重组人类骨保护蛋白毕赤酵母分泌性表达株的构建及系列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨保护蛋白(Osteoprotegerin,OPG)及其配基(即核因子-κB受体激活因子配基,Receptor Activator of Nuclear Factor-κB Ligand,RANKL)对破骨细胞的分化和活性具有关键性调节作用,其中RANKL对破骨细胞的活性和形成起着决定性作用,OPG作为RANKL的可溶性假受体竞争性抑制其与破骨前体细胞或成熟破骨细胞膜受体(Receptor Activator of Nuclear Factor-κB,RANK)结合。成人体内两者均由成骨细胞、骨髓间充质细胞表达,作为破骨细胞局部调节终极环节,许多代谢性骨病均与成骨细胞系的这两种细胞因子表达异常有关,并且多数影响骨代谢的激素类因子是通过影响成骨细胞系的RANKL和OPG表达来调节破骨细胞的分化和活性的。OPG是目前所发现唯一的局部负向调节因子,因此对于骨吸收类疾病具有良好的药用潜质。
     甲醇营养型酵母菌是一种理想的外源基因表达系统,兼有原核细胞良好的可操作性和真核系统的翻译后加工的双重特点。本实验根据OPG的结构特征,选择其功能片段(D1-D4)作为目的基因一,并选取IgG_1的Fc片段作为目的基因二,拟于P.pastoris酵母菌构建rhOPG-Fc融合蛋白的表达株。利用RT-PCR技术获得编码OPG(D1-D4)和IgG_1-Fc的基因,同时引入限制性内切酶XhoI和XbaI的酶切位点,通过XhoI和XbaI酶切作用以及噬菌体聚合酶T4作用,构建分泌型表达载体pPICZαB/OPG-Fc。经过测序证实:插入序列与预期结果相吻合,且接口处序列正确,未改变读码框架。利用该载体成功地构建和筛选得到了P.pastoris酵母菌高效分泌性表达株。X33/OPG-Fc菌株在甲醇诱导下(摇瓶发酵)与亲和层析纯化得到了目的蛋白-rhOPG-Fc,并经过SDS-PAGE电泳证实表达蛋白正确。并且以小鼠破骨细胞为作用体外实验对象,对摇瓶发酵获得的rhOPG-Fc进行生物活性验证和有效浓度测定,结果证实:于2×10~(-6)~2×10~(-8)g/ml,rhOPG-Fc对小鼠破骨前体细胞的增殖、破骨细胞分化和活性均有抑制作用。在此基础上,对X33/OPG-Fc菌株进行生物反应器发酵,并且对反应体系和纯化过程进行了优化,使rhOPG-Fc的产量达到0.2g/L。
     以往研究表明:多数骨吸收类疾病的发生均与骨骼局部的OPG表达降
    
    解放军总医院·军医进修学院
    博士研究生学位论文
    低有关,因此补充外源性OPG是治疗此类疾病的理想方法,本研究以骨巨
    细胞瘤和原发性骨质疏松症作为骨吸收类疾病的代表,探讨thOPG一Fc作为
    破骨细胞抑制剂的临床应用价值。首先建立了骨巨细胞瘤间质细胞系,在
    此基础上研究肿瘤细胞的染色体核型异常与RANKL和OPG表达差异,进
    而在体外条件下观察到毒性剂量的thoPG一Fc(2、1丫留ml)对骨巨细胞瘤
    细胞的生长有抑制作用、在生理剂量下(2、10一7g/ml)对其有促成骨活性;
    对雌性大鼠行卵粱切除术复制骨质疏松动物模型,通过随机对照研究观察:
    体内条件下,thOPG一Fc可以抑制雌激素缺乏所引起的骨丢失。
     综上所述,本研究构建的X33/o PG一F。菌株能够稳定、高效地表达目的
    蛋白thOPG一Fc,该蛋白不仅生理活性等同于OPG全长肤链,而且作为嵌
    合蛋白具有更好的生物相容性和体内稳定性。进而通过体内、体外实验证
    实thOPG一Fc具有良好的抗骨吸收作用,而且可以抑制骨巨细胞瘤细胞生长
    和促进其成骨活性,为thOPG一Fc的临床应用莫定了理论基础。
Bone is a dynamic tissue that is morphogenized and maintained by continuous formation and resorption. An imbalance between bone formation and resorption causes such metabolic bone diseases as osteopetrosis and osteoporosis. Osteoclasts, the multinucleated giant cells that resorb bone, develop from hematopoietic cells of the monocyte/macrophage lineage. Osteoblasts, as well as bone marrow stromal cells, support osteoclast development through a mechanism of cell-to-cell interaction with osteoclast progenitors. Bone remodeling and bone loss are controlled by a balance between the tumor necrosis factor family molecule receptor activator of nuclear factor-KB ligand (RANKL) and its decoy receptor osteoprotegerin (OPG). OPG is a key factor acting as a negative regulator against osteoclasts' diferantiation and activation, through competitively inhibiting RANKL binding to its membrane receptor -Receptor Activator of Nuclear Factor-KB (RANK). The discovery of ODF, OPG/OCIF, and RANK opens a new era in the investigatio
    n of the regulation osteoclast differentiation and function. OPG is a member of TNFR superfamily, which active site is its domain 1-4, and a secretory glycoprotein. The methylotrophic yeast Pichia pastoris has become a powerful host for the heterologous expression of proteins. In order to provide OPG for the pre-clinical experiments, we are working on the high-throughput expression of human proteins. Therefore, cDNAs of OPG 22-201 aas and IgG1-Fc are cloned for secretory expression. The resulting fusion proteins carry affinity tags (IgG1-Fc) at the N- and C-terminus for the immunological detection and chromatographic purification of protein. Expression is controlled by the tightly regulated and highly inducible alcoholoxidase 1 (AOX1) promoter. We have developed a cultivation and induction protocol amendable to automation to increase the number of clones screened for protein expression. Using the optimized feeding and induction protocol, we are now able to screen for and identify expression clones which prod
    uce heterologous protein with a yield of 0.2g/L culture
    
    
    volume or higher.
    To assess the effect of different dosages of rhOPG-Fc on the differentiation and activation of osteoclasts, RAW264-7 cell line was employed as preosteoclast coculture with mouse osteoblasts for osteoclastogenesis. The results of in vitro experiments showed that rhOPG-Fc has different effects on preosteoclasts and osteoblasts at different dosages. At 2 × 10-6~2×10~8g/ml, rhOPG-Fc could disrupted differentiation and activation of osteoclasts and proliferation of preosteoclasts, and at 2 × 10-4g/ml or higher, has a toxic effect on bone cells and stomral cells from giant cell tumor of bone. The bone mass of ovariectomied rats that were abdominal injected rhOPG-Fc 5mg/kg/d × 14d did not decrease significantly 3 months after administration. These findings led us to conclude that the effect of rhOPG-Fc on anti-bone resorption is similar to OPG full-length protein.
引文
1. W.S. Simonet, D.L.Lacey, C.R.Cunstan, et al. Osetoprotegerin: A Novel Secreted Protein Involved in the Regulation of Bone Density. Cell, 1997,89:309-319.
    2. Morony S., Caparelli C., Lee R., et al. A chimeric form of osteoprotegerin inhibits hypercalcemia and bone resorption inhibited by IL-1 beta, TNF-alpha, PTH, PTHrP, and 1,25(OH)2D3. J Bone Miner Res, 1999, 14:1478-1485.
    3. Mizuno A., Amizuka N., Irie K., et al. Severe pstepporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophs Res Commun, 1998, 247: 610-615.
    4. Bucay N., Sarosi I., Dunstan C.R., et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev, 1998, 12:1260-1268
    5. Min H., Morony S., Sarosi I, et al. Osteoprotegerin reverses osteoporosis by inhibiting andosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med, 2000,192: 463-474.
    6. Oliver SG. From DNA sequence to biological function. Nature, 1996, 376:597-600.
    7. Kondo K, Saito T, Kajiwar Set al. A transformation system for the yeast Candida utilities: use of a modified endogenous ribosomal gene as a drug-resistant marker and ribosomal DNA as an integration target for vector DNA.J. Bacteriol. 1995.177(24): 7171~7127.
    8. Kondo K, Miura Y, Sone H,et al.. High-level expression of a sweet protein, mone 11in, in the food yeast Candida utilities. Nature Biotechnology, 1997,15: 453~457.
    9. Laroche Y, Storme V, De Meutter J et al. High-level secretion and very efficient isotopic labeing of tick anticoagulant peptide (TAP) expressed in the mehylotopic yeast, Pichia pastoris. Biotechnology, 1994, 12: 1119~1124.
    10. Le Dall M-T, Nicaud J-M, Gaillardin. Multiple-copy integratdri in yeast Yarrowia lipolytica. Curr. Genet. 1994, 26: 38~44.
    11. Lipps G, Fullkrug R, Beck E. Cathepsin B of Schistosoma mansoni. J. Biol. Chem. 1996. 271: 1717~1725.
    12. Raymond CK, BukOwski T, Hoderman SD et al. Development of the mehyltedic yeast Pichia methanolica for expression of the 65kiledalbo isoform of human glutamate
    
    decardoxlase. Yeast, 1998. 1.4:11~23.
    13. Rodriguez M, Rubiera.R, Penichet M et al. High level expression of the b. microplus bm86 antigen in the yeast Pichia pastoris forming highly irnrnunogenic particles for cattle. J. Biotechno. 1994 33: 135~146.
    14. Romanos MA, Clare JJ, Beesley KM et al. Recombinant Bordetella pertussis pertactin(p69) from the yeast Pichia pastoris: high level production and immunology properties. Vaccine, 1991, 9:901-906.
    15. Tschhopp JF, Sverlow G, Kosson R et al. High-level secretion of glycosylatedinvertase in the methylotrophic yeast, Pichia pastoris. Biotechnology, 1987. 5: 1305~1308.
    16.J.Sambrook,D.Rusell 主编,黄培堂 等译.分子克隆实验指南,第三版,北京:科学出版社,2002.
    17. Riffault S, Carrat C, van Reeth K, Pensaert M, Charley B. Interferon-alpha-producing cells are localized in gut-associated lymphoid tissues in transmissible gastroenteritis virus (TGEV) infected piglets, Vet Res, 2001, 32(1): 71~79.
    18.孙为民,王惠琴主编.细胞因子研究方法学.第一版.北京:人民卫生出版社,1999.
    19. Hiroyuki Takai, Masahiro Kanematsu, Kauki Yano, et al. Transforming growth factor-β stimulates production of Osteoprotegerin/Osteoclastgenesis inhibitory factor by bone marrow stromal cells. J Biological chemistry, 1998,273:27091-27096.
    20. Helena Brndstrm, Kenneth B. Jonsson, Olle Vidal, et al. Tumor Necrosis Factor-α andβ upregulate the levels of Osteoprptegerin mRNA in human osteosarcoma mg-63 cells. Biochemical and Biophysical Research Communications, 1998, 248: 454-457.
    21. Lorenz C. Hofbauer, Sundeep Khosla, Colin R. Dunstan, et al. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology, 1999, 140: 4367-4370.
    22. Sun-Kyeong Lee and Joseph Alorenzo. Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow culture: Correlation with osteoclast-like cell formation. Endocrinology, 1999, 140: 3552-3561.
    23. L.C.Hofbauer, D.L.Lacey, C.R.Dunstan, et al. Interleukin-1β and tumor necrosis
    
    factor-α, but not interleukin-6 stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone, 1999, 25: 255-259.
    24. Olle N.A.Vidal, Klara Sjogren, Bengt I.Eriksson, et al. Osteoprotegerin mRNA is increase by interleukin-1αin the human osteosarcoma cell line mg-63 and in the human osteoblast-like cells. Biochemical Biophysical Research Communications, 1998, 248: 696-700.
    25. Helena Brndstrm, Kenneth B.Jonson, Claes Ohlsson, et al. Regulation of Osteoprotegerin mRNA Levels by prostaglandin E2 in human bone marrow stroma cells. Biochemical and Biophysical Research Communications, 1998, 247: 338-341.
    26. Lorenz C. Hofbauer, Francesca Gorl, B. Lawrence Riggs, et al. Stimulation of Osteoprotegerin ligand and inhibition of Osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocoticoid -induced osteoporosis. Endocrinology, 1999, 140:4382-4389.
    27. Robert S. Weinstein, Robert L. Jilka, A. Michael Parfitt, et al. Inhibition of Osteoblastogenesis and promotion apoptosis of osteoblasts and osteocytes by glucocoticoids. The Journal of Clinical Investigation, 1998, 102: 274-282.
    28. Tomoyasu A, Goto M, Fujies N, et al. Characterization of monomeric and homodimeric forms osteoclastgenesis inhibitory factor. Biochem Biophys Res Com, 1998, 245:382-387.
    29. T. Suda, N. Udagawa, I. Nakamura, et al. Modulation of Osteoclast Differentiation by Local Factors. Bone, 1995, 17: 87S-91S.
    30. Byoung S.Kwon, Sa Wang, Nobuyuki Udagawa, et al. TR1, a new member of the tumor necrosis factor receptor superfamily, induces fibroblast proliferation and inhibits osteoclastogenesis and bone resorption. The FASEB Journal, 1998, 12: 845-854.
    31. D.L. Lacey, E.Timms, H.L. Tan, et al. Osteoprotegerin Ligand Is a Cytokine that Regulates Osteoclast Differentiation and Activation. Cell, 1998, 93: 165-176.
    32. Dirk M. Anderson, Eugene Maraskovsky, William L. Billingsley, et al. A Homologue of The TNF Receptor and its Ligand Enhance T-cell Growth and Dendritic-Cell Function. Nature, 1997, 390: 176-179.
    
    
    33.李育阳 主编.基因表达技术.第一版.北京:科学出版社,2001.
    34.杜中军,朱水芳,黄文胜等.毕赤酵母外源基因表达系统研究进展.生物技术通报,2002(4):7-11.
    35. Cregg, JM; Cereghino, JL; Shi, J, et al. Recombinant protein expression in Pichia pastoris. MoI-Biotechnol. 2000 16(1): 23-52.
    36.欧阳立明,张惠展,张嗣良等.生物化学与生物物理进展,2000,27:151-154.
    37. Invitrogen Catalogue. Invitrogen. 2003: 135-197.
    38.朱立平 沉学清 主编.免疫学常用实验方法,第一版.北京:人民军医出版社,2000.
    39. Naoyuki Udagawa, Naoyuki Takahashi, Takuhiko Akatsu, et al. The Bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation coculture with mouse spleen cells. Endocrinology, 1989, 125: 1805-1812.
    40. Patricia Ducy, Gerard Karsenty. Genetic control of cell differentiation in the skeleton. Cell Biology, 1998, 10: 614-619.
    41. Jun H. S., Akiko K., Kazunori O. et al. In vitro differentiation of the murine macrophage cell line bdm-1 into osteoclast-like cells. Endocrinology, 1995, 136: 4285-4292.
    42. John E. Horton, Lawrence G. Raisz, Joost J. Oppenheim. Bone resorbing activity supernatant fluid from culture human peripheral blood leukocytes. Science, 1972, 177: 793-795.
    43. Naoyuki Takahashi, Takuhiko Akatsu, Nobuyuki Udagawa, et al. Osteoblast cells are involved osteoclast formation. Endocrinology, 1988,123:2600-2602.
    44. Naoyuki Takahashi, Nobuyuki Udagawa, Takuhiko Akatsu, et al. Deficiency of Osteoclast in osteopetrotic mice is due to a defect in local microenvironment provided by osteoblastic cells. Endocrinology, 1991, 128:1792-1796.
    45. Whitaker KB, Cox TM, Moss DW. An immunoassay of human band 5 ("tartrate-resistant") acid phosphotatase that involves the use of anti-porcine uteroferrin antibodies. Clin Chem, 1989, 35: 86-89.
    
    
    46. Yam LT. Clinical significance of the human acid phosphatases. Am J Med, 1974, 56: 604-617.
    47. Mona SC, David RE, Caren MG. Molecular basis and clinical application of biological markers of bone turnover. Endocrine Reviews, 1996, 17: 333-368.
    48. Hisahiro Yoshida, Shin-Ichi Hayashi, Takahiro Kunisada, et al. The Murine Mutation Osteopetrosis is in the Coding Region of the Macrophage Colony Stimulating Factor Gene. Nature, 1990, 345: 442-444.
    49. Kiyoko S. Akagawa, Naomi Takasuka, Yuko Nozaki, et al. Generation of CD1+RelB+ Dendritic Cells and Tartrate-Resistant Acid Phosphatase-Positive Osteoclast-Like Multinucleated Giant Cells From Human Monocytes. Blood, 1996, 88: 4029-4039.
    50. Patricia Ducy, Gerard Karsenty. Genetic Control of Cell Differentiation in the Skeleton. Cell Biology, 1998, 10:614-619
    51. T. Suda, N. Udagawa, N. Takahashi. Modulation of osteoclast differentiation by local factors. Bone, 1995, 17: 87-91.
    52. John E. Horton, Lawrence G. Raisz, Joost J. Oppenheim. Bone Resorbing Activity Supernatant Fluid from Culture Human Peripheral Blood Leukocytes. Science, 1972, 177: 793-795.
    53. Rodan G. A., Martin T. J. Role of osteoblasts in hormonal control of bone resportion: a hypothesis. CalcifTissue Int, 1981, 33:349-351.
    54. Takahashi N., Udagawa N., Suda T. Osteoblastic calla are involve in osteoclast formation. Endocrinology, 1988, 123:2600-2602.
    55. Yoshida H., Hayashi H., Kunisada T., et al. The murine mutation osteopetrosis is in the macrophage colony stimulating factor gene. Nature, 1990, 345: 442-444.
    56. Felix R., Cecchini, M.C., Flesich H. Macrophage colony stimulating factor restores in vivo bone resorption in the op/op osteopetrotic mouse. Endocrinology, 1990, 127: 2592-2594.
    57. Fuller K., Owens J.M., Jagger C.J., et al. Macrophage colony stimulating factor stimulaters survival and chemotactic behavior in isolated osteoclasts. J Exp Med, 1993, 178: 1733-1744.
    
    
    58. Hisataka Yasuda, Nobuyuki Shima, Nobuki Nakagawa, et al. Osteoclast Differentiation Factor is a Ligand For Osteoprotegerin/Osteoclastgenesis -Inhibitory Factor and is identical to TRANCE/RANKL. Cell Biology,1998, 95:3597-3602.
    59. Sekler I, Kopito R, Casey JR. high level expression, partial purification, and functional reconstitution of the human AE1 anion exchange in Saccharomyces cerevisiae. J. Biol. Chem. 1995.270: 21028~21034.
    60.贺小贤主编.生物工程原理,第一版.北京:化工出版社,2003.
    61. Van Den Hazel B.H., Kielland-Brandt M.C., Winther J.B. Yeast, 1996, 12:1-16.
    62.周祥山,范卫民,张元兴.不同甲醇流加策略对重组毕赤酵母高密度发酵生产水蛭素的影响.生物工程学报,2002,18:348-351.
    63. Dahlin DC. Bone tumors: general aspects and data on 6221 cases. Springfield: Charies C Thomas, 1978.
    64. Dahlin DC, Cupps RE and Johnson EW JR. Giant cell tumor. A study of 195 cases. Cancer, 1970, 25: 1061-1069.
    65.徐万鹏,冯传汉主编.骨科肿瘤学,第一版.北京:人民军医出版社,2001.
    66. Huvos AG. Bone tumor: Diagnosis, treatment and prognosis. Philadephia: WB. Sanders, 1979.
    67. Jaffe JL, Lichtenstein L and Portis RB. Giant call tumor of bone: Its pathological appearance, grading, supposed variants, and treatment. Arch Pathol, 1940; 30: 993.
    68. Huang-L, Xu-J, Wood-DJ, Zheng-MH, AM-J-PATHOL. Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF- in giant cell tumor of bone: Possible involvement in tumor cell-induced osteoclast-like cell formation. American Journal of Pathology. 2000; 156(3): 761-767.
    69. Atkins-GJ, Haynes-DR, Graves-SE, Evdokiou-A, Hay-S, Bouralexis-S, Findlay-DM. Expression of osteoclast differentiation signals by stromal elements of giant cell tumors. Journal of Bone and Mineral Research. 2000; 15(4): 640-649.
    70. Bardi G., Pandis N., Mandahl N. Chromosomal abnormalities in giant cell tumor of bone. Cancer genet cytogenet, 1991, 57: 161-171.
    
    
    71. Bridge J.A., Neff J.R., Mouron B.J. Giant cell tumor of bone chromosomal analysis of 48 speciments and review of the literature. Cancer genet cytogenet, 1992, 58:2-18.
    72. Schwartz H.S., Butler M.G., Jenkins R.B., et al. Telomeric associations and consistant growth factor overexpression dectected in giant cell tumor of bone. Cancer genet cytogenet, 1991, 56: 263-270.
    73. Drik M., Anderson E. M., William L.B., et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. 1997, 390:175-179.
    74. Kunihiko Kodaira, Koko Kodaira, Atsuko Mizuno, et al. Cloning and characterization of the gene encoding mouse osteoclast differentiation factor. Gene, 1999, 230: 121-127.
    75.司徒镇强,吴军正 主编.细胞培养,第一版.西安:世界图书出版西安公司,1996.
    76. Gregory M. Preclinical models of bone metastases. Seminars in Oncology, 2001, 28: 2-8.
    77. James R. B. Advances in the biology and treatment of myeloma bone disease. Seminars in Oncology, 2002, 29: 11-16.
    78. Fleisch, Graham R, Russell G, et al. Diphosponates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in in vivo. Science, 1969, 165: 1262-1265.
    79. Black DM, Reiss TF, Neitt MC, et al. Design of the fracture intervene trial. Osteoporosis Int, 1993, 3 (suppl 3): S29.
    80. Wasnich RD, et al. Skeletal benefits of alendonate treatment are similar for early poetmenopausal assian and Caucasian women. Osteoporosis Int, 1999, 9: 445-460.
    81. A.M. Parfit. Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone, 2002, 30: 5-7.
    82. D.B. Burr. Targeted and nontargeted remodeling. Bone, 2002, 30: 2-4.
    83. Chinese Statistic Bureau Data, 1996.
    84. Ray NF, Chan JK. Medical expenditures for the treatment of osteoporotic fractures in the United States In 1995: Report from the National Osteoporosis Foundation. J Bone Miner Res, 12: 24-35.
    
    
    85. Jee WSS. The skeletal tissue, In Wiss L ed. Cell and tissue biology, A textbook of histology. Baltimore; Urban and Schwarzenberg, 1988, Chapter 7.
    86. Frost HM. Introduction to a new skeletal physiology. Vol Ⅰ and Ⅱ, Pueblo; Pajaro group, 1995.
    87. Jee WSS. Structure and function of bone tissue, In: Bronner F, Worrell R V. eds. Orthopaedics, principles of basis and clinical science, Boca Raton: CRC Press, 1999, Chapter Ⅰ.
    88.郭世绂主编.骨质疏松基础与临床.第一版.天津:天津科技出版社,2001.83-85
    89. Parfitt A.M., Mathews C.H.E., Villanueva A.R., et al. Relationships between surface, volume and thichness of iliac trabcalar bone in aging and osteoporosis: implications for the microanatomic and cellalur mechanism of bone loss. J Clin Ivest, 1983, 72, 1396-1409.
    90. Jeroen A, Steven B, Geert L, Jan D. Interspecies differences in bone composition, density, and quanlity: potential implications for in vivo bone research. Endocrinology, 1998, 139: 663-670.
    91. Thompson DD, Simmons HA, Pirie CM, Ke HZ. 1995 FDA guidelines and animal models for osteoporosis. Bone, 1997, 17:125S-133S.
    92. Lorenz C.H., Sundeep K., Colin R.D., et al. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cell. Endocrinology, 1999, 140: 4367-4370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700