst, 2001,93(16):1246-56.
    [62]You Y, Geng X,Zhao P, et al.Evaluation of combination gene therapy with PTEN and antisense hTERT for malignant glioma in vitro and xenografts[J]. Cell Mol Life Sci,2007, 64(5):621-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700