2型糖尿病患者血浆及其高密度脂蛋白对细胞内胆固醇外流的影响&不同剂量雌激素对小鼠心脏和肾脏结构和功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     2型糖尿病患者常有血脂异常。已证实2型糖尿病患者的胆固醇逆转运途径存在异常,而细胞内胆固醇外流是胆固醇逆转运途径的重要的初始步骤,本研究主要针对胆固醇外流这一步骤进行探讨。
     以往的研究证实,2型糖尿病患者细胞内的胆固醇外流的能力可能是降低的。如:从培养的纤维母细胞到含高糖的血浆的胆固醇转运是降低的[1],胆固醇从Fu5Ah细胞流出到糖尿病血浆的能力也是受损的[2]。但近期也有研究显示,1型糖尿病血浆诱导Fu5AH细胞和高表达ABCA1的HSF细胞的胆固醇外流的能力反而是升高的[3]。糖尿病患者血浆成分变化较为复杂,许多因素可以影响胆固醇外流。如血浆中胰岛素含量[4],血糖水平,细胞因子水平[5],脂蛋白糖化情况[7]等,胆固醇外流率并不能完全取决于HDL。因此,糖尿病患者血浆中非脂质成分的异常,还是HDL质或量的异常在影响细胞内胆固醇流出方面起主要作用,至今仍不明确。
     在胆固醇逆转运的第一步一胆固醇从外周细胞流出中,ABCA1,SR-BI是迄今为止研究最多的促进胆固醇流出的细胞表面蛋白[8]。近期发现的ABCG1也是在胆固醇流出和流入途径中均起到重要作用的半转运体。除了通过ABCA1,ABCG1,SR-BI途径外,细胞内的胆固醇还可以通过ABCG4、ABCG5、自由扩散等多种方式流出。多个文献显示,有些细胞可以表达相对单一的介导胆固醇转运的细胞表面蛋白,因而可以利用这些细胞相对专一地研究某个细胞表面蛋白对胆固醇外流的作用。
     文献显示[7],体外的细胞胆固醇流出实验能够预测糖尿病和非糖尿病患者动脉粥样硬化的病变程度。因此,通过对细胞内胆固醇外流的体外实验研究,我们希望能够间接了解2型糖尿病患者体内外周细胞胆固醇外流的情况。
     研究目的:
     1.了解HepG2、HSF、HUVEC细胞SR-BI、ABCA1、ABCG1表达的情况。
     2.通过对2型糖尿病患者的HDL、无脂血浆及全血血清对经由ABCA1,SR-BI胆固醇流出途径的研究,并与非2型糖尿病组比较,了解2型糖尿病患者血清及其HDL影响细胞内胆固醇外流的特点。
     方法:
     1.原代分离和培养HSF和HUVEC细胞。
     2.RT-PCR和Western Blot方法鉴定三种HepG2、HSF、HUVEC细胞上ABCA1、SR-BI、ABCG1含量。
     3.使用超速离心方法分离非2型糖尿病组(对照组)和2型糖尿病组患者血浆中HDL和LPDS,并用苏丹黑染色鉴定。
     4.给实验细胞负载H~3标记的胆固醇,分别用非2型糖尿病组和2型糖尿病组的血清、LPDS、HDL诱导HepG2和HSF细胞内胆固醇外流,测定胆固醇流出率。
     5.将22-OH胆固醇刺激前后的HSF的胆固醇流出率之差作为经由ABCA1途径的胆固醇流出率。HepG2的胆固醇流出率作为经由SR-BI途径的胆固醇流出率。
     6.用荧光标记的方法测定两组PLTP和CETP的活性。
     7.将胆固醇流出率与患者的基础资料、PLTP、CETP活性等进行相关性分析。
     8.统计分析:采用SPSS 13.0软件进行统计分析。
     结果:
     1.使用组织贴块培养法可成功分离培养HSF细胞。
     2.使用胶原酶灌注分离法可快速成功分离培养HUVEC细胞,培养过程须添加生长因子复合物。
     3.用RT-PCR和Western Blot方法证实,HepG2细胞可高表达SR-BI,而HSF和HUVEC细胞在22-OH胆固醇刺激后可分别高表达ABCA1和ABCG1。
     4.超速离心分离法可较好的分离出纯度较高的HDL和LPDS。
     5.2型糖尿病组的HDL诱导HepG2细胞胆固醇外流能力较对照组明显减弱(P=0.0015)。
     6.2型糖尿病组的血清诱导HepG2细胞胆固醇外流的能力较对照组无明显差异(P=0.19)。
     7.2型糖尿病与对照组相比的HDL诱导22-OH胆固醇刺激ABCA1高表达前后的胆固醇流出率差值,在两组之间没有明显差异。
     8.全血血清诱导的22-OH胆固醇刺激前后的胆固醇流出率差值在2型糖尿病组较对照组差异无显著性(对照组VS 2型糖尿病组,5.7±4.4%VS 8.8±5.9%,P=0.33)。
     9.LPDS诱导的22-OH胆固醇刺激前后胆固醇流出率之差在对照组明显升高(对照组VS 2型糖尿病组,11.0±7.7%VS 6.6±4.7%,P=0.02)。
     10.2型糖尿病患者血清PLTP活性较对照组升高,与对照组和全部患者的经由ABCA1的胆固醇流出呈正相关。两组的CETP活性无明显差别。
     结论:
     1.高表达SR-BI的HepG2细胞,以及在22-OH胆固醇刺激后分别高表达ABCA1和ABCG1的HSF和HUVEC可以用来研究经SR-BI、ABCA1、ABCG1途径胆固醇流出情况。
     2.糖尿病患者HDL和LPDS(主要含ApoA1和前βHDL)介导细胞内胆固醇外流能力受损可能对糖尿病细胞内胆固醇沉积有重要意义。
     3.糖尿病患者血清对ABCA1介导的细胞内胆固醇外流的促进作用可能与其血PLTP活性升高有关。
     前言:
     无论在人类试验还是动物实验,越来越多的研究指向雌激素能够减轻心肌肥厚,也有一些试验得到不同的结论。这些不同的结论的原因可能在于使用雌激素的剂量不同。我们既往使用心肌梗死的小鼠研究显示,低剂量的雌激素对心脏有保护作用,而中、高剂量的雌激素可能对心脏有害,可能与肾脏损伤也有一定关系。因此提示雌激素的剂量依赖性作用可能对雌激素替代治疗的结果有重要影响。
     研究目的:
     1.不同剂量的雌激素替代治疗对卵巢切除后的小鼠心脏的血流动力学、形态学、重量和功能的影响,包括对血压、心率、心肌细胞大小、间质胶原沉积、毛细血管密度、左室重量、容积、功能以及心肌储备的研究。
     2.研究雌激素对肾脏功能的影响:包括肾脏重量指数,尿微量白蛋白,肌酐清除率。
     3.研究是否雌激素通过不同的信号途径作用于心脏,包括PKC,PI3K,ERK等。
     研究方法:
     1.通过卵巢切除建立小鼠动物模型,给予不同剂量雌激素替代治疗。
     2.喂养8周后,通过器官称重,超声心动图,血流动力学检测等方法评估雌激素对心脏血流动力学、形态学、重量和功能的影响。
     3.通过组化染色,评价雌激素对心肌间质胶原和毛细血管密度的影响。
     4.通过western blot研究不同剂量雌激素对PI3K,ERK,PKC等通路的影响。
     5.将小鼠喂养于代谢笼,通过留取24h尿液测定24h尿微量白蛋白的量以及肌酐清除率评价雌激素对肾脏功能的影响。
     结果:
     1.雌激素在卵巢切除+低剂量雌激素(ovx+L)组(0.42ug/d)能轻度升高心脏重量指数,但在卵巢切除+中剂量雌激素(ovx+M)组(4.2ug/d)和ovx+H(卵巢切除+高剂量雌激素)组(28.3ug/d)组逐渐降低,在ovx+H组与ovx+L组达到统计学差异(P<0.05);
     2.不同剂量的雌激素替代治疗对卵巢切除术后的小鼠的心肌间质胶原沉积和毛细血管密度没有明显影响,但在ovx+H组的MCSA有降低趋势;
     3.各种剂量雌激素对卵巢切除后的小鼠的血压无明显影响,但在ovx+H组心率明显降低(P<0.05 VS sham,ovx+placebo,P<0.01 VS ovx+VL,ovx+L);
     4.中、高剂量雌激素使卵巢切除术后的小鼠心脏射血功能轻度下降(ovx+placebo、ovx+M和ovx+H组的EF分别为80.89±0.46,77.48±1.09,78.87±0.63,P<0.05)随雌激素剂量增加,左心室收缩和舒张期内径有增加趋势;
     5.不同剂量的雌激素对卵巢切除术后的小鼠的心肌收缩和舒张储备功能均没有明显影响;
     6.随雌激素替代治疗的剂量的增加,肾脏重量指数逐渐升高,24小时尿白蛋白逐渐增高,在ovx+L,ovx+M和ovx+H组相对ovx均达到统计差异(P<0.05VS sham,P<0.01 VS ovx+placebo,P<0.05 VS sham+VL);肌酐清除率随雌激素剂量升高有降低趋势(P=0.056);
     7.在与心肌肥厚有关的信号通路研究中,中、高剂量雌激素明显激活PKC和PI3K通路,而ERK和P70S6K受抑制;在ovx+VL或ovx+L组相反。
     结论:
     1.低剂量雌激素可能通过ERK和P70S6K、高剂量雌激素可能通过PKC和PI3K的信号转导通路而作用于心肌的结构和生长;低剂量和高剂量的雌激素替代治疗可能通过不同的信号转导通路影响心肌结构和生长。
     2.本实验使用的雌激素剂量对卵巢切除术后小鼠心肌的胶原沉积、毛细血管密度没有影响,但心肌细胞横截面积有降低趋势。
     3.高剂量雌激素替代治疗组小鼠对心脏的结构和功能有一定的影响,使得心室内径扩大,心脏重量降低,收缩功能轻度下降,表明高剂量的雌激素替代治疗可能对基线时的小鼠均有一定的毒性作用。
     4.随雌激素替代治疗剂量的升高,小鼠的肾脏的损害加重,包括尿白蛋白升高,肾脏增大,肌酐清除率降低。
Background:
     Type 2 diabetes patients tend to have lipid disorder.It is well accepted that reverse cholesterol transport(RCT) is abnormal in type 2 diabetes.This study will focus on change of cholesterol efflux among this group of patients,which is regarded as the initial important step of reverse cholesterol transport.
     Previous research shows that,efflux of cholesterol from cultured fibroblast to high-glucose plasma decreased compared to controls[1],and the ability of efflux from Fu5AH to plasma of diabetes was also injuried[2].However,it was recently reported that the ability of plasma of type 1 diabetes to induce cholesterol efflux from Fu5AH and HSF overexpressed ABCA1 was enhanced[3].Actually,the plasma of diabetes contains a lot of components,and some of these components would influence the cholesterol efflux,such as the levels of insulin[4],glucose,cytokine[5],glucosylated lipoprotein[7],et al.,so the efflux of cholesterol not only depends on HDL,but other factors.It is not clear whether the disorder of non-lipoprotein or the "quality" or "quantity" of HDL plays an important role in the cholesterol efflux.
     Among the studies of efflux of cholesterol,ABCA1,SR-BI are the most often studied membrane proteins[8].Recently,ABCG1 was reported to be an important half-tranportor in cholesterol efflux.Besides that,cholesterol can also efflux via ABCG4,ABCG8 and diffusion.Some cells,for example HepG2,HSF,can express membrane proteins exclusively,so that they can be used to study the function of some membrane protein.
     It was proved[7]that the efflux of cholesterol in vitro could predict the atherosclerosis levels in diabetes and non-diabetes.We are going to find out the characteristics of the cholesterol efflux in peripheral cells of type 2 diabetes through the study in vitro.
     Objectives:
     1.To determine the expression ofSR-BI,ABCA1,and ABCG1 in HepG2,HSF,and HUVEC cells.
     2.In order to find out of effects of plasma and HDL of type 2 diabetes on cholesterol efflux from peripheral cells,we investigate the different effect of HDL,LPDS and serum of type 2 diabetes patients on the cholesterol efflux via ABCA1 and SR-BI exclusively
     Methods:
     1.Isolate and culture the HSF and HUVEC cells with tissue adherence and collagenase perfusion.
     2.Test the expression of SR-BI,ABCA1,ABCG1 in HepG2,HSF,HUVEC with RT-PCR and Western Blot.
     3.Isolate HDL and LPDS from plasma with ultracentrifugation.
     4.Compare the ability of cholesterol efflux between type 2 diabetes and non-diabetes patients with H3 isotope labeled HDL.
     5.Determine the cholesterol efflux via ABCA1 with the difference between basic and post-stimulated with 22-OH cholesterol in HSF to determine the the cholesterol efflux via SR-BI with HepG2.
     6.Test the activity of PLTP and CETP with fluorescent self-quenched method.
     7.Determine the relationship between the ability of cholesterol efflux and basic data, activity of PLTP,CETP of patients.
     8.Data analysis by SPSS 13.0.
     Results:
     1.HSF could be isolated,cultured with tissue adhesive method.
     2.HUVEC could be isolated,cultured successfully with collagenase perfusion method.
     3.RT-PCR and Western Blot proved that HepG2 could highly express SR-BI,and the ABCA1 and ABCG1 could be highly expressed in HSF and HUVEC respectively after stimulated with 22-OH cholesterol.
     4.HDL and LPDS could be isolated successfully from plasma with ultracentrifugation method.
     5.The HDL of type 2 diabetes patients has a reduced ability to induce cholesterol efflux from HepG2 cells than non-diabetes(P=0.0015).
     6.There was no significant difference in the ability of serum to induce cholesterol efflux from HepG2 between the diabetes and control group(P=0.19).
     7.The difference of the ability of HDL to induce cholesterol efflux from HSF between basic and post-stimulated with 22-OH cholesterol had no difference in both groups.
     8.The difference of the ability of serum to induce cholesterol efflux from HSF between basic and post-stimulated with 22-OH cholesterol had no significant difference in both groups.(control VS type 2 diabetes,5.7±4.4%VS 8.8±5.9%,P=0.33).
     9.The difference of the ability of LPDS to induce cholesterol efflux from HSF between basic and post-stimulated with 22-OH cholesterol was higher in controls (control VS type 2 diabetes,11.0±7.7%VS 6.6±4.7%,P=0.02).
     10.The activity of PLTP in type 2 diabetes is significantly higher than in controls, and positively related with the ability of cholesterol efflux via ABCA1 in controls and in all patients.The difference of the activity of CETP in both groups was not observed.
     Conclusions:
     1.HepG2 strongly expresses SR-BI,while HSF and HUVEC highly express ABCA1 and ABCG1 exclusively after stimulating by 22-OH cholesterol.These cell strains can be used to study cholesterol efflux via SR-BI、ABCA1、ABCG1.
     2.HDL and LPDS(contains apoA1 and pre-βHDL)of type 2 diabetes patients is deficient in the ability to induce cholesterol efflux from HepG2,which may contribute to cholesterol deposit in peripheral cells of diabetes patients.
     3.The activity of PLTP is higher in type 2 diabetes compared with controls,which may contribute to the enhanced ability of cholesterol efflux of serum via ABCA1 in type 2 diabetes.
     Background:
     Observational studies as well as animal experiments have indicated that estrogen attenuates cardiac hypertrophy,indicating a cardioprotective role for estrogen. However,conflicting results have been reported.The controversies regarding the effect of estrogen on the heart could be related in part to the dose used.Our previous study using a mouse model of myocardial infarction showed that low dose of estrogen is cardioprotective,whereas at moderate and higher dose,it become detrimental to the heart and is associated with renal damage.This indicates that the dose-dependent effect of estrogen may play an important role in the outcomes of estrogen replacement therapy.
     Objectives:
     1.To determine the dose effect of estrogen replacement on cardiac hemodynamics, morphology,mass and cardiac function in ovariectomized mice.This includes measurement of blood pressure and heart rate,myocyte size,interstitial collage deposition,capillary density,left ventricular mass,dimensions and function,as well as cardiac reserves.
     2.To determine the effect of estrogen on renal function,including kidney mass, albuminuria and creatinine clearance;
     3.To study whether the dose dependent effects of estrogen are due to activation of different signaling pathways,including PKC,PI3K,ERK.
     Methods:
     1.Mice were subject ovariectomy(ovx) or sham ovx.Estrogen replacement was initiated after ovx at dose of 0.025(very low),0.24(low),4.2(moderate) and 28.3 μg/day(high) via subcutaneous implantation of estrogen-containing pellets.
     2.Using echocardiography and intra-cardiac catheterization,we evaluated the dose effects of estrogen on left ventricular(LV) mass,dimensions and function,as well as LV functional response to isoproterenol,a measure of functional preservation;
     3.Immunohistochemistry was used to study the dose effects of estrogen on myocardial interstitial collagen deposition and myocyte cross-sectional area capillary density;
     4.Western blot was used to determine the dose effect of estrogen on protein expression of PI3K,ERK,PKC.
     5.Metabolism cage was used to study the dose effect of estrogen on 24 hr albuminuria and creatinine clearance.
     Results:
     1.Low dose estrogen at(ovx+L) slightly increased heart weight,whereas at higher doses(4.2ug/d and 28.3μg/d),estrogen decreased heart weight(p<0.05 ovx+H vs ovx+L);
     2.No dose-effect was observed in collagen deposition and capillary density in the heart,but the MCSA in ovx+H tends to deline.
     3.Estrogen had no effect on blood pressure in all groups;however,heart rate was gradually decreased with increased dosage(p<0.05 ovx+H vs sham,ovx,ovx+VL and ovx+L);
     4.LVEF was decreased in the ovx+M,ovx+H compared to ovx+placebo(LVEF in ovx+placebo,ovx+M,ovx+H is 80.89±0.46,77.48±1.09,78.87±0.63,P<0.05); however,with increased dose of estrogen,estrogen tended to increase LVDs, LVDd(P<0.05).
     5.Functional preservation was not changed by the different doses of estrogen;
     6.With increasing doses of estrogen,kidney mass and 24 hr albumin excretion increased significantly(P<0.05 VS sham,P<0.01 VS ovx+placebo,P<0.05 VS sham+VL),whereas creatinine clearance tended to decline(P=0.056).
     7.Moderate and high doses of estrogen activated PCK and PI3K,whereas ERK and P70S6K tended to decline with increasing dose of estrogen.
     Conclusions:
     1.Low dose of estrogen may effect the structure and function of heart via ERK signaling pathway,while high dose of estrogen does via PKC and PI3K;then, Low and high doses of estrogen may influence the growth of myocytes through different signaling pathway.
     2.There is no significant effect on the collagen deposit and capillary density with the doses of estrogen which is used in this experiment,but the MCSA in ovx+H tends to deline.
     3.But high dose of estrogen may influence the structure and function to a certain extent:it resulted in the ventricular chamber enlargement,heart mass/body weight decline,and left ventricular ejection fraction fall a little;it also increase the mortality in the post-MI mice,decrease the left ventricular ejection fraction.It indicated that high dose of estrogen might impair the heart function both in basic and post-MI mice.
     4.Estrogen had a detrimental effect on renal function,including increasing albuminuria and enlarges kidney mass,which may result from the vascular endothelium injuries due to the change in blood lipid.
引文
1. Duell PB, Oram JF, Bierman EL. Nonenzymatic glycosylation of HDL and impaired HDL-receptor-mediated cholesterol efflux. Diabetes. 1991 Mar;40(3):377-84.
    2. Syvanne M, Castro G, Dengremont C, et al. Cholesterol efflux from Fu5AH hepatoma cells induced by plasma of subjects with or without coronary artery disease and non-insulin-dependent diabetes: importance of LpA-Ⅰ:A-Ⅱ particles and phospholipid transfer protein. Atherosclerosis. 1996 Dec 20;127(2):245-53.
    3. de Vries R, Kerstens MN, Sluiter WJ, et al. Cellular cholesterol efflux to plasma from moderately hypercholesterolaemic type 1 diabetic patients is enhanced, and is unaffected by simvastatin treatment. Diabetologia. 2005 Jun;48(6):1105-13.
    4. Dullaart RP, van Tol A. Twenty four hour insulin infusion impairs the ability of plasma from healthy subjects and Type 2 diabetic patients to promote cellular cholesterol efflux. Atherosclerosis. 2001 Jul;157(1):49-56.
    5. Oppenheimer MJ, Sundquist K, Bierman EL. Downregulation of high-density lipoprotein receptor in human fibroblasts by insulin and IGF-I. Diabetes. 1989 Jan;38(1): 117-22.
    6. Pajunen P, Syvanne M, Castro G, et al . Cholesterol efflux capacity in vitro predicts the severity and extent of coronary artery disease in patients with and without type 2 diabetes. Scand Cardiovasc J. 2001 Mar;35(2):96-100.
    7. Igau B, Castro G, Clavey V, et al. In vivo glucosylated LpA-I subfraction. Evidence for structural and functional alterations. Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):2830-6.
    8. Patricia G. Yancey, Anna E. Bortnick, Ginny Kellner-Weibel, et al. Importance of Different Pathways of Cellular Cholesterol Efflux. Arterioscler. Thromb. Vasc. Biol. 2003 ;23;712-719.
    9. Rader DJ.Regulation of reverse cholesterol transport and clinical implications. Am J Cardiol. 2003 Aug 18;92(4A):42J-49J.
    10.戴振声,陈宝安,徐燕丽等。人皮肤成纤维细胞原代培养方法的改良东南大学学报(医学版)J Southeast Univ(Med Sci Edi)2004,Jul;23(4):236-238。
    11.Kielar D,Dietmaier W,Langmann T,et al.Rapid quantification of human ABCA1 mRNA in various cell types and tissues by real-time reverse transcription-PCR.Clin Chem 2001;47:2089-2097.
    12.Klucken J,Buchler C,Orso E,et al.ABCG1(ABC8),the human homolog of the Drosophila white gene,is a regulator of macrophage cholesterol and phospholipid transport.Proc Natl Acad Sci U SA 2000;97:817-822.
    13.Jessup,Wendya;Gelissen,Ingrid Ca;Gaus,Katharinaa et al.Roles of ATP binding cassette transporters A1 and G1,scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages.Current opinion in lipidology.Volume 17(3),June 2006,p 247-257.
    14.Vaughan AM,Oram JF.ABCG1 redistributes cell cholesterol to domains removable by high density lipoprotein but not by lipid-depleted apolipoproteins.J Biol Chem 2005;280:30150-30157.
    15.Connelly MA,Williams DL.Scavenger receptor BI:a scavenger receptor with a mission to transport high density lipoprotein lipids.Curr Opin Lipidol 2004;15:287-295.
    16.Curtiss LK,Valenta DT,Hime NJ,et al.What is so special about apolipoprotein AI in reverse cholesterol transport? Arterioscler Thromb Vasc Biol 2006;26:12-19.
    17.Gowri MS,Van der Westhuyzen DR,Bridges SR,et al.Decreased protection by HDL from poorly controlled type 2 diabetic subjects against LDL oxidation may Be due to the abnormal composition of HDL.Arterioscler Thromb Vasc Biol.1999 Sep;19(9):2226-33.
    18.Defective metabolism of oxidized phospholipid by HDL from people with type 2diabetes.Diabetes.2006 Nov;55(11):3099-103
    19.R.de Vries,A.K.Groen,F.G.Perton,et al.Increased cholesterol effiux from cultured fibroblasts to plasma from hypertriglyceridemic type 2 diabetic patients:Roles of pre beta-HDL, phospholipid transfer protein and cholesterol esterification Atherosclerosis 2007 Jan31;
    20. Lam MC, Tan KC, Lam KS.Glycoxidized low-density lipoprotein regulates the expression of scavenger receptors in THP-1 macrophageso Atherosclerosis. 2004 Dec; 177(2):313-20.
    21. Machado AP, Pinto RS, Moyses ZP, et al. Aminoguanidine and metformin prevent the reduced rate of HDL-mediated cell cholesterol efflux induced by formation of advanced glycation end products. Int J Biochem Cell Biol. 2006 Mar;38(3):392-403.
    22. Ohgami N, Miyazaki A, Sakai M, et al.Advanced glycation end products (AGE) inhibit scavenger receptor class B type I-mediated reverse cholesterol transport: a new crossroad of AGE to cholesterol metabolism. J Atheroscler Thromb. 2003; 10( 1): 1 -6.
    23. El-Awady MK, Ismail SM, El-Sagheer M, et al. Assay for hepatitis C virus in peripheral blood mononuclear cells enhances sensitivity of diagnosis and monitoring of HCV-associated hepatitis.Clin Chim Acta. 1999 May;283(1-2):1-14.
    24. Kontush A, Chapman MJ. Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev. 2006 Sep;58(3):342-74
    25. Brian J. O'Connell, Maxime Denis and Jacques Genest. Cellular Physiology of Cholesterol Efflux in Vascular Endothelial Cells Circulation 2004; 110;2881-2888
    26. Maya S. Gowri, Deneys R. Van der Wewthuyzen, Susan R. Bridges et al.Decreased protection by HDL from poorly controlled type 2 diabeticsubjectSo Arteriosclerosis, Thrombosis, and Vascular Bilolgy, 1999;19;2226-2233.
    27. Guérin M, le Goff W, Lassel TS, et al . Proatherogenic role of elevated CE transfer from HDL to VLDL1 and dense LDL in type 2 diabetes. Impact of the degree of triglyceridemia. Arterioscler Thromb Vasc Biol 2001 ;21:282-8.
    28. Riemens SC, van Tol A, Sluiter WJ, et al. Plasma phospholipid transfer protein activity is lowered by 24 hour insulin and Acipimox administration: blunted response to insulin in type 2 diabetic patients. Diabetes 1999;48:1631-7.
    
    29. Martinez LO, Jacquet S, Esteve JP, et al. Ectopic -chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 2003;421:75-9.
    
    30. Dullaart RPF, van Tol A. Short-term Acipimox decreases the ability of plasma from Type 2 diabetic patients and healthy subjects to stimulate cellular cholesterol efflux: a potentially adverse effect on reverse cholesterol transport. Diabet Med 2001;18:509-13.
    
    31. Jauhiainen M, Metso J, Pahlman R, et al. Human plasma phospholipid transfer protein causes high density lipoprotein conversion. J Biol Chem 1993;268:4032-6.
    
    32. MyNgan Duong, Heidi L. Collins, Weijun Jin,et al. Relative Contributions of ABCA1 and SR-BI to Cholesterol Efflux to Serum From Fibroblasts and Macrophages. Arterioscler. Thromb. Vasc. Biol. 2006;26;541-547;
    
    33. Dullaart RPF, van Tol A. Short-term Acipimox decreases the ability of plasma from Type 2 diabetic patients and healthy subjects to stimulate cellular cholesterol efflux: a potentially adverse effect on reverse cholesterol transport. Diabet Med 2001;18:509—13.
    
    34. 叶平主编. 血脂的基础与临床。
    
    35. Fielding CJ, Reaven GM, Fielding PE. Human noninsulin-dependent diabetes:identification of a defect in plasma cholesterol transport normalized in vivo by insulin and in vitro by selective immunoadsorption of apolipoprotein E. Proc Natl Acad Sci U S A 1982;79 :6365-9.
    
    36. Natalie Fournier, Omar Francone, George Rothblat et al. Enhanced efflux of cholesterol from ABCA1-expressing macrophages to serum from type Ⅳ hypertriglyceridemic subjects.Atherosclerosis 2003; 171:287-93
    
    37. Natalie Fournier; Anne Cogny; Véronique Atger et al. Opposite Effects of Plasma From Human Apolipoprotein A-Ⅱ Transgenic Mice on Cholesterol Efflux From J774 Macrophages and Fu5AH Hepatoma Cells Arteriosclerosis, Thrombosis, and Vascular Biology.2002;22:638.
    38. Wang N., Lan D., Chen W., et al. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc. Natl. Acad. Sci. U. S. A. 2004 ;101:9774-9779
    39. Packianathan, M., Kritharides, L., and Jessup, W. ABCA1 and ABCG1 synergize to mediate. cholesterol export to apoA-I. Arterioscler. Thromb. Vasc. Biol. 2006; 26: 534-40.
    40. W. Jin, I. Zanotti, E. Favari, and G. H. Rothblat Relative Contributions of ABCA1 and SR-BI to Cholesterol Efflux to serum From Fibroblasts and Macrophages Arterioscler. Thromb. Vasc. Biol., March 1,2006; 26(3): 541 - 547.
    41. Yancey PG, de la Llera-Moya M, Swarnakar S, et al. HDL phospholipids composition is a major determinant of the bi-directional flux and net movement of cellular free cholesterol mediated by scavenger receptor-BI (SR-BI). J Biol Chem. 2000;275:36596 -36604.
    42. Davidson WS, Rodrigueza WV, Lund-Katz S, et aLPDSfects of acceptor particle size on the efflux of cellular free cholesterol. J Biol Chem. 1995;270:17106 -17113.
    43. Asztalos BF, de la Llera-Moya M, Dallal GE,et al. Differential effects of HDL subpopulations on cellular ABCA1- and SR-BI-mediated cholesterol efflux. J Lipid Res 46 : 2246-53, 2005.
    44. Rye KA, Barter PJ. Formation and metabolism of prebeta-migrating, lipid-poor apolipoprotein A-I. arterioscler thromb vasc boil 2004;24:421-8
    45. Borggreve SE, De Vries R, Dullaart RP. Alterations in high-density lipoprotein metabolism and reverse cholesterol transport in insulin resistance and type 2 diabetes mellitus: role of lipolytic enzymes, lecithinxholesterol acyltransferase and lipid transfer proteins. Eur J Clin Invest 2003 ;33:1051-69.
    46. Chetiveaux,M., Lalanne,F., Lambert,G., et al. Kinetics of prebetal HDL and alphaHDL in type Ⅱ. diabetic patients. Eur.J.Clin.Invest 2006 ; 36:29-34 .
    47. Drouin P, Blickle JF, Charbonnel B. Diagnosis and classification of diabetes mellitus: the new criteria. Diabetes Metab. 1999 Mar;25(1):72-83
    48. Smith JD. Insight into ABCG1-mediated cholesterol efflux. Arterioscler Thromb Vasc Biol. 2006 Jun;26(6):1198-200.
    49.Wang Y,Oram JF.Unsaturated fatty acids inhibit cholesterol efflux from macrophages by increasing degradation of ATP-binding cassette transporter A1.J Biol Chem 2002;277:5692-7.
    50.Forcheron F,Cachefo A,Thevenon S,et al.Mechanisms of the triglyceride- and cholesterol-lowering effect of fenofibrate in hyperlipidemic type 2 diabetic patients.Diabetes 2002;51:3486-91.
    51.Guerin M,Le Goff W,Lassel TS.Atherogenic role of elevated CE transfer from HDL to VLDL(1) and dense LDL in type 2 diabetes:impact of the degree of triglyceridemia.Arterioscler Thromb Vasc Biol.2001;21:282-8.
    52.Ansell BJ,Watson KE,Fogelman AM,et al.High-density lipoprotein function recent advances.J Am Coll Cardiol.2005 Nov 15;46(10):1792-8.
    53.Nobecourt E,Jacqueminet S,Hansel B,et al.,Defective antioxidative activity of small,dense HDL3 particles in type 2 diabetes:relationship to elevated oxidative stress and hyperglycemia.Diabetologia 2005;48:529-538.
    54.Hatanaka E,Monteagudo PT,Marrocos MS,et al.Interaction between serum amyloid A and leukocytes - a possible role in the progression of vascular complications in diabetes.,Campa A.Immunol Lett.2007 Feb 15;108(2):160-6.
    55.严晓伟,包婺平。疾病状态下高密度脂蛋白的功能缺陷。中国循环杂志2007April(拟发表)。
    56.Bakogianni MC,Kalofoutis CA,Skenderi KI,et al.Clinical evaluation of plasma high-density lipoprotein subfractions(HDL2,HDL3) in non-insulin-dependent diabetics with coronary artery disease J Diabetes Complications.2001 15(5):265-9.
    57.Milliat F,Gripois D,Blouquit M-E et al.Short and long-term effects of streptozotocin on dietary cholesterol absorption,plasma lipoproteins and liver lipoprotein receptors in RICO rats.Exp Clin Endocrinol Diabetes.2000;108(6):436-46.
    58.Favari E,Lee M,Calabresi L,et al.Depletion of pre-beta-high density lipoprotein by human chymase impairs ATP-binding cassette transporter A1- but not scavenger receptor class B type I-mediated lipid effiux to high density lipoprotein.J Biol Chem.2004;279:9930-6.
    59.Shetty S,Eckhardt ER,Post SR.Phosphatidylinositol-3-kinase regulates scavenger receptor class B type Ⅰ subcellular localization and selective lipid uptake in hepatocytes.Arterioscler Thromb Vasc Biol.2006 Sep;26(9):2125-31.
    60.Nobecourt E,Jacqueminet S,Hansel B et al.Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes:relationship to elevated oxidative stress and hyperglycaemia.Diabetologia,2005,48:529-538
    61.Galland F,Duvillard L,Petit JM,et al.Effect of insulin treatment on plasma oxidized LDL/LDL-cholesterol ratio in type 2 diabetic patients.Diabetes Metab.2006Dec;32(6):625-31.
    62.HAYEK T,Hussein K,Aviram M,et al.Macrophage foam-cell formation in streptozotocin-induced diabetic mice:stimulatory effect of glucose.Atherosclerosis.2005;183:25-33.
    63.陆伦根,李继强,华静等。脂质对大鼠肝星状细胞低密度脂蛋白、高密度脂蛋白受体的影响。2000:8:164-166.
    64.Vedhachalam C,Liu L,Nickel M,Dhanasekaran P,Anantharamaiah GM,Lund-Katz S,Rothblat GH,Phillips MC.Influence of apoA-I structure on the ABCA1-mediated effiux of cellular lipids.J Biol Chem.2004;279:49931-49939
    1.Adams KF,Jr.,Sueta CA,Gheorghiade M et al.Gender differences in survival in advanced heart failure.Insights from the FIRST study.Circulation.1999;99:1816-1821.
    2.Barrett-Connor E.Sex differences in coronary heart disease.Why are women so superior? The 1995 Ancel Keys Lecture.Circulation.1997;95:252-264.
    3.Isles CG,Hole DJ,Hawthorne VM,Lever AF.Relation between coronary risk and coronary mortality in women of the Renfrew and Paisley survey:comparison with men.Lancet.1992;339:702-706.
    4.Brett KM,Madans JH.Long-term survival after coronary heart disease.Comparisons between men and women in a national sample.Ann Epidemiol.1995;5:25-32.
    5.Tamura T,Said S,Gerdes AM.Gender-related differences in myocyte remodeling in progression to heart failure.Hypertension.1999;33:676-680.
    6.Lerner DJ,Karmel WB.Patterns of coronary heart disease morbidity and mortality in the sexes:a 26-year follow-up of the Framingham population.Am Heart J.1986;111:383-390.
    7.Eaker ED,Chesebro JH,Sacks FM,Wenger NK,Whisnant JP,Winston M.Cardiovascular disease in women.Circulation.1993;88:1999-2009.
    8.Wenger NK,Speroff L,Packard B.Cardiovascular health and disease in women.N Engl J Med.1993;329:247-256.
    9.Stampfer MJ,Colditz GA,Willett WC et al.Postmenopausal estrogen therapy and cardiovascular disease.Ten-year follow-up from the nurses' health study.N Engl J Med 1991;325:756-762.
    10. Alexandersen P, Tanko LB, Bagger YZ, Qin G, Christiansen C. The long-term inpact of 2-3 years of hormone replacement therapy on cardiovascular mortality and atherosclerosis in healthy women. Climacteric. 2006;9:108-118.
    11. Reis SE, Holubkov R, Young JB, White BG, Cohn JN, Feldman AM. Estrogen is associated with improved survival in aging women with congestive heart failure: analysis of the vesnarinone studies. J Am Coll Cardiol. 2000;36:529-533.
    12. Grodstein F, Manson JE, Colditz GA, Willett WC, Speizer FE, Stampfer MJ. A prospective, observational study of postmenopausal hormone therapy and primary prevention of cardiovascular disease. Ann Intern Med. 2000;133:933-941.
    13. Grodstein F, Stampfer MJ, Colditz GA et al. Postmenopausal hormone therapy and mortality. N Engl J Med. 1997;336:1769-1775.
    14. Writing Group for the Women's Health Initiative investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women. Principal results from the Women's Health Initiative randomized controlled trial. JAMA. 2002;288:321-333.
    15. Cavasin, M. A., Sankey, S. S., Yu, A. L., Menon, S., and Yang, X. P. (2003) Am. J. Physiol. 284, H1560-H1569
    16. Ali Pedram, Mahnaz Razandi, Mark Aitkenhead, et al. Estrogen Inhibits Cardiomyocyte Hypertrophy in Vitro. The Journal og Biological Chemistry. 2005; 280, :26339-26348.
    17. Lim, W. K., Wren, B., Jepson, N., et al. Effect of hormone replacement therapy on left ventricular hypertrophy. Am. J. Cardiol. 1999;83: 1132-1134 .
    18. Miya Y, Sumino H, Ichikawa S, Nakamura T, et al. Effects of hormone replacement therapy on left ventricular hypertrophy and growthpromoting factors in hypertensive postmenopausal women. Hypertens Res. 2002;25:153-159.
    19. Light KC, Hinderliter AL, West SG, et al. Hormone replacement improves hemodynamic profile and left ventricular geometry in hypertensive and normotensive postmenopausal women. J Hypertens 2001;19:269-278.
    20. Genant HK, Lucas J, Weiss S et al. Low-dose esterified estrogen therapy: effects on bone, plasma estradiol concentrations, endometrium, and lipid levels. Estratab/Osteoporosis Study Group. Arch Intern Med. 1997;157:2609-2615.
    21. Genant HK, Lucas J, Weiss S et al. Low-dose esterified estrogen therapy: effects on bone, plasma estradiol concentrations, endometrium, and lipid levels. Estratab/Osteoporosis Study Group. Arch Intern Med. 1997; 157:2609-2615.
    22. Pelzer T, Arias Loza P-A, Hu K et al. Increased mortality and aggravation of heart failure in estrogen receptor- knockout mice after myocardial infarction. Circulation. 2005;111:1492-1498.
    23. Iwakura A, Shastry S, Luedemann C et al. Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemia-induced neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9. Circulation. 2006; 113:1605-1614.
    24. Van Eickels M, Patten RD, Aronovitz MJ et al. 17-beta-estradiol increases cardiac remodeling and mortality in mice with myocardial infarction. J Am Coll Cardiol. 2003;41:2084-2092.
    25. Hamada H, Kim MK, Iwakura A et al. Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation. 2006;114:2261-2270.
    26. Babiker FA, Lips D, Meyer R et al. Estrogen receptor protects the murine heart against left ventricular hypertrophy. Arterioscler Thromb Vasc Biol. 2006;26:1524-1530.
    27. Agabiti-Rosei E, Muiesan ML. Left ventricular hypertrophy and heart failure in women. J Hypertens 2002; 20 (Suppl): S34-S38.
    28. van Eickels M, Grohe C, Cleutjens JP, et al. 17beta-Estradiol attenuates the development of pressure-overload hypertrophy. Circulation2001; 104 (12):1419-1423.
    29. Ludwig Neyses, Georg Ertl , Theo Pelzer. Aging Reduces the Efficacy of Estrogen Substitution to Attenuate Cardiac Hypertrophy in Female Spontaneously Hypertensive Rats. Hypertension 2006;48;579-586.
    30. Gerald W. Dorn Ⅱ, Thomas Force. Protein kinase cascades in the regulation of cardiac hypertrophy J. Clin. Invest. 2005;115:527 - 537.
    31. Dora, G.W., Mochly-Rosen, D.. Intracellular transport mechanisms of signal transducers. Annu. Rev. Physiol. 2002;64:407 - 429.
    32. Braz, J.C., Bueno, O.F., et al. PKC alpha regulates the hypertrophic growth of cardiomyocytes through extracellular signal-regulated kinase 1/2 ERK1/2). J. Cell Biol. 2002;156:905-919.
    33. Hahn HS, Marreez Y, Odley A,. 2003. Protein kinase Calpha negatively regulates systolic and diastolic function in pathological hypertrophy. Circ. Res. 93:1111 -1119.
    34. Sugden PH. Signalling pathways in cardiac myocyte hypertrophy. Ann Med. 2001; 33:611-22.
    35. Wang L. and Proud C.G. Ras/Erk signaling is essential for activation of protein synthesis by Gq protein-coupled receptor agonists in adult cardiomyocytes. Circ. Res. 2002;91: 821-829.
    36. Bueno OF, De Windt LJ,Tymitz KM,et al. The MEK1-ERK1/2 signaling pathway promotes compensated hypertrophy in transgenic mice. EMBO J 2000;19:6341-50.
    37. Kaur G, Janik J, Isaacson LG, et al. Estrogen regulation of neurotrophin expression in sympathetic neurons and vascular targets. Brain Res. 2007; 1139:6-14.
    38. Neves VF, Silva de Sa MF, Gallo L Jr. Autonomic modulation of heart rate of young and postmenopausal women undergoing estrogen therapy. Braz J Med Biol Res.2007A;;40:491-9.
    39. Ueyama T, Ishikura F, Matsuda A et al. Chronic estrogen supplementation following ovariectomy improves the emotional stress-induced cardiovascular responses by indirect action on the nervous system and by direct action on the heart. Circ J. 2007 ;71(4):565-73.
    40. Mankhey RW, Bhatti F, Maric C. 17beta-Estradiol replacement improves renal function and pathology associated with diabetic nephropathy. Am J Physiol Renal Physiol. 2005 288(2):F399-405.
    41. Carrie M Wheeldon, Matthew D Gades, George A Kaysen et al.Estrogen worsens incipient hypertriglyceridemic glomerular injury in the obese Zucker rat .Kidney International 2000; 57,: 1927-1935.
    42. Ribstein J, Halimi JM, du Cailar G, et al. Renal characteristics and effect of angiotensin suppression in oral contraceptive users.Hypertension. 1999;33(1):90-5.
    43. Heidkamp MC, Bayer AL, Martin JL,et al. Differential activation of mitogen-activated protein kinase cascades and apoptosis by protein kinase C epsilon and delta in neonatal rat ventricular myocytes. Circ Res 2001 ;89:882-90.
    44. Chen L, Hahn H, Wu G, et al. Opposing cardioprotective actions and parallel hypertrophic effects of delta PKC and epsilon PKC. Proc Natl Acad Sci USA 2001;98: 11114-9.
    45. Liu H, Zhang HU,Zhu X et al. Preconditioning blocks cardiobyte apoptosis : role of KATP channels and PKC- ε. Am J Physiol 2002;282: H 1380-H1386.
    46. Baines CP, Molkentin JD. STRESS signaling pathways that modulate cardiac myocyte apoptosis. J Mol Cell Cardiol. 2005 Jan;38(1):47-62..
    47. Yue TL, Wang C, Gu JL,et al. Inhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res. 2000 Mar 31;86(6):692-9
    48. 17-Beta-Estradiol increases cardiac remodeling and mortality in mice with myocardial infarction 。 Martin van Eickels, Richard D. Patten, Mark J. Aronovitz, Alawi Alsheikh-Ali, Journal of the American College of Cardiology 2003; 41: 2084-2092
    49. Metcalfe PD, Meldrum KK. Sex differences and the role of sex steroids in renal injury. J Urol. 2006 Jul; 176(1): 15-21.
    50. Weng Qing2ping, Kozlowski M, Belham C , Zhang Ai2hua. Regulation of the p70 S6 kinase by phosphorylation in vivo. J Biol Chem , 1998 ,273 (26): 16621 -16629.
    51. Lee TM, Lin MS, Tsai CH,et al. Effects of pravastatin on ventricular remodeling by activation of myocardial KATP channels in infarcted rats: role of 70-kDa S6 kinase. Basic Res Cardiol. 2007 Mar;102(2):171-82.
    52. K, Sherwood MC, Manning WJ, Izumo S.Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation 2003 ; 107:1664 - 1670
    53. Agnes Kenessey, and Kaie Ojamaa. Thyroid Hormone Stimulates Protein Synthesis in the Cardiomyocyte by Activating the Akt-mTOR and p70S6K Pathways. J Biol Chem. 2006 Jul 28;281(30):20666-72.
    1. von Eckardstein A,Nofer JR,Assmann G.High density lipoproteins and arteriosclerosis :role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol,2001,21:13-27..
    
    2. Stender S, Hjelms E. In vivo influx of free and esterified cholesterol into human aortic tissue without atherosclerotic lesions. J Clin Invest 1984;74:1871 —81.
    
    3. Badimon JJ, Badimon L, Fuster V. Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J Clin Invest 1990;85:1234-41.
    
    4. McMillan DE. Development of vascular complications indiabetes. Vasc Med 1997; 2:132±142.
    
    5. DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease.Diabetes Care 1991;14:173-94.
    
    6. Reaven GM,Banting Lecture. role of insulin resistance in human disease. Diabetes 1988;37:1595-607.
    
    7. Lehto S, R(o|¨)nnemaa T, Haffner SM, et al. Dyslipidemia and hyperglycemia predict coronary heart disease events in middle-age patients with NIDDM. Diabetes 1997;46:1354-9.
    
    8. Eckardstein A, Nofer JR, Assmann G. High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 2001 ;21:13-27.
    
    9. Kiss RS, Marie J, Marcel YL. Lipid efflux in human and mouse macrophagic cells: evidence for differential regulation of phospholipid and cholesterol efflux. J Lipid Res 2005;46:1877-1887.
    
    10. Rothblat GH, Llera-Moya M de la, Atger V, et al. Cell cholesterol efflux: integration of old and new observations provides new insights. J Lipid Res 1999;40:781-96.
    11. Schmitz G, Langmann T. Structure, function and regulation of the ABC1 gene product. Curr OpinLipidol2001;12:129-40.
    12. Yancey PG, Bortnick AE, Kellner-Weibel G, et al. Importance of different pathways of cellular cholesterol efflux. Arterioscler Thromb Vasc Biol 2003; 23:712-719
    13. Graf GA, Li WP, Gerard RD, et al. Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. J Clin Invest 2002; 110:659-669
    14. Oram JF , Lawn RM. ABCA1 : The gatekeeper for eliminating excess tissue cholesterol [J]. J Lipid Res , 2001 ,42 (8): 1173 - 1179.
    15 . Bodzioch M, Orso E, Klucken J, et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 1999;22:347-351.
    16. McNeish J, Aiello RJ, Guyot D, et al. High-density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette transporter-1. Proc Natl Acad Sci U S A 2000;97:4245-4250.
    17. Schaefer EJ, Zech LA, Schwartz DE, et al. Coronary heart disease prevalence and other clinical features in familial high-density lipoprotein deficiency (Tangier disease). Ann Intern Med 1980;93:261-266.
    18. Chinetti G, Lestavel S, Bocher V, et al. PPAR-_ and PPAR-_ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001 ;7:53-58.
    19. .Wang Y, Kurdi-Haidar B, Oram JF. LXR-mediated activation of macrophage stearoyl-CoA desaturase generates unsaturated fatty acids that destabilize ABCAl. J Lipid Res. 2004 May;45(5):972-80.
    20. Passarelli M, Tang C, McDonald TO,et al. Advanced glycation end product precursors impair ABCA1-dependent cholesterol removal from cells. Diabetes. 2005 Jul;54(7):2198-205.
    21 . Dullaart RPF, van Tol A. Role of phospholipid transfer protein and prebeta -high density lipoproteins in maintaining cholesterol efflux from Fu5AH cells to plasma from insulin-resistant subjects. Scand J Clin Lab Invest 2001;61:69-74.
    22. Duell PB, Oram JF, Bierman EL. Nonenzymatic glycosylation of HDL and impaired HDL-receptor-mediated cholesterol efflux. Diabetes 1991;40:377-84.
    23. Igau B, Castro G, Clavey V, et al. In vivo glycosylated LpA-I subfraction. Evidence for structural and functional alterations. Arterioscler Thromb Vasc Biol 1997; 17:2830-6.
    24. Passarelli M, Shimabukuro AFM, Catanozi S, et al. Diminished rate of mouse peritoneal macrophage cholesterol efflux is not related to the degree of HDL glycation in diabetes mellitus. Clin Chim Acta 2000;301:119-34.
    25. Oppenheimer MJ, Sundquist K, Bierman EL. Downregulation of high-density lipoprotein receptor in human fibroblasts by insulin and IGF-I. Diabetes, 1989;38:117-22.
    26. Ohgami N, Nagai R, Miyazaki A, et al. Scavenger receptor class B type I -mediated reverse cholesterol transport is inhibited by advanced glycation end products. J Biol Chem x2001;276:13348-55.
    27. Wang Y, Oram JF. Unsaturated fatty acids inhibit cholesterol efflux from macrophages by increasing degradation of ATP-binding cassette transporter Al. J Biol Chem 2002;277:5692-7.
    28. Wang Y, Oram JF. Unsaturated fatty acids inhibit cholesterol efflux from macrophages by increasing degradation of ATP-binding cassette transporter A1. J Biol Chem 2002;277:5692-7.
    29. Forcheron F, Cachefo A, Thevenon S, et al. Mechanisms of the triglyceride- and cholesterol-lowering effect of fenofibrate in hyperlipidemic type 2 diabetic patients. Diabetes 2002;51:3486-91.
    30. Fournier N, Cogny A, Atger V, et al. Opposite effects of plasma from human apolipoprotein A-Ⅱ transgenic mice on cholesterol efflux from J774 macrophages and Fu5AH hepatoma cells. Arterioscler Thromb Vasc Biol 2002;22:638-43.
    31. Fielding CJ, Reaven GM, Fielding PE. Human noninsulindependent diabetes. identification of a defect in plasma cholesterol transport normalized in vivo by insulin and in vitro by selective immunoadsorption of apolipoprotein E. Proc Natl Acad Sci U S A 1982;79:6365-9.
    32. Syv(a|¨)nne M, Castro G, Dengremont C, et al. Cholesterol efflux from Fu5AH hepatoma cells induced by plasma of subjects with or without coronary artery disease and non-insulin-dependent diabetes: importance of LpA-Ⅰ: A-Ⅱ particles and phospholipid transfer protein. Atherosclerosis 1996;127:245-53
    33. Dullaart RPF, van Tol A. Twenty four hour insulin infusion impairs the ability of plasma from healthy subjects and type 2 diabetic patients to promote cellular cholesterol efflux. Atherosclerosis 2001;157:49-56.
    34. Wang N, Lan D, Chen W, et al. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci U S A 2004; 101:9774-9779
    35. Clee SM, Zhang H, Bissada N, et al. Relationship between lipoprotein lipase and high-density lipoprotein cholesterol in mice: modulation by cholesteryl ester transfer protein and dietary status. J Lipid Res 1997;38:2079-2089.
    36. Coleman T, Seip RL, Gimble JM, et al. COOH-terminal disruption of lipoprotein lipase in mice is lethal in homozygotes, but heterozygotes have elevated triglycerides and impaired enzyme activity. J Biol Chem 1995;270:12518-12525.
    37 . Weinstock PH, Bisgaier CL, Aalto-Setala K,et al. Severe hypertriglyceridemia, reduced high-density lipoprotein, and neonatal death in lipoprotein lipase knockout mice: mild hypertriglyceridemia with impaired very low-density lipoprotein clearance in heterozygotes. J Clin Invest 1995;96:2555-2568.
    38 . Santamarina-Fojo S. Genetic dyslipoproteinemias: role of lipoprotein lipase and apolipoprotein C-Ⅱ. Curr Opin Lipidol 1992;3:186-195.
    39 . Hokanson JE. Lipoprotein lipase gene variants and risk of coronary disease: a quantitative analysis of population-based studies. Int J Clin Lab Res 1997;27: 24-34.
    40 . Blades B, Vega GL, Grundy SM. Activities of lipoprotein lipase and hepatic triglyceride lipase in postheparin plasma of patients with low concentrations of HDL cholesterol. Arterioscler Thromb 1993; 13:1227-1235.
    41. Rip J, Nierman MC, Wareham NJ, er al. Serum lipoprotein lipase concentration and risk for future coronary artery disease: the EPIC-Norfolk prospective population study. Arterioscler Thromb Vasc Biol. 2006 Mar;26(3):637-42. Epub 2005 Dec
    42. Knudsen P, Eriksson J, Lahdenper(a|¨) S, et al. Changes of lipolytic enzymes cluster with insulin resistance syndrome. Diabetologia 1995;38:344—50.
    43. Pykalisto OJ, Smith PH, Brunzell JD. Determinants of human adipose tissue lipoprotein lipase. Effect of diabetes and obesity on basal- and diet-induced activity. J Clin Invest 1975;56:1108-70
    44. Riemens SC, van Tol A, Scheek LM, et al. Plasma cholesteryl ester transfer and hepatic lipase activity are related to high-density lipoprotein cholesterol in association with insulin resistance in type 2 diabetic and non-diabetic subjects. Scand J Clin Lab Invest 2001 ;61:1—10.
    45. Miyashita Y, Ebisuno M, Ohhira M, et al.Enhancement of serum lipoprotein lipase mass levels by intensive insulin therapy.. Diabetes Res Clin Pract. 2006 Jan 27.
    46. Pollare T, Vessby B, Lithell H. Lipoprotein lipase activity in skeletal muscle is related to insulin sensitivity. Arterioscler Thromb 1991; 11:1192-203.
    47. Connelly PW. Hepatic lipase deficiency: clinical, biochemical, and molecular genetic characteristics. Arterioscler Thromb 1993;13:720-728.
    48. Homanics GE, de Silva HV, Osada J, et al. Mild dyslipidemia in mice following targeted inactivation of the hepatic lipase gene. J Biol Chem 1995;270:2974-2980.
    49 . Busch SJ, Barnhart RL, Martin GA,et al. Human hepatic triglyceride lipase expression reduces high-density lipoprotein and aortic cholesterol in cholesterol-fed transgenic mice. J Biol Chem 1994;269:16376-16382
    50 . Mezdour H, Jones R, Dengremont C, et al. Hepatic lipase deficiency increases plasma cholesterol but reduces susceptibility to atherosclerosis in apolipoprotein E-deficient mice. J Biol Chem 1997;272:13570-13575.
    51 . Zambon A, Hokanson JE, Brown BG, et al. Evidence for a new pathophysiological mechanism for coronary artery disease regression: hepatic lipase-mediated changes in LDL-density. Circulation 1999;99:1959-1964.
    52. Gelissen IC, Harris M, Rye KA, et al. ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-Ⅰ. Arterioscler Thromb Vasc Biol 2006; 26:534-540.
    
    53 Riemens SC, van Tol A, Sluiter WJ, et al. Acute and chronic effects of a 24-hour intravenous triglyceride emulsion challenge on plasma lecithin: cholesterol acyltransferase, phospholipid transfer protein, and cholesteryl ester transfer protein activities. J Lipid Res 1999;40:1459-66.
    
    54 Baynes C, Henderson AD, Anyaoku V, Richmond W, Hughes CL, Johnston DG et al. The role of insulin insensitivity and hepatic lipase in the dyslipidaemia of type 2 diabetes. Diabet Med 1991;8:560-6.
    
    55 Knudsen P, Eriksson J, Lahdenper(a|¨) S, et al. Changes of lipolytic enzymes cluster with insulin resistance syndrome. Diabetologia 1995 ;38:344-50.
    
    56. Jaye M, Lynch KJ, Krawiec J, et al. A novel endothelial-derived lipase that modulates HDL metabolism. Nat Genet 1999;21:424-428.
    
    57. Jin W, Millar JS, Broedl U, et al. Inhibition of endothelial lipase causes increased HDL cholesterol levels in vivo. J Clin Invest 2003;111: 357-362.
    
    58. Kuivenhoven JA, Pritchard H, Hill J, et al. The molecular pathology of lecithin:cholesterol acyltransferase (LCAT) deficiency syndromes. J Lipid Res 1997;38:191-205.
    
    59. Rader DJ, Ikewaki K, Duverger N, et al. Markedly accelerated catabolism of apolipoprotein A-Ⅱ (ApoA-Ⅱ) and high-density lipoproteins containing ApoA-Ⅱ in classic lecithin: cholesterol acyltransferase deficiency and fish-eye disease. J Clin Invest 1994;93:321—330.
    
    60 . Ng DS, Francone OL, Forte TM, et al. Disruption of the murine lecithin:cholesterol acyltransferase gene causes impair- ment of adrenal lipid delivery and up-regulation of scavenger receptor class B type I. J Biol Chem 1997;272:15777-15781.
    61 . Vaisman BL, Klein HG, Rouis M, et al. Overexpression of human lecithin cholesterol acyltransferase leads to hyperalphalipoproteinemia in transgenic mice. J Biol Chem 1995;270:12269-12275.
    62. Hoeg JM, Vaisman BL, Demosky SJ Jr, et al. Lecithinxholesterol acyltransferase overexpression generates hyperalpha-lipoproteinemia and a nonatherogenic lipoprotein pattern in transgenic rabbits. J Biol Chem 1996;271:4396-4402.
    
    63 . Berard AM, Foger B, Remaley A, et al. High plasma HDL concentrations associated with enhanced atherosclerosis in transgenic mice overexpressing lecithin-cholesteryl acyltransferase. Nat Med 1997;3: 744-749.
    
    64 . Mehlum A, Gjernes E, Solberg LA, et al. Overexpression of human lecithinxholesterol acyltransferase in mice offers no protection against diet-induced atherosclerosis. APMIS 2000; 108:336-342.
    
    65 . Hoeg JM, Santamarina-Fojo S, Berard AM, et al. Overexpression of lecithinxholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis. Proc Nat1 Acad Sci U S A 1996;93:11448-11453.
    
    66. Foger B, Chase M, Amar MJ, et al. Cholesteryl ester transfer protein corrects dysfunctional high-density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice. J Biol Chem 1999;274:36912-36920.
    
    67. Furbee JW Jr, Sawyer JK, Parks JS. Lecithinxholesterol acyltransferase deficiency increases atherosclerosis in the low-density lipoprotein receptor and apolipoprotein E knockout mice. J Biol Chem 2002;277:3511-3519.
    
    68. Riemens SC, van Tol A, Scheek LM, et al F. Plasma cholesteryl ester transfer and hepatic lipase activity are related to high-density lipoprotein cholesterol in association with insulin resistance in type 2 diabetic and non-diabetic subjects. Scand J Clin Lab Invest 2001 ;61:1—10.
    
    69. Riemens SC, van Tol A, Stulp BK, et al. Influence of insulin sensitivity and the TaqIB cholesteryl ester transfer protein gene polymorphism on plasma lecithin: cholesterol acyltransferase and lipid transfer protein activities and their response to hyperinsulinemia in non-diabetic men. J Lipid Res 1999;40:1467-74.
    70. Riemens S, van Tol A, Sluiter W, Dullaart R. Elevated plasma cholesteryl ester transfer in NIDDM. Relationships with apolipoprotein B-containing lipoproteins and phospholipids transfer protein. Atherosclerosis 1998; 140:71-9.
    71. Jauhiainen M, Metso J, Pahlman R, et al. Human plasma phospholipid transfer protein causes high density lipoprotein conversion. J Biol Chem 1993;268:4032-6.
    72. Huuskonen J, Ekstrom M, Tahvanainen E, et al. Quantification of human plasma phospholipid transfer protein (PLTP): relationship between PLTP mass and phospholipid transfer activity. Atherosclerosis 2000;151:451-61.
    73. Desrumaux C, Athias A, Bessède G, et al. Mass concentration of plasma phospholipids transfer protein in normolipidemic, type Ⅱa hyperlipidemic, type Ⅱb hyperlipidemic, and non-insulin-dependent diabetic subjects as measured by a specific ELISA. Arterioscler Thromb Vasc Biol 1999; 19:266-75.
    74. Dullaart RPF, van Tol A. Short-term Acipimox decreases the ability of plasma from Type 2 diabetic patients and healthy subjects to stimulate cellular cholesterol efflux: a potentially adverse effect on reverse cholesterol transport. Diabet Med 2001;18:509-13.
    75. Vries R, van Gent T, Borggreve SE, et al. Diabetes mellitus is associated with differential effects on plasma cholesteryl ester transfer protein and phospholipid transfer protein activities and concentrations. Eur J Clin Invest 2003;33:40-1 (Abstract).
    76. Riemens SC, van Tol A, Sluiter WJ, et al. Plasma phospholipid transfer protein activity is related to insulin resistance: impaired acute lowering by insulin in obese NIDDM patients. Diabetologia 1998;41:929-34.
    77 Riemens SC, van Tol A, Sluiter WJ, et al. Acute and chronic effects of a 24-hour intravenous triglyceride emulsion challenge on plasma lecithin: cholesterol acyltransferase, phospholipid transfer protein, and cholesteryl ester transfer protein activities. J Lipid Res 1999;40:1459-66.
    78. Tu AY, Nishida HI, Nishida T. High density lipoprotein conversion mediated by human plasma phospholipid transfer protein. J Biol Chem 1993;268:23098-105.
    79. Castro GR, Fielding CJ. Early incorporation of cell-derived cholesterol into pre-β-migrating high-density lipoprotein. Biochemistry 1988;27:25-9.
    80. Quintao ECR, Medina WL, Passarelli M. Reverse cholesterol transport in diabetes mellitus. Diabetes Metab Res Rev 2000;16:237-50.
    81. Bultel-Brienne S, Lestavel S, Pilon A, et al. Lipid free apolipoprotein E binds to the class B type I scavenger receptor I (SR-BI) and enhances cholesteryl ester uptake from lipoproteins. J Biol Chem 2002;277:36092-9.
    82. Trigatti B, Rigoti A, Krieger M. The role of the high-density lipoprotein receptor SR-BI in cholesterol metabolism. Curr Opin Lipidol 2000; 11:123-31.
    83. Vieira-van Bruggen D, Kalkman I, van Gent T, et al. Induction of adrenal scavenger receptor BI and increased high density lipoprotein-cholesteryl ether uptake by in vivo inhibition of hepatic lipase. J Biol Chem 1998;273:32038-41.
    84. Martinez LO, Jacquet S, Esteve JP, et al. Ectopic -chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 2003;421:75-9.
    85. Rigotti A, Trigatti BL, Penman M, et al. A targeted mutation in the murine gene encoding the high-density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci U S A 1997;94:12610-12615.
    86. Kozarsky KF, Donahee MH, Rigotti A, et al. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature 1997;387:414-417.
    87. Trigatti B, Rayburn H, Vinals M, et al. Influence of the high-density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc Natl Acad Sci U S A 1999;96:9322-9327.
    88. Rhainds D, Brissette L. The role of scavenger receptor class B type I (SR-BI) in lipid trafficking Defining the rules for lipid traders. The International Journal of Biochemistry & Cell Biology 36 (2004) 39-77.
    
    89. Ohgami N, Miyazaki A, Sakai M, et al.Advanced glycation end products (AGE) inhibit scavenger receptor class B type I-mediated reverse cholesterol transport: a new crossroad of AGE to cholesterol metabolism. Kuniyasu A. J Atheroscler Thromb. 2003;10(1):1-6.
    
    90. Forcheron F, Cachefo A, Thevenon S,et al. Mechanisms of the triglyceride- and cholesterol-lowering effect of fenofibrate in hyperlipidemic type 2 diabetic patients. Diabetes 2002;51:3486-91.
    
    91. Ohgami N, Nagai R, Miyazaki A, et al. Scavenger receptor class B type I-mediated reverse cholesterol transport is inhibited by advanced glycation end products. J Biol Chem 2001;276:13348-55.
    
    92. Berkel TJC, Fluiter K, van Velzen AG, et al. LDL receptor-independent and -dependent uptake of lipoproteins. Atherosclerosis 1995;118 (Suppl.):S43-S50.
    
    93. Mauldin JP, Srinivasan S, Mulya A,et al. Reduction in ABCG1 in Type 2 diabetic mice increases macrophage foam cell formation. J Biol Chem. 2006 Jul 28;281(30):21216-24.
    
    94. Guerin M, le Goff W, Lassel TS, et al. Proatherogenic role of elevated CE transfer from HDL to VLDL1 and dense LDL in type 2 diabetes. Impact of the degree of triglyceridemia.Arterioscler Thromb Vasc Biol 2001;21:282-8.
    
    95. Riemens SC, van Tol A, Stulp BK, et al. Influence of insulin sensitivity and the TaqIB cholesteryl ester transfer protein gene polymorphism on plasma lecithin: cholesterol acyltransferase and lipid transfer protein activities and their response to hyperinsulinemia in non-diabetic men. J Lipid Res 1999;40:1467-74.
    
    96. Riemens SC, van Tol A, Sluiter WJ, et al. Plasma phospholipid transfer protein activity is lowered by 24 hour insulin and Acipimox administration: blunted response to insulin in type 2 diabetic patients. Diabetes 1999;48:1631-7.
    97. Kramer-Guth A, Quaschning T, Galle J, et al. Structural and compositional modifications of diabetic low-density lipoproteins influence their receptor-mediated uptake by hepatocytes. Eur J Clin Invest 1997;27:460-8.
    98. Dullaart RPF, Groener JEM, Erkelens DW. Cholesteryl ester transfer between lipoproteins. Diab Nutr Metab 1991;14:329- 43.
    99. Boucher P, Ducluzeau PH, Davelu P, et al. Expression and regulation by insulin of low-density lipoprotein receptor-related protein mRNA in human skeletal muscle. Biochim Biophys Acta 2002; 1588:226-31.
    100. Bennion LJ, Grundy SM. Effects of diabetes mellitus on cholesterol metabolism in man. N Engl J Med 1977;296:1365-71.
    101. Jessup, Wendya; Gelissen, Ingrid C, et al. Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages curr Opin Lipidol 2006 17(3), 247-257
    102. Taskinen, M.- R .Type 2 Diabetes as a Lipid Disorder .Current Molecular Medicine, 2005; 5:297-308.
    1. Mosca L, Manson JE, Sutherland SE, Langer RD, Manolio T, Barrett-Connor E: Cardiovascular disease in women: statement for healthcare professionals from the American Heart Association. Circulation 1997;96:2468-2482.
    2. Sullivan JM, Fowlkes LP: The clinical aspects of estrogen and cardiovascular system. Obstet Gynecol 1996;87:S36-S43.
    3. Varas-Lorenzo C, Garcia-Rodriguez LA, Perez-Gutthann S, Duque- Oliart A: Hormone replacement and incidence of acute myocardial infarction. A population-based nested case-control study. Circulation 2000;101:2572-2578.
    4. Matthews KA, Kuller LH, Wing RR, Meilahn EN, Plantinga P: Prior to use of estrogen replacement therapy, are users healthier than non-users? Am J Epidemiol 1996; 143:971 —978.
    5. PEPI Trial Writing Group: Effects of estrogen or estrogen/progestin regimens on heart disease risk factors in postmenopausal women: the Postmenopausal Estrogen/Progestin Interventions (PEPI) Trial. JAMA 1995;273:199 -208.
    6. Petitti DB: Hormone replacement therapy and heart disease prevention- experimentation trumps observation. JAMA 1998;280: 650-652.
    7. Herrington DM, Reboussin DM, Brosnihan B, Sharp PC, Shumaker SA, Snyder T, Furberg C, Kowalchuk GJ, Stuckey TD, Rogers WJ, Givens DH, Waters D: Effects of estrogen replacement on the progression of coronary artery atherosclerosis. N Engl J Med 2000; 343:522-529.
    8. Hong MK, Romm PA, Reagan K, Green CE, Rackley CE: Effects of estrogen replacement therapy on serum lipid values and angiographically defined coronary artery disease in postmenopausal women. Am J Cardiol 1992;69:176 -178
    9. Mikkola TS, Clarkson TB. Estrogen replacement therapy, atherosclerosis, and vascular function. Cardiovasc Res. 2002;53:605-619.
    10. Mori T, Durand J, Chen Y-F, Thompson A, Bakir S, Oparil S. Effects of short-term estrogen treatment on the neointimal response to balloon injury of rat carotid artery. Am J Cardiol. 2000;85:1276-1279.
    11. Finking G, Krauss N, Ro¨mer S, Eckert S, Lenz C, Kamenz J, Menke A, Brehme U, Hombach V, Hanke H. 17-estradiol, gender independently, reduces atheroma development but not neointimal proliferation after balloon injury in the rabbit aorta. Atherosclerosis 2001; 154:39-49.
    12. Iribarren C, Luepker RV, McGovern prostaglandin (PG), Arnett DK, Blackburn H. Twelve-year trends in cardiovascular disease risk factors in the Minnesota Heart Survey. Are socioeconomic differences widening? Arch Intern Med. 1997; 157:873- 881.
    13. Humphrey LL, Chan BK, Sox HC. Postmenopausal hormone replacement therapy and the primary prevention of cardiovascular disease. Ann Intern Med. 2002; 137:273-284.
    14. Dubey RK, Jackson EK. Estrogen-induced cardiorenal protection: potential cellular, biochemical, and molecular mechanisms. Am J Physiol Renal Physiol. 2001 ;280:F365-F388.
    15. Dubey RK, Gillespie DG, Zacharia LC, Imthurn B, Jackson EK, Keller PJ. Clinically used estrogens differentially inhibit human aortic smooth muscle cell growth and MAP kinase activity. Arterioscler Thromb Vasc Biol. 2000;20:964 -972.
    16. Geary RL, Adams MR, Benjamin ME, Williams JK. Conjugated equine estrogens inhibit progression of atherosclerosis but have no effect on intimal hyperplasia or arterial remodeling induced by balloon catheter injury in monkeys. J Am Coll Cardiol. 1998;31:1158 -1164.
    17. The Writing Group for the PEPI Trial. Effects of estrogen or estrogen/ progestin regimens on heart disease risk factors in postmenopausal women. The Postmenopausal Estrogen/Progestin Interventions (PEPI) Trial. JAMA. 1995;273:199-208.
    18. Clarkson TB, Anthony MS, Wagner JD. A comparison of tibolone and conjugated equine estrogens effects on coronary artery atherosclerosis and bone density of postmenopausal monkeys. J Clin Endocrinol Metab. 2001;86:5396 -5404
    20. Adams MR, Kaplan JR, Manuck SB, Manuck SB, Koritnik DR, Parks JS, Wolfe MS,Clarkson TB. Inhibition of coronary artery atherosclerosis by 17-beta estradiol in ovariectomized monkeys. Lack of an effect of added progesterone. Arteriosclerosis. 1990;10:1051—1057.
    22. Alexandersen P, Haarbo J, Sandholdt I, Shalmi M, Lawaetz H, Christiansen C. Norethindrone acetate enhances the antiatherogenic effect of 17-estradiol: a secondary prevention study of aortic atherosclerosis in ovarectomized cholesterol fed rabbits. Arterioscler Thromb Vasc Biol. 1998; 18:902-907.
    23. Grohe C, Kahlert S, Lobbert, Stimpel M, Karas RH, Vetter H, Neyses L: Cardiac myocytes and fibroblasts contain functional estrogen receptors. FEBS Lett 1997;416:107-112.
    24. Losordo DW, Kearney M, Kim EA, Jekanowski J, Isner JM: Variable expression of the estrogen receptor in normal and atherosclerotic coronary arteries in premenopausal women. Circulation 1994; 89:1501-1510.
    25. Abu-Halawa SA, Thompson K, Kirkeeide RL, Vaughn WK, Rosales O, Fujisi K, Schroth G, Smalling R, Anderson HV: Estrogen replacement therapy and outcome of coronary balloon angioplasty in postmenopausal women. Am J Cardiol 1998;82:409-413.
    26. Geary RL, Adams MR, Benjamin ME, Williams JK: Conjugated equine estrogens inhibit progression of atherosclerosis but have no effect on intimal hyperplasia or arterial remodeling induced by balloon catheter injury in monkeys. J Am Coll Cardiol 1998;31: 1158-1164.
    27. Clowes AW, Collazzo RE, Karnovsky MJ: A morphologic and permeability study of luminal smooth muscle cells after arterial injury in the rat. Lab Invest 1978;39:141—150.
    28. Mori T, Durand J, Chen YF, Thompson JA, Bakir S, Oparil S: Effects of short-term estrogen treatment on the neointimal response to balloon injury of rat carotid artery. Am J Cardiol 2000;85:1276-1279.
    29. Aygen EM, Karakucuk EI, Basburg M: Comparison of the effects of conjugated estrogen treatment on blood lipid and lipoprotein levels when initiated in the first or fifth postmenopausal year. Gynecol Endocrinol 1999; 13:118 -122.
    30. Wen Y, Doyle MC, Norris LA, Sinnott MM, Cooke T, Harrison RF, Feely J: Combined oestrogen-progestogen replacement does not inhibit low-density lipoprotein oxidation in postmenopausal women. Br J Clin Pharmacol 1999;47:315-321.
    31. Lewis-Barned NJ, Sutherland WH, Walker RJ, de Jong SA, Walker HL, Edwards EA, Markham V, Goulding A: Plasma cholesteryl ester fatty acid composition, insulin sensitivity, the menopause and hormone replacement therapy. J Endocrinol 2000; 165:649-655.
    32. Scarabin PY, Alhenc-Gelas M, Oger E, Plu-Bureau G: Hormone replacement therapy and circulating ICAM-1 in postmenopausal women—a randomized controlled trial. Thromb Haemost 1999;81: 673-675.
    33. Sumino H, Nakamura T, Ichikawa S, Kanda T, Sakamaki T, Sato K, Kobayashi I, Nagai R: Serum level of vascular endothelial growth factor is decreased by hormone replacement therapy in postmenopausal women without hypercholesterolemia. Atherosclerosis 2000; 148:189-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700