姜黄素对大鼠局灶性脑缺血再灌注损伤的保护作用及其信号转导机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:脑血管疾病是导致全球人口死亡的三大原因之一。缺血性脑血管疾病是脑血管病中最常见的类型。脑缺血再灌注损伤是一个复杂的病理过程,其具体机制目前尚不完全清楚。近年来的研究发现,脑血流中断和再灌注使脑细胞产生损伤的过程是一个快速的级联反应,这个级联反应包括能量障碍、氧自由基的大量释放、细胞酸中毒、兴奋性氨基酸释放增加、细胞内钙失稳态、自由基生成、凋亡基因激活等。这些环节互为因果,彼此重叠,并相互联系,形成恶性循环,最终导致细胞凋亡或坏死。寻找理想的能够中断缺血级联反应的神经保护剂是目前脑血管疾病治疗研究的热点之一。姜黄素是从植物姜黄根茎中提取的一种酚类化合物,具有抗肿瘤、抗炎、抗HIV、抗菌、抗氧化等多种药理作用,并且毒副作用低.具有良好的临床应用潜力,受到国内外的广泛关注。近年来发现姜黄素依靠其良好的抗氧化和抗炎等作用,在脑保护及治疗脑血管病方面具有良好的运用前景。
     目的:研究姜黄素对大鼠局灶性脑缺血再灌注损伤的神经保护作用并探讨其相关的信号转导机制。
     方法:第一部分:通过改良线栓法建立大鼠大脑中动脉缺血再灌注模型,随机分为假手术组、缺血再灌注损伤组及姜黄素处理组,对各组进行神经功能评分、TTC染色评价脑梗死体积、TUNEL法检测细胞凋亡、HE及Nissl染色进行组织学观察。同时检测脑组织中丙二醛(MDA)、超氧岐化物(SOD)的变化情况从而评价姜黄素对局灶性缺血再灌注脑损伤大鼠的神经保护作用。第二部分:采用TTC染色法、免疫组织化学法、Western blot法检测在有或无LY294002(一种特异性PI3K通路抑制剂)存在的情况下,姜黄素对局灶性缺血再灌注脑损伤大鼠的神经保护作用,及其对PI3K/AKT通路的Akt/pAkt蛋白,凋亡相关蛋白Bcl2/Bax、Caspase3以及转录因子Nrf2及二相解毒酶NQO1的表达的影响。
     结果:第一部分,姜黄素可以明显改善脑缺血再灌注损伤后大鼠的神经功能缺损,降低脑梗死体积和细胞凋亡率及神经元的死亡率。同时降低MDA水平及升高SOD水平。第二部分,姜黄素能够增强pAkt、凋亡相关蛋白Bcl-2/Bax及转录因子Nrf2、二相解毒酶NQO1的表达水平,降低Caspase3蛋白的表达;而当LY294002同时存在的情况下,姜黄素的神经保护作用受到抑制,动物神经功能缺损改善情况、脑梗塞面积的缩小均不如单纯给予姜黄素组; pAkt蛋白、Bcl-2/Bax以及Nrf2、NQO1表达水平低于单纯给予姜黄素组,而Caspase3的表达则高于单纯给予姜黄素组。
     结论:1.姜黄素对局灶性缺血再灌注脑损伤大鼠有确切的神经保护作用,可抑制脑缺血再灌注损伤后的神经元凋亡及死亡,减小脑梗死体积,改善神经功能2.姜黄素的神经保护主要通过抗氧化及抗凋亡的作用实现。而通过Pl3K/Akt途径调节凋亡相关蛋白及抗氧化酶的表达可能是其实现神经保护作用的重要机制之一。
Background: Cerebrovascular disease is the third leading cause of death in the world. Ischemic cerebrovascular disease is the most common type in the cerebrovascular disease. Cerebral ischemia/reperfusion injury is a complex pathophysiologic process which is not been clarified now. Recent studies found that the injuries caused by cerebral blood flow cessation and reperfusion are a rapid cascade reaction which includes disfunction of ATP production, overproduction of reactive oxygen species, intracellular acidosis , increased release of excitatory amion acids, destabilization of intracellular calcium and apoptosis-related genes activation and so on. These pathophysiologic processes overlap and intercommunicate then form a vicious cycle which results in cell apoptosis or necrosis. It is a focus in neuroscience that looking for the ideal neuroprotective agents that can block ischemic cascade reaction. Curcumin is a phenol derived from tumeric which has anticancer, antiinflammation, anti-HIV and antioxidation properties and low toxic and side-effect. It has good potential in clinic. From recent years, curcumin was been found that it has understanding application prospect in neuroprotction and therapeutics of cerebrovascular disease because of its antioxidation and antiinflammation properties.
     Objecitve: To study neuroprotective effects of curcumin on focal cerebral ischemia/reperfusion injury in rats and explore its possible mechanisms and related signal transduction pathways.
     Methods: Part one : Transient cerebral ischemia/reperfusion model in rats was established by middle cerebral artery occlusion using modified suture occlusion technique.The rats were randomly divided into sham group, MCAO group, curcumin-treated group. Neuroscores of all groups were evaluated. Infarct volume was measured by TTC staining and morphologic changes were observed by H.E. and Nissl staining. TUNEL was used for detecting cell apoptosis. Meanwhile, we measured Malondialdehyde (MDA) and superoxide dismutase(SOD) of cerebral tissue to evaluate antioxidation activitis of curcumin . Part two: TTC staining, immunohistochemisty , Western blot technique were used to explore neuroprotection of curcumin on focal cerebral ischemia/reperfusion injury in rats ,with or without the existence of LY294002(a inhibitor of phosphatidylinositol-3- kinase ,PI3K).And also, the effects of curcumin on the expression of phospha-Akt, apoptosis-associated protein Bcl2/Bax、Caspase3 ,transcript factor Nrf2 and NQO1.
     Results: Part one: Curcumin could significantly improve the neurologic impairment, reduce cerebral infarct volume and decrease neuronal apoptosis and necrosis. And also, curcumin could decrease the level of MDA whereas increase the level of SOD. Part two: Curcumin could increase the expression of pAkt, antiapoptosis protein Bcl-2, transcript factor Nrf2 and II detoxifying enzymes NQO1 whereas decrease the expression of proapoptosis protein Bax and caspase-3. However, with the existence of LY294002, the neuroprotection of curcumin was inhibited. Improvement of neurologic impairment and reduction of cerebral infarct volume in Cur+LY group were less than that in CUR group. Moreover, the expression of pAkt, Bcl-2/Bax , Nrf2 and NQO1 in CUR+LY group were lower than that in CUR group whereas the expression of caspase-3 protein in CUR+LY group was higher than that in CUR group.
     Conclusions: 1.Curcumin has exact neuroprotective effects on focal cerebral ischemia/reperfusion injuries on rats which could inhibit the neuronal apoptosis and necrosis, reduce cerebral infarct volume and improve neurologic impairment. 2. The neuroprotection of curcumin was accomplished by antioxidation and antiapoptosis. It was one of important neuroprotective mechanisms of curcumin that regulating the expression of apoptosis-associated protein and antioxidative enzyme by PI3K/Akt pathway.
引文
[1] Mishina, M., Sakimura, K., Mori, H., et al. A single amino acid residue determines the Ca2+ permeability of AMPA-selective glutamate receptor channels[J]. Biochem. Biophys. Res.Commun. 1991, 180:813–821.
    [2] Mori, T., Tateishi, N., Kagamiishi, Y., et al. Attenuation of a delayed increase in the extracellular glutamate level in the peri-infarct areafollowing focal cerebral ischemia by a novel agent ONO-250696[J]. Neurochem. Int. 2004,45: 381–387.
    [3] Nita, D.A., Nita, V., Spulber, S., et al. Oxidative damage following cerebral ischemia depends on reperfusion—A biochemical study in rat[J]. J. Cell. Mol. Med. 2001, 5: 163–170.
    [4] Lewen, A., Matz, P., Chan, P.H.,. Free radical pathways in CNS injury[J]. J. Neurotrauma 2000,17: 871–890.
    [5] Chan, P.H., Reactive oxygen radicals in signaling and damage in the ischemic brain[J]. J. Cereb. Blood Flow Metab. 2001,21:2–14.
    [6] Budd, S.L.. Mechanisms of neuronal damage in brain hypoxia/ischemia: focus on the role of mitochondrial calcium accumulation[J]. Pharmacol. Ther. , 1998,80: 203–229
    [7] Beckman, J.S., Beckman, T.W., Chen, J.et al. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide[J]. Proc. Natl. Acad. Sci. U. S. A. 1990,87: 1620–1624.
    [8] Lin, J. and Shih, C. A. Inhibitory effect of curcumin on xanthine dehydrogenase/oxidase induced by phorbol-12-myristate-13-acetate in NIH3T3 cells[J]. Carcinogenesis. 1994;15, 1717–1721.
    [9] Brouet, I. and Ohshima, H. Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages[J]. Biochem.Biophys. Res. Commun. 1994;206, 533–540.
    [10] Sreejayan, R. M. Nitric oxide scavenging by curcuminoids[J]. J. Pharm.Pharmacol. 1997 ;49, 105–107.
    [11] Joe, B. and Lokesh, B. R . Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages[J]. Biochim. Biophys. Acta. 1994;1224, 255–263.
    [12] Abe, Y., Hashimoto, S. and Horie, T. Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages[J]. Pharmacol. Res. 1999;39, 41–47.
    [13] Jefremov, V., Zilmer, M., Zilmer, K., et al. Antioxidative effects of plant polyphenols: From protection of G protein signaling to prevention of age-related pathologies[J]. Ann. N.Y. Acad. Sci. 2007;1095, 449–457.
    [14] Cho, J.W., Lee, K. S. and Kim, C.W. Curcumin attenuates the expression of IL-1beta, IL-6, and TNF-alpha as well as cyclin E in TNF-alpha-treated HaCaT cells; NfkappaB andMAPKsas potential upstream targets[J]. Int. J. Mol.Med. 2007;19, 469–474.
    [15] Gao, X., Kuo, J., Jiang, H et al. Immunomodulatory activity of curcumin: Suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production in vitro[J]. Biochem.Pharmacol. 2004;68, 51–61.
    [16] Okada, K.Wangpoengtrakul, C.Tanaka,T.et al. Curcumin and Especially Tetrahydrocurcumin Ameliorate Oxidative Stress-Induced Renal Injury in Mice[J] Journal of Nutrition. 2001;131:2090-2095
    [17] Lim, GP. , Chu T., Yang F. et al. The Curry Spice Curcumin Reduces Oxidative Damage and Amyloid Pathology in an Alzheimer Transgenic Mouse[J]. J Neurosci, 2001, 21(21):8370-8377
    [18] Ono, K., Hasegawa, K., Naiki, H. et al. Curcumin has potent anti-amyloidogenic effects for Alzheimer's -amyloid fibrils in vitro[J]. J Neurosci Res.2004, 75(6):742-750
    [19] Longa EZ, Weinstein PR, Carlson S. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke. 1989;20:84–91.β
    [20] Belayev L, Busto R, Zhao W. et al. HU-211, a novel noncompetitive n-methyl-d-aspartate antagonist, improves neurological deficit and reduces infarct volume after reversible focal cerebral ischemia in the rat[J]. Stroke. 1995;26:2313-2320
    [21] Hara H, Kato H, Kogure K.α-tocopherol on ischemic neuronal damage in the gerbil hippocampus [J]. Brain Res.1990,510:335–338
    [22] Gong X, Sucher NJ. Stroke therapy in traditional Chinese medicine (TCM): prospects for drug discovery and development [J]. Trends Pharmacol Sci. 1999, 20:191–198
    [23] Pierre S, Jamme I, Droy-Lefaix MT, et al. Ginko biloba (EGb 761) protects Na+, K+ ATPase activity during cerebral ischemia in mice[J]. Neuroreport. 1999, 10:47–51
    [24] Mokudai T, Ayoub IA, Sakakibara Y, et al. Delayed treatment with nicotinamide (VitaminB3) improves neurological outcome and reduces infarct volume after transient focal cerebral ischemia in Wistar rat[J]. Stroke.2000, 31:1679–1685
    [25] De Keyser J, Sulter G, Luiten PG. Clinical trials with neuroprotective drugs in acute ischemic stroke: are we doing right thing [J]. Trends Neurosci.1999, 22:535–540
    [26] Motterlini R, Foresti R, Bassi R, et al. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress [J]. Free Radic Biol Med.2000,28:1303–1312
    [27] Priyadarsini KI. Free radical reaction of curcumin in membrane model[J]. Free Radic Biol Med.1997, 21:838–843
    [28] Soudamini KK, Unnikrishnan MC, Soni KB, et al.Inhibition of lipid peroxidation and cholesterol levels in mice by curcumin [J]. Indian J Physiol Pharmacol .1992, 36:239–243
    [29] Shukla PK, Khanna VK, Khan MY, et al. Protective effect of curcumin against lead neurotoxicity in rat [J]. Hum Exp Toxicol .2003, 22:653–658
    [30] Thiyagarajan M, Sharma SS. Neuroprotective effect of curcumin in middlecerebral artery occlusion induced focal cerebral ischemia in rats[J]. Life Sci .2004, 74:969–985
    [31] Lin JK, Shih CA. Inhibitory effect of curcumin on xanthine dehydrogenase/oxidase induced by phorbol-1,2-myristate-13- acetate in NIH3T3 cells[J]. Carcinogenesis 1994,15:1717–1721
    [32] Sharma SC, Mukhtar H, Sharma SK, et al. Lipid peroxide formation in experimental inflammation [J]. Biochem Pharmacol 1972,21:1210–1214
    [33] Pan MH, Huang TM, Lin JK. Biotransformation of curcumin through reduction and glucuronidation in mice [J]. Drug Metabolism & Disposition.1999 , 27( 4): 486-494
    [34] Yang F, Lim GP, Begum AN, et al Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques and reduces amyloid in vivo[J].J Biol Chem 2005,280:5892–5901
    [35] Wang Q, Sun AY, Simonyi A, et al. Neuroprotective mechanisms of curcumin against cerebral ischemia induced neuronal apoptosis and behavioural deficits [J]. J Neurosci Res 2005,82:138–148
    [36] Chan, PH. Reactive oxygen radicals in signaling and damage in the ischemic brain, [J] J. Cereb. Blood Flow Metab. 2001,21: 2-14
    [37] Green DR, Reed JC. Mitochondria and apoptosis [J]. Science. 1998,281:1309–1312.
    [1] Mishina, M., Sakimura, K., Mori, H., et al. A single amino acid residue determines the Ca2+ permeability of AMPA-selective glutamate receptor channels [J]. Biochem. Biophys. Res.Commun. 1991, 180:813–821.
    [2] Mori, T., Tateishi, N., Kagamiishi, Y., et al. Attenuation of a delayed increase in the extracellular glutamate level in the peri-infarct area following focal cerebral ischemia by a novel agent ONO-250696[J]. Neurochem. Int. 2004,45: 381-387.
    [3] Nita, D.A., Nita, V., Spulber, S., et al. Oxidative damage following cerebral ischemia depends on reperfusion—A biochemical study in rat[J]. J. Cell. Mol. Med. 2001, 5: 163-170.
    [4] Lewen, A., Matz, P., Chan, P.H.,. Free radical pathways in CNS injury [J]. J. Neurotrauma 2000,17: 871-890.
    [5] Chan, P.H., Reactive oxygen radicals in signaling and damage in the ischemic brain [J]. J. Cereb. Blood Flow Metab. 2001,21:2-14.
    [6] Budd, S.L.. Mechanisms of neuronal damage in brain hypoxia/ischemia: focus on the role of mitochondrial calcium accumulation [J]. Pharmacol. Ther. , 1998,80: 203-229
    [7] Crowder RJ,Freman RS. PhosPhatidylinositol3-Kinase and Akt Protein kinase are necessary and sufficient for the survival of nerve gowth factor-dependent sympathetic neurons [J]. J Neurosci,1998,18(8):2933-2943
    [8] Won CK ,Ha SJ,Noh HS,et al. Estradiol Prevents the injury-induced decreased of Akt activation and Bad phosphorylation [J]. Neurosci Lett , 2005 ,357(2):115-119
    [9] Kilic E,Kilic U,Soliz J, et al. Brain-derived erythropoietin Protects from focal cerebral ischemia by dual activation of ERK-1/-2 and Akt pathways [J]. FASEB J,2005,19(14):2026-2028
    [10] Beckman, J.S., Beckman, T.W., Chen, J.et al. Apparent hydroxyl radicalproduction by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide [J]. Proc. Natl. Acad. Sci. U. S. A. 1990,87: 1620–1624.
    [11] Itoh K, Igarashi K, Hayashi N, et a1. Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins[J].Mol Cel Biol,1995,15(8):4184-4193.
    [12] Itoh K,Chiba T,Takahashi S,et a1.An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements[J]. Biochem Biophys Res Commun,1997,236(2):313-322.
    [13] Ishii T,Itoh K,Takahashi S,et a1.Transcription factor Nrf2 coordinately regulates a group of oxidative stress inducible genes in macrophages[J].J Biol Chem,2000,275(21):16023-16029.
    [14] Venugopal R,Jaiswal AK.Nrf1and Nrf2 positively and c-Fos an d Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene[J].Proc Nail Acad Sci USA,1996,93(25):14960-l4965.
    [15] Motohashi H,O’Connor T,Katsuoka F,et a1 .Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors [J]. Gene,2002,294(1-2):l-l2.
    [16] Kang ES, Woo IS, Kim HJ, et al. Up-regulation of aldose reductase expression mediated by phosphatidylinositol 3-kinase/Akt and Nrf2 is involved in the protective effect of curcumin against oxidative damage[J]. Free Radic Biol Med. 2007 15;43(4):535-45.
    [17] Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain [J]. J Cereb Blood Flow Metab. 2001,21:2–14.
    [18] Chan PH. Oxygen radicals in focal cerebral ischemia. Brain Pathol.1994,4:59–65
    [19] Balogun E,Hoque M,Gong PF, et al .Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant responsive element[J].Biochem J,2003,371:887-895.
    [20] Velmurugan K, Alam J, McCord JM, et al. Synergistic induction of heme oxygenase-1 by the components of the antioxidant supplement protandim [J]. Free Radic Biol Med. 2009,46(3):430-40.
    [21] Nishinaka T, Ichijo Y, Ito M, et al. Curcumin activates human glutathione S-transferase P1 expression through antioxidant response element [J]. Toxicology Letters, 2007,170:238-247
    [22] Ye SF,Hou ZL,Zhong IM,et a1.Effect of curcum in on the induction of glutathione S-transferases and NAD (H ):quinone oxidoreductase and its possible mechanism of action[J].Acta Pharmaceutica Sinica,2007,42(4):376—380.
    [23] Lee JS, Surh YJ. Nrf2 as a novel molecular target for chemoprevention [J]. Cancer Letters, 2005,224: 171-184
    [24] Na HK, Kim EH, Jung JH,et al. (?)-Epigallocatechin gallate induces Nrf2-mediated antioxidant enzyme expression via activation of PI3K and ERK in human mammary epithelial cells[J].Archives of Biochemistry and Biophysics, 2008, 476, ( 2):171-177
    [25] Zhang YL, Guan L, Wang XF,et al. Protection of chlorophyllin against oxidative damage by inducing HO-1 and NQO1 expression mediated by PI3K/Akt and Nrf2 [J] . Free Radical Research. 2008,42(4):362 - 371
    [26] Pugazhenthi S, Selvaraj G, Wang MR, et al. Regulation of heme oxygenase-1 expression by demethoxy curcuminoids through Nrf2 by a PI3-kinase/Akt-mediated pathway in mouse -cells [J]. Am J Physiol Endocrinol Metab 2007,293: 645-655.
    [27] Sugawara T, Noshita N, Lewen A, et al. Overexpression of copper/zinc superoxide dismutasein transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation [J]. J Neurosci 2002,22:209–217.
    [28] Chen J, Nagayama T, Jin K, et al. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia [J]. J Neurosci 1998,18:4914–4928β
    [29] Namura S, Zhu J, Fink K, et al. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia [J]. J Neurosci 1998.18:3659–3668
    [30] Yuan J, Yankner BA. Apoptosis in the nervous system [J]. Nature. 2000, 407: 802–8 09
    [31] Shi Y. A structural view of mitochondria-mediated apoptosis [J]. Nat Struct Biol 2001,8:394–401,
    [32] Merry DE, Korsmeyer SJ. Bcl-2 gene family in the nervous system [J]. Annu Rev Neurosci 1997,20:245–267,
    [33] Martinou JC, Dubois-Dauphin M, Staple JK, et al. Overexpression of BCL-2 in a) transgenic mice protects neurons from naturally occurring cell death and experimental ischemia[J]. Neuron 1994,13:1017–1030
    [34] Plesnila N, Zinkel S, Le DA, et al. BID mediates neuronal cell death after oxygen/glucose deprivation and focal cerebral ischemia [J]. Proc Natl Acad Sci USA 2001,98: 15318–15323
    [35] Hata R, Gillardon F, Michaelidis TM, Hossmann KA. Targeted disruption of the bcl-2 gene in mice exacerbates focal ischemic brain injury [J]. Metab Brain Dis 1999,14:117–124.
    [36] Noshita N., Sugawara T., Lewén A., et al. Copper–zinc superoxide dismutase affects Akt activation after transient focal cerebral ischemia in mice [J]. Stroke 2003,34 :1513–1518
    [37] Kamada H., Nito C., Endo H.,et al. Bad as a converging signaling molecule between survival PI3-K/Akt and death JNK in neurons after transient focal cerebral ischemia in rats [J]. J. Cereb. Blood Flow Metab. 2007:27 :521-533
    [38] MCardone.H., Roy N., Stennicke H.R.et al. Regulation of cell death protease caspase-9 by phosphorylation[J]. Science 1998,282:1318–1321
    [1] Koizumi J,Yoshida Y,Nakazawa T,et al. Experimental studies of ischemic brain edema, I:a new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area.Jpn J Stroke,1986,8:1-8.
    [2] Durukan A,Tatlisumak T.Acute ischemic stroke:overview of major experimental rodent models,pathophysiology,and therapy of focal cerebral ischemia.Pharmacol Biochem Behav,2007,87(1):179-197.
    [3] Thomas-Carmichael S.Rodent Models of Focal Stroke:Size,Mechanism,and Purpose.NeuroRx,2005,2(3):396-409.
    [4] Henninger N,Sicard KM,Schmidt KF,et al.Comparison of ischemic lesion evolution in embolic versus mechanical middle cerebral artery occlusion in Sprague Dawley rats using diffusion and perfusion imaging.Stroke,2006,37:1283-1287.
    [5] Oliff HS,Weber E,Eilon G,et al.The role of strain/vendor differences on the outcome of focal ischemia induced by intraluminal middle cerebral artery occlusion in the rat.Brain Research,1995,675:20-26.
    [6] Markgraf CG,Kraydich S,Prado R,et al.Comparative histopathologic consequences of photothrombotic occlusion of the distal middle cerebral artery in Sprague Dawley and Wistar rats.Stroke,1993,24(2):286-293.
    [7] Dittmar MS,Vatankhah B,Fehm NP,et al.Fischer-344 rats are unsuitable for theMCAO filament model due to their cerebrovascular anatomy.J Neuroscience Methods,2006,156(1-2):50-54.
    [8] Bardutzky J,Shen Q,Henninger N,et al.Differences in ischemic lesion evolution in different rat strains using diffusion and perfusion imaging.Stroke,2005,36:2000-2005.
    [9] Prieto R,Carceller F,Roda JM,et al.The intraluminal thread model revisited:rat strain differences in local cerebral blood flow.Neurol Research,2005,27(1):47-52.
    [10] Ma J,Zhao L,Nowak TS.Selective,reversible occlusion of the middle cerebral artery in rats by an intraluminal approach optimized filament design and methodology.J Neuroscience Methods,2006,156(1-2):76-83.
    [11] Oliff HS,Coyle P,Weber E.Rat strain and vendor differences in collateral anastomoses.J Cerebral Blood Flow & Metabolism,1997,17:571-576.
    [12] Schaffer CB,Friedman B,Nishimura,et al.Two-photon imaging of cortical surface microvessels reveals a robust redistributionin blood flow after vascular occlusion.PLoS Biology,2006,4(2):258-270.
    [13] Herz RC,Kasbergen CM,Hillen B,et al.Rat middle cerebral artery occlusion by an intraluminal thread compromises collateral blood flow.Brain Research,1998,791(1-2):223-228.
    [14] Shin HY,Kim JH,Phi JH,et al.Endogenous neurogenesis and neovascularization in the neocortex of the rat after focal cerebral ischemia.J Neuroscience Research,2008,86(2):356-367.
    [15] Lee RM.Morphology of cerebral arteries.Pharmacol Therapy,1995,66(1):149-173.
    [16] Garcia JH,Liu KF,Ye ZR,et a1.Incomplete infarct and delayed neuronal death after transient middle cerebral artery occlusion in rats.Stroke,1997,28 (11):2303-2309.
    [17] Stroke Therapy Academic Industry Roundtable (STAIR).Recommendations for standards regarding preclinical neuroprotective and restorative drugdevelopment.Stroke,1999,30: 2752-2758.
    [18] Wang LG,Futrell N,Wang DZ,et al.A reproducibal model of middle cerebral infaction,compitabal with long-term survival,in aged rat.Stroke,1995,26:2087-2090.
    [19] Lindner MD,Gribkoff VK,Donlan NA,et al.Long-lasting functional disabilities in middle-aged rats with small cerebral infarcts.J Neuroscience,2003,23(34):10913-10922.
    [20] Spratt NJ,Fernandez J,Chen M,et al.Modification of the method of thread manufacture improves stroke induction rate and reduces mortality after thread-occlusion of the middle cerebral artery in young or aged rats.J Neuroscience Methods,2006,155(2):285-290.
    [21] Murphy SJ,McCullough LD,Smith JM.Stroke in the female:role of biological sex and estrogen.ILAR J,2004,45(2):147-159.
    [22] Sayeed I,Wali B,Stein DG.Progesterone inhibits ischemic brain injury in a rat model of permanent middle cerebral artery occlusion.Restor Neurol Neuroscience,2007,25(2):151-159.
    [23] Kuge Y,Minematsu K,Yamaguchi T,et al.Nylon monofilament for intraluminal middle cerebral artery occlusion in rats.Stroke,1995,26:1655-1658.
    [24] Cao X,Cao BZ.A study of rat focal cerebral ischemia model established by middle cerebral artery occlusion through ligation with rat moustache instead of nylon monofilament.Chin J Clinical Rehabilitation,2004,8(10):1958-1959.
    [25] Longa EZ,Weinstein PR,Carlson S,et al.Reversible middle cerebral artery occlusion without craniectomy in rats.Stroke,1989,20:84-91.
    [26] Shimamura N,Matchett G,Tsubokawa T,et al.Comparison of silicon-coated nylon suture to plain nylon suture in the rat middle cerebral artery occlusion model.J Neuroscience Methods,2006,156(1-2):161-165.
    [27] Bouley J,Fisher M,Henninger N.Comparison between coated vs.uncoated suture middle cerebral artery occlusion in the rat as assessed by perfusion/diffusion weighted imaging.Neuroscience Letters,2007,412(3):185-190.
    [28] Belayev L,Alonso OF,Busto R,et al.Middle cerebral artery occlusion in the rat by intraluminal suture:Neurological and pathological evaluation of an improved model.Stroke,1996,27:1616–1623.
    [29] Woitzik J,Schneider UC,ThoméC,et al.Comparison of different intravascular thread occlusion models for experimental stroke in rats.J Neuroscience Methods,2006,151(2):224-231.
    [30] Zarow GJ,Karibe H,States BA,et al.Endovascular suture occlusion of the middle cerebral artery in rats:effect of suture insertion distance on cerebral blood flow,infarct distribution and infarct volume.Neurol Research,1997,19(4):409-416.
    [31] Robinson RG.Differential behavioral and biochemical effects of right and left hemispheric cerebral infarction in the rat.Science,1979,205(4407):707-710.
    [32] Parikh RM,Justice A,Moran TH,et al.Lateralized effect of cerebral infarction on spinal fluid monoamine metabolite concentrations in rats.Stroke,1988,19:472-475.
    [33] Traystman RJ,Klaus JA,Courtney DeVries A,et al.Anticonvulsant lamotrigine administered on reperfusion fails to improve experimental stroke outcomes.Stroke,2001,32(3):783-787.
    [34] Kent TA,Quast M,Taglialatela G,et al.Effect of NGF treatment on outcome measures in a rat model of middle cerebral artery occlusion.J Neuroscience Research,1999,55:357-369.
    [35] Schmid-Elsaesser R,Zausinger S,Hungerhuber E,et al.A critical reevaluation of the intraluminal thread model of focal cerebral ischemia:evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry.Stroke,1998, 29(10):2162-2170.
    [36] Goto S,Sampei K,Alkayed NJ,et al.Characterization of a new double-filament model of focal cerebral ischemia in heme oxygenase-2-deficient mice.Am J Physiol Regulatory Integrative Comp Physiol,2003,285:222-230.
    [37] Dittmar MS,Vatankhah B,Fehm NP,et al.The role of ECA transection in the development of masticatory lesions in the MCAO filament model.ExperimentalNeurology,2005,195(2):372-378.
    [38] Zausinger S,Baethmann A,Schmid-Elsaesser R.Anesthetic methods in rats determine outcome after experimental focal cerebral ischemia : mechanical ventilation is required to obtain controlled experimental conditions.Brain Res Protoc,2002,9:112-121.
    [39] Xue QS,Yu BW,Wang ZJ,et al.Effects of ketamine,midazolam,thiopental,and propofol on brain ischemia injury in rat cerebral cortical slices.Acta Pharmacol Sin,2004,25(1):115-120.
    [40] Theodorsson A,Holm L,Theodorsson E.Modern anesthesia and peroperative monitoring methods reduce per- and postoperative mortality during transient occlusion of the middle cerebral artery in rats.Brain Res Protoc,2005,14(3):181-190.
    [41] Wang L,Traystman RJ,Murphy SJ.Inhalational anesthetics as preconditioning agents in ischemic brain.Current Opinion Pharmacology,2008,8(1):104-110.
    [42] Nagate T,Chino T,Nishiyama C,et al.Diluted isoflurane as a suitable alternative for diethyl ether for rat anaesthesia in regular toxicology studies.J Vet Med Sci,2007,69(11):1137-1143.
    [43] Luckl J,Keating J,Greenberg JH.Alpha-chloralose is a suitable anesthetic for chronic focal cerebral ischemia studies in the rat: A comparative study.Brain Research,2008,1191:157-167.
    [44] Bardutzky J,Shen Q,Henninger N,et al.Characterizing tissue fate after transient cerebral ischemia of varying duration using quantitative diffusion and perfusion imaging.Stroke, 2007,38:1336-1344.
    [45] Li F,Omae T,Fisher M,Spontaneous hyperthermia and its mechanism in the intraluminal suture middle cerebral artery occlusion model of rats.Stroke,1999,30:2464-2470.
    [46] van der Worp HB,Sena ES,Donnan GA,et al.Hypothermia in animal models of acute ischaemic stroke:a systematic review and meta-analysis.Brain,2007,130:3063-3074.
    [47] Garg R,Chaudhuri A,Munschauer F,et al.Hyperglycemia,insulin,and acute ischemic stroke : a mechanistic justification for a trial of insulin infusion therapy.Stroke,2006,37:267-273.
    [48] Bederson JB,Pitts LH,Tsuji M,et al.Rat middle cerebral artery occlusion:evaluation of the model and development of a neurologic examination.Stroke,1986,17:472-476.
    [49] Roof RL,Schielke GP,Ren X,et al.A comparison of long-term functional outcome after 2 middle cerebral artery occlusion models in rats.Stroke,2001,32:2648-2657.
    [50] Sicard KM,Henninger N,Fisher M,et al.Long-term changes of functional MRI-based brain function,behavioral status,and histopathology after transient focal cerebral ischemia in rats.Stroke,2006,37:2593-2600.
    [51] Schilichting CLR,Lima KCM,Cestari Junior LA,et al.Validation of a simple and inexpensive method for the quantitation of infarct in the rat brain.Braz J Med Biol Res,2004,37(4):511-521.
    [52] Memezawa H,Minamisawa H,Smith ML,et al.Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat.Exp Brain Res,1992,89(1):67-78.
    [53] Gerriets T,Stolz E,Walberer M,et al.Complications and pitfalls in rat stroke models for middle cerebral artery occlusion:a comparison between the suture and the macrosphere model using magnetic resonance angiography.Stroke,2004,35:2372-2377.
    [54] Heiss WD,Sorensen AG.Advances in stroke 2006—advances in imaging 2006.Stroke,2007,38:238-240.
    [55] Chamorroá,Urra X,Planas AM.Infection after acute ischemic stroke:a manifestation of brain-induced immunodepression.Stroke,2007,38:1097-1103.
    Adibhatla RM, Hatcher JF (2003) Citicoline decreases phospholipase A2 stimulation and hydroxyl radical generation in transient cerebral ischemia. J Neurochem Res 73:308–315
    Adibhatla RM, Hatcher JF (2005) 50-diphosphocholine (CDP-choline) in stroke and other CNS disorders. Neurochem Res 30:15–23
    Adibhatla RM, Hatcher JF, Dempsey RJ (2002) Citicoline: neuroprotective mechanismsin cerebral ischemia. J Neurochem 80:12–23
    Alexandrova MA, Bochev PG (2005) Oxidative stress during the chronic phase after stroke. Free Radic Biol Med 39:297–316
    Carden DL, Granger DN (2000) Pathophysiology of ischaemia reperfusion injury. J Pathol 190:255–266
    Chan PH (2001). Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14
    Chen RM, Chen TL, Chiu WT, Chang CC (2005) .Molecular mechanism of nitric oxide-induced osteoblast apoptosis. J Orthop Res 23462–8
    Costa D, Gomes A, Reis S, et al (2005) Hydrogen peroxide scavenging activity by non-steroidal anti-inXammatory drugs. Life Sci 76:2841–2848
    Crack PJ, Taylor JM (2005) Reactive oxygen species and the modulation of stroke. Free Radic Biol Med 38:1433–1444
    Crack PJ, Taylor JM, Flentjar NJ, et al(2001) Increased infarct size and exacerbated apoptosis in the glutathione peroxidase-1 (Gpx-1) knockout mouse brain in response to ischemia/reperfusion injury. J Neurochem 78:1389–1399
    Dhar-Mascareno M, Carcamo JM, Golde DW Manya (2005) Hypoxia- reoxygenation-induced mitochondrial damage and apoptosisin human endotheliaala auriscells are inhibited by vitamin C. Free Radic Biol Med 38:1311–1322
    Endo H, Nito C, Kamada H, Nishi Tand Pak H Chan (2006a) Activation of the Akt/GSK3b signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J Cereb Blood Flow Metab 26:1479–1489
    Endo H, Saito A, Chan PH (2006b) Mitochondrial translocation of p53 underlies the selective death of hippocampal CA1 neurons after global cerebral ischaemia. Biochem Soc Trans 34:1283–1286
    Fang YZ, Yang S, Wu G (2002) .Free radicals, antioxidants, and nutrition.Nutrition 18:872–9
    Figueroa S, Oset-Gasque MJ, Arce C, et al(2006) Mitochondrial involvement in nitricoxide-induced cellular death in cortical neurons in culture. J Neurosci Res 83:441–449
    Fujimura M, Morita-Fujimura Y, Murakami K, et al(1998) Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 18:1239–1247
    Fujimura M, Morita-Fujimura Y, Noshita N, et al (2000) The cytosolic antioxidant copper/zinc-superoxide dismutase prevents the early release of mitochondrial cytochrome c in ischemic brain after transient focal cerebral ischemia in mice. J Neurosci 20:2817–2824
    Gilgun-Sherki Y, Rosenbaum Z, Melamed E, et al (2002) Antioxidant therapy in acute central nervous system injury. Curr State 54:271–284
    Herrmann W, Knapp JP (2002) Hyperhomocysteinemia: a new risk factor for degenerative diseases. Clin Lab 48:471–81
    Hewett SJ, Uliasz TF, Vidwans AS, Hewett JA. (2000) Cyclooxygenase-2 contributes to N-methyl-D-aspartate- mediated neuronal cell death in primary cortical cell culture. J Pharmacol Exp Ther 293:417–425
    Hillered L, Vespa PM, Hovda DA (2002) Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma 22:3–41
    Hou ST, MacManus JP (2002) Molecular mechanisms of cerebral ischemia-induced neuronal death. Int Rev Cytol 221:93–148
    Huang J, Agus DB, Winfree CJ, et al(2001) Dehydroascorbic acid,a blood–brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. Proc Natl Acad Sci USA 98:11720–11724
    Ishibashi N, Prokopenko O , Weisbrot-Lefkowitz M, et al (2002) Glutathione peroxidase inhibits cell deathand glial activation following experimental stroke. Mol Brain Res109:34–al-721
    Ishige K, Schubert D, Sagara Y (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med 30:433–446
    Kamada H, Nito C, Endo H, Chan PH (2006) Bad as a converging signaling moleculebetween survival PI3-K/Akt and death JNK in neurons after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2006
    Metodiewa D, Koska C (2000) Reactive oxygen species and reactive nitrogen species: relevance to cyto(neuro)toxic events and neurologic disorders. An overview. Neurotox Res 1:197–233
    PaternòR, Ruocco A, PostiglioneaA, et al (2004) Reconstituted high-density lipoprotein exhibits neuroprotection in two rat models of stroke. Cerebrovasc Dis 17:204–211
    Schneider A, Martin-Villalba A, Weih F, et al (1999) NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat Med 5:554–559
    Schwartz-Bloom RD, Sah R (2001) g-Aminobutyric acid neurotransmission and cerebral ischemia. J Neurochem 77:353–371
    Sugawara T, Chan PH (2003) Reactive oxygen radicals and pathogenesisof neuronal death after cerebral ischemia. Antioxid Redox Signal 5:597–607
    Sugawara T, Fujimura M, Morita-Fujimura Y, et al(1999) Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J Neurosci 19:1–6
    Sugawara T, Fujimura M, Noshita N, et al(2004) Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx 1:17–25
    Taylor JM, Crack PJ (2004) Impact of oxidative stress on neuronal survival. Clin Exp Pharmacol Physiol 31:397–406
    Toescu EC (2004) Hypoxia sensing and pathways of cytosolic calcium increases. Cell Calcium 36:187–199
    Umemoto S, Tanaka M, Kawahara S, et al (2004) Calcium antagonist reduces oxidative stress by upregulating Cu/Zn superoxide dismutase in strokeprone spontaneously hypertensive rats. Hypertens Res 27:877–885
    Won SJ, Kim DY, Gwag BJ (2002) Cellular and molecular pathways of ischemic neuronal death. J Biochem Mol Biol 35:67–86
    Zipfel GJ, Babcock DJ, Lee JM, Choi DW (2000) Neuronal apoptosis after CNS injury: the roles of glutamate and calcium. 17:857–869

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700