PKC诱导谷氨酸能受体转运上膜的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谷氨酸受体是海马内主要的兴奋性神经递质受体,离子型谷氨酸受体包括NMDA受体、AMPA受体和KA受体。它们在神经发育、学习记忆、感知等方面起着重要作用。其中一个重要的功能就是参与突触传递的调节,产生突触可塑性。长时程增强(long-term potentiation, LTP)或长时程抑制(long-term depression, LTD)被认为是突触可塑性的重要细胞模型,突触后AMPA受体数量的增加或减少是LTP或LTD产生的重要机制之一。NMDA受体作为“分子开关”触发突触可塑性,主要决定LTP的诱导。而AMPA受体则主要参与LTP的表达和维持。当发生LTP时,通过增加突触后AMPA受体的数量和效率而增加兴奋性突触后电流。因此,NMDA和AMPA受体的膜转运被认为是突触可塑性调节的重要环节。
     AMPA受体和NMDA受体都可以被一系列的蛋白激酶磷酸化,而磷酸化的水平则直接影响了这些受体的功能特性,包括通道电导和受体膜定位等。近几年研究发现,PKC能促进NMDA受体和AMPA受体的转运上膜,但其具体的分子机制及两种转运的可能联系还有待于进一步探讨。本文主要目的旨在探讨PKC调控NMDA和AMPA受体转运上膜的可能分子机制。
     一、PKC通过间接激活CaMKII促进NMDA受体的转运
     NMDA受体在兴奋性突触功能中起着至关重要的作用。多种形式的突触可塑性都依赖于NMDARs的激活以及随后胞内Ca~(2+)浓度的增加。因此,调节NMDARs功能对突触可塑性具有非常重要的意义。我们采用免疫印迹、免疫沉淀、免疫荧光染色,结合电生理学方法及小分子肽干扰技术,研究PKC激活后NMDA受体转运的可能分子机制。我们的研究结果发现,PKC激活不仅能够促进突触后NMDA受体表达增加,从而直接上调突触后NMDA受体功能,而且能通过间接激活Src酪氨酸激酶来上调NMDA受体功能。除此以外, PKC还可以通过与NMDA受体结合蛋白(NAPs)相互作用而促进NMDA受体转运到细胞膜。本文中我们发现CaMKII可能是一种介导PKC激活诱导的NMDA受体转运增加的NAP蛋白。PKC激活引起CaMKII自身磷酸化水平增加,以及随后CaMKII与NMDA受体结合增加,同时伴随功能性NMDA受体插入到突触后位点。PKC诱导的增强可以被CaMKII抑制剂AIP削弱,也可以被选择性的打断CaMKII与NR2A或NR2B结合的小肽Tat-NR2A和Tat-NR2B所抑制。而且,Tat-NR2A和Tat-NR2B各自选择性的阻断PKC诱导的LTP的诱导和表达阶段。进一步相互排除实验证明PKC和CaMKII共享某一共同信号通路增强NMDA受体的转运和LTP产生。总之,我们的结果支持这样一个解释或假设,即PKC通过间接激活CaMKII自身磷酸化使CaMKII与NMDA受体结合增加,从而促进NMDA受体的转运。
     二、PI3K通过激活aPKCλ调控AMPA受体的转运
     AMPA受体主要介导快速的突触传递,参与LTP的表达和维持。突触后AMPA受体数量变化和功能特性的调节可能是突触可塑性发生的一个主要机制。因此,了解AMPA受体转运的分子机制将具有非常重要的意义。我们采用免疫印迹、免疫沉淀、免疫荧光染色,结合电生理学方法及小分子肽干扰技术,研究PKC对AMPA受体转运的可能分子机制。我们的研究结果表明,一种特殊类型的非典型PKC——aPKCλ(atypical PKCλ)是PI3K诱导LTP的必要条件,可能是PI3K通过间接激活aPKCλ,促进功能性GluR1在突触后的表达,从而引起LTP;进一步研究发现,P62蛋白作为衔接蛋白(adaptor protein)辅助形成GluR1- P62-aPKCλ复合体,从空间上拉近aPKCλ与GluR1距离,促进aPKCλ对GluR1的磷酸化作用,进而调节其转运上膜。
Glutamate receptors are the predominant excitatory neurotransmitter in hippocampus. Ionotropic glutamate receptors (iGluRs) are a major class of heteromeric ligand-gated ion channels and mediate the majority of the excitatory neurotransmission in the vertebrate central nervous system (CNS). iGluRs can be classified as N-methyl-D-aspartate (NMDA) receptor or the non-NMDA receptor, which can be further subdivided intoα-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, or kainate (KA) receptor. These receptors are important for neural development, learning and memory and cognition. One of the major functions of glutamate receptors appears to be the modulation of synaptic transmission, resulting in synaptic plasticity. An important cellular models of synaptic plasticity in the mammalian brain are the long-term depression (LTD) and long-term potentiation (LTP) that are generated at excitatory synapses on hippocampal CA1 pyramidal cells.
     An increase or decrease in the number of ionotropic glutamate receptors on a post-synaptic cell may lead to long-term potentiation or long-term depression of that cell, respectively. NMDA receptor, as a“molecular switch”, triggers synaptic plasticity and contributes to the induction of LTP. While AMPA receptor is important for memory storage and participates in the expression and maintainance of LTP. During LTP, excitatory postsynaptic current (EPSC) is enhanced by the increased numbers and efficiency of AMPA receptor. Therefore, the trafficking of NMDA or AMPA receptor is critical for the regulation of syanptic plasticity.
     NMDA and AMPA receptor can be phosphorylated by a series of protein kinase (such as PKC, PKA, CaMKII et al.), which directly influence their functional property, including channel localization, conductance, and open probability. Recent studies have shown that PKC promotes delivery of NMDA or AMPA receptor to surface membrane. However, the detailed molecular mechanisms remain unclear. Thus, The primary aim of the study was to investigate the possible molecular mechanism of NMDA or AMPA receptor trafficking regulated by PKC.
     1. Protein kinase C promotes NMDA receptor trafficking by indirectly triggering CaMKII autophosphorylation
     The NMDA receptor (NMDAR) plays a central role in the function of excitatory synapses. Many forms of synaptic plasticity depend on NMDA receptor activation and subsequent increase of intracellular Ca2+. Therefore, it is very important for synaptic plasticity to regulate functional NMDAR. Using the methods of western blotting, immunoprecipitation, immunofluorescene and electrophysiology, we demonstrate the possible mechanism of NMDAR trafficking induced by protein kinase C (PKC). Our results showed that PKC promotes NMDA receptor trafficking to the cell surface or indirectly activates Src and upregulates NMDA receptor function. PKC promotes NMDA receptor trafficking to the cell surface via interaction with NMDAR-associated proteins (NAPs). Here we show that CaMKII is such a NAP that mediates potentiation of NMDAR trafficking by PKC. PKC activation elicits concurrent potentiation in both CaMKII autophosphorylation and association between CaMKII and NMDARs, accompanying by functional NMDAR insertion, at postsynaptic site. This PKC-induced potentiation was abolished by CaMKII antagonist AIP or by selectively disturbing the interaction between CaMKII and NR2A or NR2B with peptide Tat-NR2A and Tat-NR2B. The PKC-tyrosine kinase Src signaling pathway contributed to the potentiation of NMDA channel activity but was not required for PKC-induced NMDAR trafficking. Moreover, Tat-NR2A and Tat-NR2B completely abolished PKC-induced long-term potentiation (LTP) respectively. Further mutual occluding experiments demonstrate that PKC and CaMKII share common signaling pathway in potentiation of NMDAR trafficking and LTP production. Taken together, our present results support the interpretation that PKC promotes NMDA receptor trafficking by indirectly triggering CaMKII autophosphorylation and subsequent increased association with NMDARs, , which appears to be critical for synaptic palsticity..
     2. Activation of aPKCλis required for AMPA receptors insertion during PI3K-induced LTP.
     AMPA receptors mediate fast synaptic transmission at a majority of excitatory synapses, and participate in the expression and maintainance of LTP. The number and functional property of AMPA receptor (AMPAR) in postsynaptic sites is widely regarded as a major determinant of synaptic plasticity. Therefore, it is very important for us to understand an underlying mechanism of AMPA receptor trafficking. Using the methods of western blotting, immunoprecipitation, immunofluorescene and electrophysiology, we illustrate the role of PKC in modulating the trafficking of AMPA receptor in synapse. Our results demonstrated that aPKCλ, a specifically atypical PKC, is necessary and sufficient for PI3K-induced LTP. aPKCλmay be activated indirectly by PI3K and promotes GluR1 insertion to postsynaptic membrane. Further studies have shown that P62, as adaptor protein, mediateds the formation of GluR1-P62-aPKCλcomplex, and recruits GluR1 closer to aPKCλ. Then aPKCλphosphorylates GluR1 at ser818 and regulates AMPA receptor trafficking to postsynaptic membrane.
引文
[1] Constantine-Paton M., Cline H.T. LTP and activity-dependent synaptogenesis: the more alike they are, the more different they become. Curr Opin Neurobiol. 1998, 8(1):139-148. Review.
    [2] Zoghbi H.Y., Gage F.H., Choi D.W. Neurobiology of disease. Curr Opin Neurobiol. 2000, 10(5):655-660. Review.
    [3] Cline H.T., Debski E.A., Constantine-Paton M. N-methyl-D-aspartate receptor antagonist desegregates eye-specific stripes. Proc Natl Acad Sci U S A. 1987, 84(12):4342-4345.
    [4] Kleinschmidt A., Bear M.F., Singer W. Blockade of "NMDA" receptors disrupts experience-dependent plasticity of kitten striate cortex. Science. 1987, 238(4825):355-358.
    [5] Morris R.G., Anderson E., Lynch G.S., Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature. 1986, 319(6056):774-776.
    [6] Whitlock, J.R., Heynen, A.J., Shuler, M.G., and Bear, M.F. Learning induces long-term potentiation in the hippocampus. Science 2006, 313: 1093-1097.
    [7] Lisman, J., Schulman, H., and Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 2002, 3: 175–190.
    [8] Malenka, R.C., and Bear, M.F. LTP and LTD: An Embarrassment of Riches. Neuron 2004, 44: 5-21.
    [9] Wang, J. H., and Feng, D. P. Postsynaptic protein kinase C essential to induction and maintenance of long-term potentiation in the hippocampal CA1 region. Proc Natl Acad Sci USA 1992; 89: 2576-2580.
    [10] Waxham, M. N., and Aronowski, J. Ca2+/calmodulin-dependent protein kinase II is phosphorylated by protein kinase C in vitro. Biochemistry 1993, 32: 2923-2930.
    [11] Wang, L.Y., Dudek, E. M., Browning, M. D., and MacDonald, F. F. Modulation of AMPA/kainate receptors in cultured murine hippocampal neurones by protein kinase C. J Physiol 1994, 475: 431-437.
    [12] Wang, J.H., and Kelly, P.T. Postsynaptic injection of Ca2+/CaM induces synaptic potentiation requiring CaMKII and PKC activity. Neuron 1995, 15: 443-452.
    [13] Gardoni, F., Bellone, C., Cattabeni, F., and Luca, M.D. Protein kinase C activation modulatesα-calmodulin kinase II binding to NR2A subunit of N-methyl-D-aspartate receptor complex. J Biol Chem 2001, 276: 7609-7613.
    [14] Kutsuwada T., Kashiwabuchi N., Mori H., Sakimura K., Kushiya E., Araki K., Meguro H., Masaki H., Kumanishi T., Arakawa M. Molecular diversity of the NMDA receptor channel. Nature. 1992, 358(6381):36-41.
    [15] Meguro H., Mori H., Araki K., Kushiya E., Kutsuwada T., Yamazaki M., Kumanishi T., Arakawa M., Sakimura K., Mishina M. Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature. 1992 , 357(6373):70-74.
    [16] Monyer H., Sprengel R., Schoepfer R., Herb A., Higuchi M., Lomeli H., Burnashev N., Sakmann B., Seeburg P.H. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science. 1992, 256(5060):1217-1221.
    [17] Ulbrich M.H., Isacoff E.Y. Subunit counting in membrane-bound proteins. Nat Methods. 2007 , 4(4):319-321.
    [18] Cull-Candy S.G., Leszkiewicz D.N. Role of distinct NMDA receptor subtypes at central synapses. Sci STKE. 2004, 19 (255):re16. Review.
    [19] Al-Hallaq R.A., Conrads T.P., Veenstra T.D., Wenthold R.J. NMDA di-heteromeric receptor populations and associated proteins in rat hippocampus. J Neurosci. 2007, 27(31):8334-8343.
    [20] Yashiro K., Philpot B.D. Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology. 2008, 55(7):1081-1094.
    [21] Santucci D.M., Raghavachari S. The effects of NR2 subunit-dependent NMDA receptor kinetics on synaptic transmission and CaMKII activation. PLoS Comput Biol. 2008, 4(10):e1000208.
    [22] Paoletti P., Neyton J. NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol. 2007, 7(1):39-47.
    [23] Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B., Seeburg, P.H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994, 12:529-540.
    [24] Sans N., Prybylowski K., Petralia RS., Chang K., Wang Y.X., Racca C., Vicini S., Wenthold R.J. NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex. Nat Cell Biol. 2003, 5:520-530.
    [25] Nase, G., Weishaupt, J., Stern, P., Singer, W., Monyer, H. Genetic and epigenetic regulation of NMDA receptor expression in the rat visual cortex. Eur J Neurosci 1999, 11:4320-4326.
    [26] Quinlan, E. M., Olstein, D. H., Bear, M. F. Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proc. Natl Acad. Sci. USA.1999, 96:12876–12880.
    [27] Barria, A., and Malinow, R. Subunit-specific NMDA receptor trafficking to synapses. Neuron. 2002, 35: 345-353.
    [28] Philpot, B.D., Cho, K.K..A., and Bear, M.F. Obligatory Role of NR2A for Metaplasticity in Visual Cortex. Neuron 2007, 53: 495-502
    [29] Xu Z., Chen R.Q., Gu Q.H., Yan J.Z., Wang S.H., Liu S.Y., Lu W. Metaplastic regulation of long-term potentiation/long-term depression threshold by activity-dependent changes of NR2A/NR2B ratio. J Neurosci. 2009. 29(27):8764-8773.
    [30] Grosshans D.R, Browning M.D. Protein kinase C activation induces tyrosine phosphorylation of the NR2A and NR2B subunits of the NMDA receptor. J Neurochem. 2001, 76(3):737-744.
    [31] Jones ML, Leonard JP. PKC site mutations reveal differential modulation by insulin of NMDA receptors containing NR2A or NR2B subunits. J Neurochem. 2005, 92(6):1431-1438.
    [32] Lu W.Y., Xiong Z.G., Lei S., Orser B.A., Dudek E., Browning M.D., MacDonald J.F. G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nat Neurosci. 1999, 2(4):331-338.
    [33] Lan J.Y., Skeberdis V.A., Jover T., Grooms S.Y., Lin Y., Araneda R.C., Zheng X., Bennett M.V., Zukin R.S. Protein kinase C modulates NMDA receptor trafficking and gating. Nat Neurosci. 2001, 4(4):382-390.
    [34] Lau C.G., Zukin R.S. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci. 2007, 8(6):413-426.
    [35] Zheng X., Zhang L., Wang A.P., Bennett M.V., Zukin R.S. Protein kinase C potentiation of N-methyl-D-aspartate receptor activity is not mediated by phosphorylation of N-methyl-D-aspartate receptor subunits. Proc Natl Acad Sci U S A. 1999, 96(26):15262-15267.
    [36] Lau C.G., Takayasu Y., Rodenas-Ruano A., Paternain A.V., Lerma J., Bennett M.V., Zukin R.S. SNAP-25 is a target of protein kinase C phosphorylation critical to NMDA receptor trafficking. J Neurosci. 2010, 30(1):242-254.
    [37] Gardoni F., Caputi A., Cimino M., Pastorino L., Cattabeni F., Di Luca M. Calcium/calmodulin-dependent protein kinase II is associated with NR2A/B subunits of NMDA receptor in postsynaptic densities. J Neurochem. 1998, 71(4):1733-1741.
    [38] Strack S., Colbran R.J. Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor. J Biol Chem. 1998, 273(33):20689-20692.
    [39] Barria A, Malinow R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron. 2005, 48(2):289-301.
    [40] Fong D.K., Rao A., Crump F.T., Craig A.M. Rapid synaptic remodeling by protein kinase C: reciprocal translocation of NMDA receptors and calcium/calmodulin-dependent kinase II. J Neurosci. 2002, 22(6):2153-2164.
    [41] Bellone C., Nicoll R.A. Rapid bidirectional switching of synaptic NMDA receptors. Neuron. 2007, 55(5):779-785.
    [42] Lisman J., Schulman H., Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci. 2002, 3(3):175-190.
    [43] Merrill M.A., Chen Y., Strack S., Hell JW. Activity-driven postsynaptic translocation of CaMKII. Trends Pharmacol Sci. 2005, 26(12):645-653.
    [44] Tovar K.R., Westbrook G.L. The Incorporation of NMDA Receptors with a Distinct Subunit Composition at Nascent Hippocampal Synapses In Vitro. J. Neurosci. 1999, 19(10):4180–4188.
    [45] Thomas C.G., Miller A.J., Westbrook G.L.Synaptic and Extrasynaptic NMDA Receptor NR2 Subunits in Cultured Hippocampal Neurons. J Neurophysiol.2006, 95:1727–1734.
    [46] Cull-Candy S.G., Leszkiewicz D.N. Role of distinct NMDA receptor subtypes at central synapses. Sci STKE. 2004, 19;2004(255): re16.Review.
    [47] Cull-Candy S., Kelly L., Farrant M. Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Current Opinion in Neurobiology. 2006, 16(3):288~297.
    [48] Groc L., Heine M, Cognet L., Brickley K., Stephenson F.A., Lounis B., Choquet D. Differential activity dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nature Neuroscience. 2004, 7(7):695~696.
    [49] Lee HK. Synaptic plasticity and phosphorylation. Pharmacology & Therapeutics. 2006, 112:810-832
    [50] Markram H., Segal M. Activation of protein kinase C suppresses responses to NMDA in rat CA1 hippocampal neurones. J Physi. 1992, 457:491-501.
    [51] Grant E.R., Guttmann R.P., Seifert K.M., Lynch D.R. A region of the rat N-methyl-D-aspartate receptor 2A subunit that is sufficient for potentiation by phorbol esters. Neurosci Lett. 2001, 310(1):9-12.
    [52] Liao G.Y., Wagner D.A., Hsu M.H., Leonard J.P. Evidence for direct protein kinase-C mediated modulation of N-methyl-D-aspartate receptor current. Mol Pharmacol. 2001, 59:960-964.
    [53] Strack S., McNeill R.B., Colbran R.J. Mechanism and regulation of calcium/calmodulin-dependent protein kinase II targeting to the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem. 2000, 275:23798-23806.
    [54] Liu X.Y., Chu X.P., Mao L.M., Wang M., Lan H.X., Li M.H., Zhang G.C., Parelkar N.K., Fibuch E.E., Haines M., Neve K.A., Liu F., Xiong Z.G., Wang J.Q. Modulation of D2R-NR2B interactions in response to cocaine. Neuron. 2006, 52: 897-909.
    [55] Yang M., Leonard J.P. Identification of mouse NMDA receptor subunit NR2A C-terminal tyrosine sites phosphorylated by coexpression with v-Src. J Neurochem. 2001, 77(2):580-588.
    [56] Zheng F., Gingrich M.B., Traynelis S.F., Conn P.J. Tyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition. Nat Neurosci. 1998, 1(3):185-191.
    [57] K?hr G., Seeburg P.H. Subtype-specific regulation of recombinant NMDA receptor-channels by protein tyrosine kinases of the src family. J Physiol. 1996 , 492 ( Pt 2):445-452.
    [58] Vissel B., Krupp J.J., Heinemann S.F., Westbrook G.L. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat Neurosci. 2001, 4(6):587-596.
    [59] Nakazawa T., Komai S., Tezuka T., Hisatsune C., Umemori H., Semba K., Mishina M., Manabe T., Yamamoto T. Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate receptor. J Biol Chem. 2001, 276(1):693-699.
    [60] Takasu M.A., Dalva M.B., Zigmond R.E., Greenberg M.E. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science. 2002, 295(5554):491-495.
    [61] G., McCallum J., Lee R., Roche K.W. Differential binding of the AP-2 adaptor complex and PSD-95 to the C-terminus of the NMDA receptor subunit NR2B regulates surface expression. Neuropharmacology. 2003, 45(6):729-737.
    [62] Roche K.W., Standley S., McCallum J., Dune L.C., Ehlers M.D., Wenthold R.J. Molecular determinants of NMDA receptor internalization. Nat Neurosci. 2001, (8):794-802.
    [63] Derkach V.A., Oh M.C., Guire E.S., Soderling T.R. Regulatory mechanisms ofAMPA receptors in synaptic plasticity. Nature Rev Neurosci. 2007, 8:101-113.
    [64] Collingridge G.L., Isaac J.T., Wang Y.T. Receptor trafficking and synaptic plasticity. Nat Rev Neurosci. 2004, 5(12):952-962.
    [65] Malinow R., Malenka R.C. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci. 2002, 25:103-126.
    [66] Kwon H.B., Castillo P.E. Role of glutamate autoreceptors at hippocampal mossy fiber synapses. Neuron. 2008, 60(6):1082-1094.
    [67] Rebola N., Lujan R., Cunha R.A., Mulle C. Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron. 2008, 57(1):121-134.
    [68] Peng Y., Zhao J., Gu Q.H., Chen R.Q., Xu Z., Yan J.Z., Wang S.H., Liu S.Y., Chen Z., Lu W. Distinct trafficking and expression mechanisms underlie LTP and LTD of NMDA receptor-mediated synaptic responses. Hippocampus. 2009, In press.
    [69] Sans N., Petralia R.S., Wang Y.X., Blahos J.D., Hell J.W., Wenthold R.J. A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J Neurosci. 2000, 20(3):1260-1271.
    [70] Ewald R.C., Van Keuren-Jensen K.R., Aizenman C.D., Cline H.T. Roles of NR2A and NR2B in the development of dendritic arbor morphology in vivo. J Neurosci. 2008, 28(4):850-861.
    [71] Rao A., Craig A.M. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron. 1997, 19:801–812.
    [72] Scott D.B., Blanpied T.A., Swanson G.T., Zhang C., Ehlers M.D. An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J. Neurosci. 2001, 21:3063–3072.
    [73] Lin Y., Jover-Mengual T., Wong, J., Bennett M.V., and Zukin R.S. PSD-95 andPKC converge in regulating NMDA receptor trafficking and gating. Proc. Natl. Acad. Sci. USA , 2006. 103:19902-19907.
    [74] Barria A., Muller D., Derkach V., Griffith L.C., Soderling T.R. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science. 1997, 276(5321):2042-2045.
    [75] Lee H.K., Barbarosie M., Kameyama K., Bear M.F., Huganir R.L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature. 2000, 405(6789):955-959.
    [76] Caputi A., Gardoni F., Cimino M., Pastorino L., Cattabeni F., Di Luca M. CaMKII-dependent phosphorylation of NR2A and NR2B is decreased in animals characterized by hippocampal damage and impaired LTP. Eur J Neurosci. 1999, 11(1):141-148.
    [77] Mayford M., Wang J., Kandel E.R., O'Dell T.J. CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP. Cell. 1995, 1(6):891-904.
    [78] Bliss T.V., Collingridge G.L., Morris R.G. Introduction. Long-term potentiation and structure of the issue. Philos Trans R Soc Lond B Biol Sci. 2003, 58(1432):607-611.
    [79] Erondu N.E., Kennedy M.B. Regional distribution of type II Ca2+/ calmodulin- dependent protein kinase in rat brain. J Neurosci. 1985, 5(12):3270-3277.
    [80] Shen K., Meyer T. Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science. 1999, 284(5411): 162-166.
    [81] Bayer KU., De Koninck P., Leonard A.S., Hell J.W., Schulman H. Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature. 2001, 411(6839):801-805.
    [82] Zhou Y., Takahashi E., Li W., Halt A., Wiltgen B., Ehninger D., Li G.D., Hell J.W., Kennedy M.B., Silva A.J. Interaction between the NR2B receptor and CaMKII modulate synaptic plasticity and spatial learning. J Neurosci. 2007, 27: 17843-13853.
    [83] Barria A., Derkach V., Soderling T. Identification of the Ca2+/calmodulin- dependent protein kinase II regulatory phosphorylation site in the alpha-amino- 3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. J Biol Chem. 1997, 272(52):32727-32730.
    [84] Mammen A.L., Kameyama K., Roche K.W., Huganir R.L. Phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. J Biol Chem. 1997, 272(51):32528-32533.
    [85] Gardoni F., Schrama L.H., Kamal A., Gispen W.H., Cattabeni F., Di Luca M. Hippocampal synaptic plasticity involves competition between Ca2+/calmodulin- dependent protein kinase II and postsynaptic density 95 for binding to the NR2A subunit of the NMDA receptor. J Neurosci. 2001, 21(5):1501-1509.
    [86] Colbran R.J. Protein phosphatases and calcium/calmodulin-dependent protein kinase II-dependent synaptic plasticity. J Neurosci. 2004, 24(39):8404-8409.
    [87] Hashida H., Miyamoto M., Cho Y., Hida Y., Kato K., Kurokawa T., Okushiba S., Kondo S., Dosaka-Akita H., Katoh H. Fusion of HIV-1 Tat protein transduction domain to poly-lysine as a new DNA delivery tool. Br J Cancer. 2004, 90(6):1252-1258.
    [88] MacNicol M., Schulman H. Cross-talk between protein kinase C and multifunctional Ca2+/calmodulin-dependent protein kinase. J Biol Chem. 1992, 267(17):12197-12201.
    [89] Harald Hirling and Richard H.Scheller Phosphorylation of synaptic vesicle proteins: Modulation of the aSNAP interaction with the core complex. Proc. Natl. Acad. Sci. USA 1996, 93 (21):11945-11949.
    [90] Wang Z., Edwards J.G., Riley N., Provance D.W., Karcher R., Li X.D., Davison I.G., Ikebe M., Mercer J.A., Kauer J.A., Ehlers M.D. Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell. 2008, 135(3):535-548.
    [91] Osterweil E., Wells D.G., Mooseker M.S. A role for myosin VI in postsynaptic structure and glutamate receptor endocytosis. J Cell Biol. 2005, 168(2):329-338.
    [92] Amparan D., Avram D., Thomas C.G., Lindahl M.G., Yang J., Bajaj G., Ishmael J.E. Direct interaction of myosin regulatory light chain with the NMDA receptor. J Neurochem. 2005, 92(2):349-361.
    [93] Zhang H., Webb D.J., Asmussen H., Niu S., Horwitz A.F. A GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. J Neurosci. 2005, 25(13):3379-3388.
    [94] Müller BM, Kistner U, Kindler S, Chung WJ, Kuhlendahl S, Fenster SD, Lau LF, Veh RW, Huganir RL, Gundelfinger ED, Garner CC. SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo. Neuron. 1996, 17(2):255-265.
    [95] Elias GM, Elias LA, Apostolides PF, Kriegstein AR, Nicoll RA. Differential trafficking of AMPA and NMDA receptors by SAP102 and PSD-95 underlies synapse development. Proc Natl Acad Sci U S A. 2008, 105(52):20953-20958.
    [96] Collingridge G.L., Singer W. Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol Sci. 1990, 11(7):290-296.
    [97] Teyler T., Grover L. Different mechanisms may be required for maintenance ofNMDA receptor-dependent and independent forms of long-term potentiation. Synapse. 1995, 19(2):121-133.
    [98] Ffrench-Constant C. Synaptic plasticity: Molecular, cellular, and functional aspects. J Neurol Neurosurg Psychiatry. 1995, 58(2): 270.
    [99] Chen H.X., Otmakhov N., Strack S., Colbran R.J., Lisman J.E.Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP? J Neurophysiol. 2001, 85(4):1368-1376.
    [100] Lledo P.M., Hjelmstad G.O., Mukherji S., Soderling T.R., Malenka R.C., Nicoll R.A. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc Natl Acad Sci U S A. 1995, 92(24):11175-11179.
    [101] Malinow R., Schulman H., and Tsien R.W. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science. 1989, 245(4920):862-866.
    [102] Otmakhov N., Griffith L.C., and Lisman J.E. Postsynaptic inhibitors of calcium/calmodulin- dependent protein kinase type II block induction but not maintenance of pairing-induced long-term potentiation. J Neurosci 1997, 17: 5357–5365.
    [103] Shirke A.M., Malinow R. Mechanisms of potentiation by calcium-calmodulin kinase II of postsynaptic sensitivity in rat hippocampal CA1 neurons. J Neurophysiol. 1997, 78(5):2682-2692.
    [104] Denny J.B., Polan-Curtain J., Rodriguez S., Wayner M.J., Armstrong D.L.Evidence that protein kinase M does not maintain long-term potentiation. Brain Res. 1990, 26;534(1-2):201-208.
    [105] Ling D.S., Benardo L.S., Serrano P.A., Blace N., Kelly M.T., Crary J.., Sacktor T.C. Protein kinase Mzeta is necessary and sufficient for LTP maintenance.Nat Neurosci. 2002, 5(4):295-296.
    [106] Feng T. P., Wang J. H. PKC(19-31) and CaMKII(273-302) given together intracellularly to the postsynaptic neuron synergistically block LTP in hippocampal CA1 region. Soc. Neurosci. Abstr. 1992, 18: 760.
    [107] Hu G.Y., Hvalby O., Walaas S.I., Albert K.A., Skjeflo P., Andersen P., Greengard P. PKC injected into hippocampal pyramidal cells elicits features of long term potentiation. Nature. 1987, 328(6129):426-429
    [108] Pettit D.L., Perlman S., Malinow R. Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons. Science. 1994, 266(5192):1881-1885.
    [109] Chen H.X., Otmakhov N., Strack S., Colbran R.J., Lisman J.E. Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP? J Neurophysiol. 2001, 85(4):1368-1376.
    [110] Alexander K.A., Cimler B.M., Meier K.E., Storm D.R. Regulation of calmodulin binding to P-57. A neurospecific calmodulin binding protein. J Biol Chem. 1987, 262(13):6108-6113.
    [111] Graff J.M., Stumpo D.J., Blackshear P.J. Characterization of the phosphorylation sites in the chicken and bovine myristoylated alanine-rich C kinase substrate protein, a prominent cellular substrate for protein kinase C. J Biol Chem. 1989, 264(20):11912-11919.
    [112] Mangels L.A., Gnegy M.E. Muscarinic receptor-mediated translocation of calmodulin in SK-N-SH human neuroblastoma cells. Mol Pharmacol. 1990, 37(6):820-826.
    [113] Bultynck G., Vermassen E., Szlufcik K., De Smet P., Fissore R.A., Callewaert G., Missiaen L., De Smedt H., Parys J.B. Calcineurin and intracellular Ca2+-release channels: regulation or association? Biochem Biophys ResCommun. 2003, 311(4):1181-1193.
    [114] Lisman J.E., Zhabotinsky A.M. A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron. 2001, 31(2):191-201.
    [1] Whitlock JR, Heynen AJ, Shuler MG, Bear MF. Learning induces long-term potentiation in the hippocampus. Science. 2006, 313(5790):1093-1097.
    [2] Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science. 1999, 284(5421):1811-1816.
    [3] Malinow R, Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci. 2002, 25:103-126.
    [4] Lee SH, Wang YT, Sheng M. Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 2002; 36(4):661-674.
    [5] Oh MC, Derkach VA, Guire ES, Soderling TR. Extrasynaptic membrane trafficking regulated by GluR1 Serine 845 phosphorylation primes AMPA receptors for long-term potentiation. J Biol Chem 2006; 281(2):752-758.
    [6] Man HY, Sekine-Aizawa Y, Huganir RL. Regulation of {alpha}-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu receptor 1 subunit. Proc Natl Acad Sci U S A. 2007, 104(9):3579-3584.
    [7] Bredt DS, Nicoll RA. AMPA receptor trafficking at excitatory synapses. Neuron 2003; 40(2): 361-379.
    [8] Derkach VA, Oh MC, Guire ES, Soderling TR. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci. 2007, 8(2):101-113.
    [9] Shepherd JD, Huganir RL. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol. 2007, 23:613-643.
    [10] Collingridge GL, Isaac JT, Wang YT. Receptor trafficking and synapticplasticity. Nat. Rev. Neurosci. 2004, 5(12): 952-962.
    [11] Malinow R, Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 2002, 25:103–126.
    [12] Sheng M, Kim MJ. Postsynaptic signaling and plasticity mechanisms. Science 2002, 298(5594):776-780.
    [13] Lu W, Shi Y, Jackson AC, Bjorgan K, During MJ, Sprengel R, Seeburg PH, Nicoll RA. Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron. 2009, 62(2):254-268.
    [14] Shi S, Hayashi Y, Esteban JA, Malinow R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell. 2001, 105(3):331-343.
    [15] Mammen AL, Kameyama K, Roche KW, Huganir RL. Phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. J Biol Chem. 1997, 272(51):32528-32533.
    [16] Roche KW, O'Brien RJ, Mammen AL, Bernhardt J, Huganir RL. Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron. 1996, 16(6):1179-1188.
    [17] Derkach V, Barria A, Soderling TR. Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci U S A. 1999, 96(6):3269-3274.
    [18] Esteban JA, Shi SH, Wilson C, Nuriya M, Huganir RL, Malinow R. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci. 2003, 6(2):136-143.
    [19] Lee HK, Takamiya K, Han JS, Man H, Kim CH, Rumbaugh G, Yu S, Ding L, He C, Petralia RS, Wenthold RJ, Gallagher M, Huganir RL. Phosphorylation ofthe AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell. 2003, 112(5):631-643.
    [20] Chen HJ, Rojas-Soto M, Oguni A, Kennedy MB. A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron. 1998, 20(5):895-904.
    [21] Kim JH, Liao D, Lau LF, Huganir RL. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 1998, 20(4):683-691.
    [22] Zhu JJ, Qin Y, Zhao M, Van Aelst L, Malinow R. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell. 2002, 110(4):443-455.
    [23] Boehm J, Kang MG, Johnson RC, Esteban J, Huganir RL, Malinow R. Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron. 2006, 51(2):213-225.
    [24] Lin DT, Makino Y, Sharma K, Hayashi T, Neve R, Takamiya K, Huganir RL. Regulation of AMPA receptor extrasynaptic insertion by 4.1N, phosphorylation and palmitoylation. Nat Neurosci. 2009, 12(7):879-887.
    [25] Man HY, Wang Q, Lu WY, Ju W, Ahmadian G, Liu L, D'Souza S, Wong TP, Taghibiglou C, Lu J, Becker LE, Pei L, Liu F, Wymann MP, MacDonald JF, Wang YT. Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron. 2003, 38(4):611-624.
    [26] Opazo P, Watabe AM, Grant SG, O'Dell TJ. Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms. J Neurosci. 2003, 23(9):3679-3688.
    [27] Sanna PP, Cammalleri M, Berton F, Simpson C, Lutjens R, Bloom FE, Francesconi W Phosphatidylinositol 3-kinase is required for the expression butnot for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J Neurosci. 2002, 22(9):3359-3365.
    [28] Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci. 1997, 22(7):267-272.
    [29] Downward J. Role of phosphoinositide-3-OH kinase in Ras signaling. Adv Second Messenger Phosphoprotein Res. 1997, 31:1-10.
    [30] Rodriguez-Viciana P, Warne PH, Vanhaesebroeck B, Waterfield MD, Downward J. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J. 1996, 15(10):2442-2451.
    [31] Arendt KL, Royo M, Fernández-Monreal M, Knafo S, Petrok CN, Martens JR, Esteban JA. PIP3 controls synaptic function by maintaining AMPA receptor clustering at the postsynaptic membrane. Nat Neurosci. 2010, 13(1):36-44.
    [32] Gong R, Park CS, Abbassi NR, Tang SJ. Roles of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling pathway in activity-dependent dendritic protein synthesis in hippocampal neurons. J Biol Chem. 2006, 281(27):18802-15.
    [33] Jaworski J, Spangler S, Seeburg DP, Hoogenraad CC, Sheng M.Control of dendritic arborization by the phosphoinositide-3'-kinase-Akt-mammalian target of rapamycin pathway. J Neurosci. 2005, 25(49):11300-11312.
    [34] Karpova A, Sanna PP, Behnisch T. Involvement of multiple phosphatidylinositol 3-kinase-dependent pathways in the persistence of late-phase long term potentiation expression. Neuroscience. 2006,137(3):833-841.
    [35] Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ. Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science. 1998, 281(5385):2042-2045.
    [36] Hernandez AI, Blace N, Crary JF, Serrano PA, Leitges M, Libien JM, Weinstein G, Tcherapanov A, Sacktor TC. Protein kinase M zeta synthesis from a brain mRNA encoding an independent protein kinase C zeta catalytic domain. Implications for the molecular mechanism of memory. J Biol Chem. 2003, 278(41):40305-40316.
    [37] Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC. Storage of spatial information by the maintenance mechanism of LTP. Science. 2006, 313(5790):1141-1144.
    [38] Jiang J, Parameshwaran K, Seibenhener ML, Kang MG, Suppiramaniam V, Huganir RL, Diaz-Meco MT, Wooten MW. AMPA receptor trafficking and synaptic plasticity require SQSTM1/p62. Hippocampus. 2009, 19(4):392-406.
    [39] Sacktor TC, Osten P, Valsamis H, Jiang X, Naik MU, Sublette E. Persistent activation of the zeta isoform of protein kinase C in the maintenance of long-term potentiation. Proc Natl Acad Sci U S A. 1993, 90(18):8342-8346.
    [40] Ling DS, Benardo LS, Sacktor TC. Protein kinase Mzeta enhances excitatory synaptic transmission by increasing the number of active postsynaptic AMPA receptors. Hippocampus. 2006, 16(5):443-452.
    [41] Serrano P, Yao Y, Sacktor TC. Persistent phosphorylation by protein kinase Mzeta maintains late-phase long-term potentiation. J Neurosci. 2005, 25(8):1979-1984.
    [42] Makino H, Malinow R. AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron. 2009, 64(3):381-390.
    [43] Barria A, Derkach V, Soderling T. Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. J Biol Chem. 1997, 272(52):32727-32730.
    [44] Barria A, Muller D, Derkach V, Griffith LC, Soderling TR. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science. 1997, 276(5321):2042-2045.
    [45] Benke TA, Lüthi A, Isaac JT, Collingridge GL. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature. 1998, 393(6687):793-797.
    [46] Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science. 2000, 287(5461):2262-2267.
    [47] Banke TG, Bowie D, Lee H, Huganir RL, Schousboe A, Traynelis SF. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J Neurosci. 2000, 20(1):89-102.
    [48] Moscat J, Diaz-Meco MT, Wooten MW. Signal integration and diversification through the p62 scaffold protein. Trends Biochem Sci. 2007, 32(2):95-100.
    [49] Joung I, Strominger JL, Shin J. Molecular cloning of a phosphotyrosine-independent ligand of the p56lck SH2 domain. Proc Natl Acad Sci U S A. 1996, 93(12):5991-5995.
    [50] Puls A, Schmidt S, Grawe F, Stabel S. Interaction of protein kinase C zeta with ZIP, a novel protein kinase C-binding protein. Proc Natl Acad Sci U S A. 1997, 94(12):6191-6196.
    [51] Sanchez P, De Carcer G, Sandoval IV, Moscat J, Diaz-Meco MT. Localization of atypical protein kinase C isoforms into lysosome-targeted endosomes through interaction with p62. Mol Cell Biol. 1998, 18(5):3069-3080.
    [52] Moriya S, Kazlauskas A, Akimoto K, Hirai S, Mizuno K, Takenawa T, Fukui Y, Watanabe Y, Ozaki S, Ohno S. Platelet-derived growth factor activates protein kinase C epsilon through redundant and independent signaling pathways involving phospholipase C gamma or phosphatidylinositol 3-kinase. Proc NatlAcad Sci U S A. 1996, 93(1):151-155.
    [53] Toker A, Meyer M, Reddy KK, Falck JR, Aneja R, Aneja S, Parra A, Burns DJ, Ballas LM, Cantley LC. Activation of protein kinase C family members by the novel polyphosphoinositides PtdIns-3,4-P2 and PtdIns-3,4,5-P3. J Biol Chem. 1994, 269(51):32358-32367.
    [1] Cull-Candy, S. G. & Leszkiewicz, D. N. Role of distinct NMDA receptor subtypes at central synapses. Sci. STKE. 2004, re16 (2004).
    [2] Dingledine, R., Borges, K., Bowie, D. & Traynelis, S. FThe glutamate receptor ion channels. Pharmacol. Rev. 51, 7-61 (1999).
    [3] Carroll, R.C. & Zukin, R.S. NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends Neurosci. 25, 571-577 (2002).
    [4] Zukin, R. S. & Bennett, M. V. L. Alternatively splicedisoforms of the NMDARI receptor subunit. Trends Neurosci. 18, 306-313 (1995).
    [5] Collingridge, G. L., Isaac, J. T. & Wang, Y. T. Receptor trafficking and synaptic plasticity. Nature Rev. Neurosci. 5, 952-5962 (2004).
    [6] Conn, P.J. & Pin, J.P. Pharmacology and functions of metabotropic glutamate receptors.Annu. Rev.Pharmacol. Toxicol. 37, 205-237 (1997).
    [7] Kim, E. & Sheng, M. PDZ domain proteins of synapses. Nature Rev. Neurosci. 5, 771-781 (2004).
    [8] Brien, R.J., Kamboj, S., Ehlers, M.D., Rosen, K.R., Fischbach, G.D & Huganir, R.L. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron. 21, 1067-1078 (1998).
    [9] Friedman, H.V, Bresler, T, Garner, C.C. & Ziv, N. E. Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron. 27, 57-69 (2000).
    [10] Washbourne P, Bennett, J.E. & McAllister, A.K. Rapid recruitment of NMDA receptor transport packets to nascent synapses. Nature Neurosci. 5, 751-759 (2002).
    [11] Washbourne, P., Liu, X.B., Jones, E.G. & McAllister, A.K. Cycling of NMDA receptors during trafficking in neurons before synapse formation. J.Neurosci. 24, 8253-8264 (2004).
    [12] Bresler, T. et al. Postsynaptic density assembly is fundamentally different from presynaptic active zone assembly. J. Neurosci. 24, 1507-1520 (2004).
    [13] Hirokawa, N. & Takemura, R. Molecular motors and mechanisms of directional transport in neurons. Nature Rev. Neurosci. 6, 201-214 (2005).
    [14] Setou, M., Nakagawa, T., Seog, D. H. & Hirokawa, N. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science .288, 1796-1802 (2000)
    [15] Guillaud, L., Setou, M. & Hirokawa, N. KIF17 dynamic and regulation of NR2B trafficking in hippocampal neurons. J. Neurosci 23, 131-140 (2003).
    [16] Wong, R. W., Setou, M., Teng, J., Takei, Y. Hirokawa, N. Overexpression of motor protein KIF1 enhances spatial and working memory in transgenic mice. Proc. Natl Acad. Sci. USA. 99, 14500-1450 (2002).
    [17] Tovar, K. R. & Westbrook, G. L. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J. Neurosci. 19, 4180-4188 (1999).
    [18] Sheng, M., Cummings, J., Roldan, L.A., Jan, Y.N. & Jan, L.Y. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368, 144-147 (1994).
    [19] Watanabe, M., Inoue, Y., Sakimura, K. & Mishina, M. Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport 3, 1138-1140 (1992).
    [20] Williams, K., Russell, S.L., Shen, Y.M. & Molinoff, P. B. Developmental switch in the expression of NMDA receptors occurs in vivo and in vitro. Neuron10, 267-278 (1993).
    [21] Barria, A. & Malinow, R. Subunit-specific NMDA receptor trafficking to synapses. Neuron 35, 345-353 (2002).
    [22] Flint, A.C., Maisch, U.S., Weishaupt, J.H.,Kriegstein, A.R. & Monyer, H. NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J. Neurosci. 17, 2469-2476 (1997).
    [23] El Husseini, A. E., Schnell, E., Chetkovich, D. M., Nicoll, R. A. & Bredt, D. S. PSD-95 involvement in maturation of excitatory synapses. Science. 290, 1364-1368 (2000).
    [24] Lavezzari, G., McCallum, J., Dewey, C. M. & Roche, K. W. Subunit-specific regulation of NMDA receptor endocytosis. J. Neurosci. 24, 6383-6391 (2004).
    [25] Lin, Y., Skeberdis, V.A., Francesconi, A., Bennett, M.V.L. & Zukin, R.S. Postsynaptic density protein-95 regulates NMDA channel gating and surface expression. J. Neurosci. 24, 10138-10148 (2004).
    [26] Roche, K.W. et al. Molecular determinants of NMDA receptor internalization. Nat. Neurosci. 4, 794-802 (2001).17. Lavezzari, G., McCallum, J., Dewey, C.M. & Roche, K.W. Subunit-specific regulation of NMDA receptor endocytosis. J. Neurosci. 24, 6383-6391 (2004).
    [27] Losi, G. et al. PSD-95 regulates NMDA receptors in developing cerebellar granule neurons of the rat. J. Physiol. 548, 21-29 (2003).
    [28] Prybylowski, K. et al. The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron. 47, 845-857 (2005).
    [29] Scott, D.B., Blanpied, T.A. & Ehlers, M.D. Coordinated PKA and PKC phosphorylation suppresses RXR-mediated ER retention and regulates the surface delivery of NMDA receptors. Neuropharmacology. 45, 755-767 (2003).
    [30] Standley, S., Roche, K. W., McCallum, J., Sans, N. &Wenthold, R. J. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron. 28, 887-898 (2000).
    [31] Mu, Y., Otsuka, T., Horton, A.C., Scott, D.B. & Ehlers, M.D. Activity-dependent mRNA splicing controls ER export and synaptic delivery of NMDA receptors. Neuron. 40, 581-594 (2003).
    [32] Scott, D. B., Michailidis, I., Mu, Y., Logothetis, D. & Ehlers, M. D. Endocytosis and degradative sorting of NMDA receptors by conserved membrane-proximal signals. J. Neurosci. 24, 7096-7109 (2004).
    [33] Hawkins, L. M. et al. Export from the endoplasmic reticulum of assembled N-methyl-D-aspartic acid receptors is controlled by a motif in the c terminus of the NR2 subunit. J. Biol. Chem. 279, 28903-28907 (2004).
    [34] Yang, W. et al. A three amino acid tail following the TM4 region of NR2 subunits is sufficient to overcome ER retention of NR1-1a subunit. J. Biol. Chem. 28, 9269-9278 (2007).
    [35] McIlhinney, R.A. et al. Assembly intracellular targeting and cell surface expression of the human N-methyl-D-aspartate receptor subunits NR1a and NR2A in transfected cells. Neuropharmacology. 37, 1355-1367 (1998).
    [36] Hall, R.A. & Soderling, T.R. Differential surface expression and phosphorylation of the N-methyl-Daspartate receptor subunits NR1 and NR2 in cultured hippocampal neurons. J. Biol. Chem. 272, 4135-4140 (1997).
    [37] Chen, L. & Huang, L.Y. Protein kinase C reduces Mg+ block of NMDA-receptor channels as a mechanism of modulation. Nature. 356, 521-523(1992).
    [38] Gerber, G. et al. Multiple effects of phorbol esters in the rat spinal dorsal horn. J. Neurosci. 9, 3606-3617(1989).
    [39] Roche, K.W. et al. Molecular determinants of NMDAreceptor internalization. Nat. Neurosci. 4, 794-802(2001).
    [40] Xiong, Z.G. et al. Regulation of N-methyl-D-aspartate receptor function by constitutively active protein kinase C. Mol. Pharmacol. 54, 1055-1063(1998).
    [41] Zheng, X., Zhang, L., Wang, A.P., Bennett, M.V.L. & Zukin, R. S. Protein kinase C potentiation of N-methyl-D-aspartate receptor activity is not mediated by phosphorylation of N-methyl-D-aspartate receptor subunits. Proc. Natl Acad. Sci. USA. 96, 15262-15267 (1999).
    [42] Hall, R.A. and Soderling, T.R. Differential surface expression and phosphorylation of the N-methyl-D-aspartate receptor subunits NR1 and NR2 in cultured hippocampal neurons. J. Biol. Chem. 272, 4135-4140(1997).
    [43] Leonard, A.S. and Hell, J.W. Cyclic AMP-dependent protein kinase and protein kinase C phosphorylate N-methyl-D-aspartate receptors at different sites. J. Biol. Chem. 272, 12107-12115(1997).
    [44] Tingley, W.G. et al. Characterization of protein kinase Aand protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J. Biol. Chem. 272, 5157-5166(1997).
    [45] Ehlers, M.D. et al. Regulated subcellular distribution of the NR1 subunit of the NMDA receptor. Science. 269, 1734-1737(1995).
    [46] Scott, D.B. et al. An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J. Neurosci. 21, 3063-3072(2001).
    [47] Lan, J.Y. et al. Protein kinase C modulates NMDAreceptor trafficking and gating Nat. Neurosci.4, 382-390(2001).
    [48] Lin, Y. et al. PSD-95 increases surface expression and channel opening rate of NMDAreceptors and reduces PKC potentiation of NMDA-elicited currents. Soc.Neurosci. Abstr. 277.3(2001).
    [49] Fong, D.K.et al. Rapid synaptic remodeling by protein kinase C: reciprocal translocation of NMDAreceptors and calcium/calmodulin-dependent kinase II. J.Neurosci. 22, 2153-216(2002).
    [50] Blanpied, T.A., Scott, D.B. & Ehlers, M.D. Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron. 36, 435-449 (2002).
    [51] Racz, B., Blanpied, T.A., Ehlers, M.D. & Weinberg, R.J. Lateral organization of endocytic machinery in dendritic spines. Nat. Neurosci. 7, 917-918 (2004).
    [52] Choquet, D. & Triller, A. The role of receptor diffusion in the organization of the postsynaptic membrane. Nature Rev. Neurosci. 4, 251-265 (2003).
    [53] Malenka, R.C. & Nicoll, R.A. Long-term potentiation--a decade of progress? Science. 285, 1870-1874 (1999).
    [54] Tovar, K.R. & Westbrook, G.L. Mobile NMDA receptors at hippocampal synapses. Neuron. 34, 255-264 (2002).
    [55] Groc, L. et al. Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nature Neurosci. 7, 695-696 (2004).
    [56] Groc, L. et al. NMDA receptor surface mobility depends on NR2A-2B subunits. Proc.Natl Acad. Sci. USA 103, 18769-18774 (2006).
    [57] Zhao, J., Peng Y., et al. Synaptic metaplasticity through NMDA receptor lateral diffusion. J Neurosci. 28: 3060-3070(2008).
    [58] Derkach, V.A., Oh, M.C., Guire, E.S. & Soderling, T.R. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nature Rev. Neurosci. 8, 101-113 (2007).
    [59] Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103-126 (2002).
    [60] Liu, S.Q. & Zukin, R.S. Calcium permeable AMPA receptors in synapticplasticity and neuronal death.Trends Neurosci. 30, 126-134 (2007).
    [61] Berretta, N. et al. Long-term potentiation of NMDA receptor-mediated EPSP in guinea-pig hippocampal slices. Eur. J. Neurosci. 3, 850-854 (1991).
    [62] Asztely, F., Wigstrom, H. & Gustafsson, B. The relative contribution of NMDA receptor channels in the expression of long-term potentiation in the hippocampal CA1 region. Eur. J. Neurosci. 4, 681-690 (1992).
    [63] Bashir, Z.I., Alford, S., Davies, S.N., Randall, A.D. & Collingridge, G.L. Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature 349, 156-158 (1991). The first report of LTP of isolated NMDA EPSCs in the hippocampus.
    [64] O’Connor, J.J., Rowan, M.J. & Anwyl, R. Long-lasting enhancement of NMDA receptor-mediated synaptic transmission by metabotropic glutamate receptor activation.Nature 367, 557-559 (1994).
    [65] Harney, S.C., Rowan, M. & Anwyl, R. Long-term depression of NMDA receptor-mediated synaptic transmission is dependent on activation of metabotropic glutamate receptors and is altered to long-term potentiation by low intracellular calcium buffering. J. Neurosci. 26, 1128-1132 (2006).
    [66] Grosshans, D.R., Clayton, D.A., Coultrap, S.J. & Browning, M.D. LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nat. Neurosci. 5, 27-33 (2002).
    [67] Watt, A.J., Sjostrom, P.J., Hausser, M., Nelson, S.B. & Turrigiano, G.G. A proportional but slower NMDA potentiation follows AMPA potentiation in LTP. Nat. Neurosci. 7, 518-524 (2004).
    [68] Lee, H.K. Synaptic plasticity and phosphorylation. Pharmacology & Therapeutics. 2006, 112:810-832
    [69] Markram H., Segal M. Activation of protein kinase C suppresses responses to NMDA in rat CA1 hippocampal neurones. J Physi. 1992, 457:491-501.
    [70] Fong D.K., Rao A., Crump F.T., Craig A.M. Rapid synaptic remodeling by protein kinase C: reciprocal translocation of NMDA receptors and calcium/calmodulin-dependent kinase II. J Neurosci. 2002, 22:2153-2164.
    [71] Grant E.R., Guttmann R.P., Seifert K.M., Lynch D.R. A region of the rat N-methyl-D-aspartate receptor 2A subunit that is sufficient for potentiation by phorbol esters. Neurosci Lett. 2001, 310(1):9-12.
    [72] Jones M.L., Leonard J.P. PKC site mutations reveal differential modulation by I nsulin of NMDA receptors containing NR2A or NR2B subunits. J Neurochem. 2005, 92(6):1431-8.
    [73] Gardoni F., Bellone C., Cattabeni F., Di Luca M. Protein kinase C activation modulates alpha-calmodulin kinase II binding to NR2A subunit of N-methyl-D-aspartate receptor complex. J Biol Chem. 2001, 276:7609-7613.
    [74] Liao G.Y., Wagner D.A., Hsu M.H., Leonard J.P. Evidence for direct protein kinase-C mediated modulation of N-methyl-D-aspartate receptor current. Mol Pharmacol. 2001, 59:960-964.
    [75] Track S., McNeill R.B., Colbran R.J. Mechanism and regulation of calcium/calmodulin-dependent protein kinase II targeting to the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem. 2000, 275:23798-23806.
    [76] Liu X.Y., Chu X.P., Mao L.M., Wang M., Lan H.X., Li M.H., Zhang G.C., Parelkar N.K., Fibuch E.E., Haines M., Neve K.A., Liu F., Xiong Z.G., Wang J.Q. Modulation of D2R-NR2B interactions in response to cocaine. Neuron. 2006, 52: 897-909.
    [77] Yang M., Leonard J.P. Identification of mouse NMDA receptor subunit NR2A C-terminal tyrosine sites phosphorylated by coexpression with v-Src. JNeurochem. 2001, 77(2):580-588.
    [78] Zheng F., Gingrich M.B., Traynelis S.F., Conn P.J. Tyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition. Nat Neurosci. 1998, 1(3):185-191.
    [79] K?hr G., Seeburg P.H. Subtype-specific regulation of recombinant NMDA receptor-channels by protein tyrosine kinases of the src family. J Physiol. 1996 , 492 ( Pt 2):445-452.
    [80] Vissel B., Krupp J.J., Heinemann S.F., Westbrook G.L. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat Neurosci. 2001, 4(6):587-596.
    [81] Nakazawa T., Komai S., Tezuka T., Hisatsune C., Umemori H., Semba K., Mishina M., Manabe T., Yamamoto T. Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate receptor. J Biol Chem. 2001, 276(1):693-699.
    [82] Takasu M.A., Dalva M.B., Zigmond R.E., Greenberg M.E. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science. 2002, 295(5554):491-495.
    [83] Lavezzari G., McCallum J., Lee R., Roche K.W. Differential binding of the AP-2 adaptor complex and PSD-95 to the C-terminus of the NMDA receptor subunit NR2B regulates surface expression. Neuropharmacology. 2003, 45(6):729-737.
    [84] Roche K.W., Standley S., McCallum J., Dune L.C., Ehlers M.D., Wenthold R.J. Molecular determinants of NMDA receptor internalization. Nat Neurosci. 2001, (8):794-802.
    [85] Lau C.G., Takayasu Y., Rodenas-Ruano A., Paternain A.V., Lerma J., Bennett M.V., Zukin R.S. SNAP-25 is a target of protein kinase C phosphorylation critical to NMDA receptor trafficking. J Neurosci. 2010, 30(1):242-254.
    [86] Gardoni F., Schrama L.H., Kamal A., Gispen W.H., Cattabeni F., Di Luca M. Hippocampal synaptic plasticity involves competition between Ca2+/calmodulin-dependent protein kinase II and postsynaptic density 95 for binding to the NR2A subunit of the NMDA receptor. J Neurosci. 2001, 21(5):1501-1509.
    [87] Strack S., Colbran R.J. Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor. J Biol Chem. 1998, 273(33):20689-20692.
    [88] Barria A, Malinow R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron. 2005, 48(2):289-301.
    [1] Hollmann M, Heinemann S. 1994. Cloned glutamate receptors. Annu. Rev. Neurosci. 17:31–108
    [2] Beique JC, Lin DT, Kang MG, Aizawa H, Takamiya K, Huganir RL. 2006. Synapse-specific regulation of AMPA receptor function by PSD-95. Proc. Natl. Acad. Sci. USA 103:19535–40
    [3] Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, et al. 2002. Naturally secreted oligomers of amyloidβprotein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–39
    [4] Hirokawa N, Takemura R. 2005. Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci. 6:201–14
    [5] Setou M, Seog DH, Tanaka Y, Kanai Y, Takei Y, et al. 2002. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417:83–87
    [6] Dong H, O’Brien RJ, Fung ET, Lanahan AA,Worley PF, Huganir RL. 1997. GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386:279–84
    [7] Wyszynski M, Kim E, Dunah AW, Passafaro M, Valtschanoff JG, et al. 2002. Interaction betweenGRIPand liprin-α/SYD2 is required forAMPAreceptor targeting. Neuron 34:39–52
    [8] Shin H,Wyszynski M, Huh KH,Valtschanoff JG, Lee JR, et al. 2003. Association of the kinesin motor KIF1A with the multimodular protein liprin-α. J. Biol. Chem. 278:11393–401
    [9] Lise MF, Wong TP, Trinh A, Hines RM, Liu L, et al. 2006. Involvement of myosin Vb in glutamate receptor trafficking. J. Biol. Chem. 281:3669–78
    [10] Osterweil E, Wells DG, Mooseker MS. 2005. A role for myosin VI in postsynaptic structure and glutamate receptor endocytosis. J. Cell Biol. 168:329–38
    [11] Wu H, Nash JE, Zamorano P, Garner CC. 2002. Interaction of SAP97 with minus-enddirected actin motor myosin VI. Implications forAMPA receptor trafficking. J. Biol. Chem.277:30928–34
    [12] Schulz TW, Nakagawa T, Licznerski P, Pawlak V, Kolleker A, et al. 2004. Actin/α-actinindependent transport of AMPA receptors in dendritic spines: role of the PDZ-LIM protein RIL. J. Neurosci. 24:8584–94
    [13] Perestenko PV, Henley JM. 2003. Characterization of the intracellular transport of GluR1 and GluR2α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. J. Biol. Chem. 278:43525–32
    [14] Adesnik H, Nicoll RA, England PM. 2005. Photoinactivation of nativeAMPA receptors reveals their real-time trafficking. Neuron 48:977–85
    [15] Lu W, Man H, Ju W, Trimble WS, MacDonald JF, Wang YT. 2001. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29:243–54
    [16] Passafaro M, Piech V, Sheng M. 2001. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat. Neurosci. 4:917–26
    [17] Sekine-Aizawa Y, Huganir RL. 2004. Imaging of receptor trafficking by usingα-bungarotoxinbinding-site-tagged receptors. Proc. Natl. Acad. Sci. USA 101:17114–19
    [18] Shi S, Hayashi Y, Esteban JA, Malinow R. 2001. Subunit-specific rulesgoverning AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105:331–43
    [19] Matsuda S, Launey T, Mikawa S, Hirai H. 2000. Disruption of AMPA receptor GluR2 clusters following long-term depression induction in cerebellar Purkinje neurons. EMBO J.19:2765–74
    [20] Nishimune A, Isaac JT, Molnar E, Noel J, Nash SR, et al. 1998. NSF binding to GluR2 regulates synaptic transmission. Neuron 21:87–97
    [21] Osten P, Srivastava S, Inman GJ, Vilim FS, Khatri L, et al. 1998. The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alphaand beta-SNAPs. Neuron 21:99–110
    [22] Song I, Kamboj S, Xia J, Dong H, Liao D, Huganir RL. 1998. Interaction of the Nethylmaleimide- sensitive factor with AMPA receptors. Neuron 21:393–400
    [23] Rothman JE. 1994. Mechanisms of intracellular protein transport. Nature 372:55–63
    [24] Gardner SM, Takamiya K, Xia J, Suh JG, Johnson R, et al. 2005. Calcium-permeable AMPA receptor plasticity is mediated by subunit-specific interactions with PICK1 and NSF. Neuron 45:903–15
    [25] Liu SJ, Cull-Candy SG. 2005. Subunit interaction with PICK and GRIP controls Ca2+ permeability of AMPARs at cerebellar synapses. Nat. Neurosci. 8:768–75
    [26] Steinberg JP, Huganir RL, Linden DJ. 2004.N-Ethylmaleimide-sensitive factor is required for the synaptic incorporation and removal of AMPA receptors during cerebellar long-term depression. Proc. Natl. Acad. Sci. USA 101:18212–16
    [27] Beique JC, Andrade R. 2003. PSD-95 regulates synaptic transmission andplasticity in rat cerebral cortex. J. Physiol. 546:859–67
    [28] El-Husseini AE, Schnell E, Chetkovich DM, Nicoll RA, Bredt DS. 2000. PSD-95 involvement in maturation of excitatory synapses. Science 290:1364–68
    [29] Elias GM, Funke L, Stein V, Grant SG, Bredt DS, Nicoll RA. 2006. Synapse-specific and developmentally regulated targeting of AMPA receptors by a family of MAGUK scaffolding proteins. Neuron 52:307–20
    [30] O’Brien RJ, Kamboj S, Ehlers MD, Rosen KR, Fischbach GD, Huganir RL. 1998. Activitydependent modulation of synaptic AMPA receptor accumulation. Neuron 21:1067–78
    [31] O’Brien RJ, Xu D, Petralia RS, Steward O, Huganir RL,Worley P. 1999. Synaptic clustering ofAMPA receptors by the extracellular immediate gene product NARP. Neuron 23:309–23
    [32] Borgdorff AJ, Choquet D. 2002. Regulation of AMPA receptor lateral movements. Nature 417:649–53
    [33] 82. Tardin C, Cognet L, Bats C, Lounis B, Choquet D. 2003. Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J. 22:4656–65
    [34] Bats C, Groc L, Choquet D. 2007. The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53:719–34
    [35] Mousavi SA, Malerod L, Berg T, Kjeken R. 2004. Clathrin-dependent endocytosis. Biochem. J. 377:1–16
    [36] Grunwald ME, Kaplan JM. 2003. Mutations in the ligand-binding and pore domains control exit of glutamate receptors from the endoplasmic reticulum in C. elegans. Neuropharmacology 45:768–76
    [37] Okamoto PM, Gamby C,Wells D, Fallon J, Vallee RB. 2001. Dynaminisoform-specific interaction with the shank/ProSAP scaffolding proteins of the postsynaptic density and actin cytoskeleton. J. Biol. Chem. 276:48458–65
    [38] Chowdhury S, Shepherd JD, Okuno H, Lyford G, Petralia RS, et al. 2006. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52:445–59
    [39] Carroll RC, Beattie EC, Xia H, Luscher C, Altschuler Y, et al. 1999a. Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 96:14112–17
    [40] Martin SJ, Grimwood PD, Morris RG. 2000. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23:649–711
    [41] Wang YT, Linden DJ. 2000. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25:635–47
    [42] Ehlers MD. 2000. Reinsertion or degradation of AMPA receptors determined by activitydependent endocytic sorting. Neuron 28:511–25
    [43] 92. Lee SH, Simonetta A, Sheng M. 2004. Subunit rules governing the sorting of internalized AMPA receptors in hippocampal neurons. Neuron 43:221–36
    [44] Blanpied TA, Scott DB, Ehlers MD. 2002. Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron 36:435–49
    [45] Racz B, Blanpied TA, Ehlers MD, Weinberg RJ. 2004. Lateral organization of endocytic machinery in dendritic spines. Nat. Neurosci. 7:917–18
    [46] Spacek J, Harris KM. 1997. Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J. Neurosci. 17:190–203
    [47] Collingridge GL, Isaac JT,Wang YT. 2004. Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci. 5:952–62
    [48] Steward O, Worley PF. 2001. Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron 30:227–40
    [49] Rial Verde EM, Lee-Osbourne J,Worley PF, Malinow R, Cline HT. 2006. Increased expression of the immediate-early gene arc/arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52:461–74
    [50] Park M, Penick EC, Edwards JG, Kauer JA, Ehlers MD. 2004. Recycling endosomes supply AMPA receptors for LTP. Science 305:1972–75
    [51] Park M, Salgado JM, Ostroff L, Helton TD, Robinson CG, et al. 2006. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron 52:817–30
    [52] Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H. 2001. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4:1086–92
    [53] Steiner P, Sarria JC, Glauser L, Magnin S, Catsicas S, Hirling H. 2002. Modulation of receptor cycling by neuron-enriched endosomal protein of 21 kD. J. Cell Biol. 157:1197–209
    [54] Prekeris R, Klumperman J, Chen YA, Scheller RH. 1998. Syntaxin 13 mediates cycling of plasma membrane proteins via tubulovesicular recycling endosomes. J. Cell Biol. 143:957–71
    [55] Steiner P, Alberi S, Kulangara K,Yersin A, Sarria JC, et al. 2005. Interactions between NEEP21, GRIP1 and GluR2 regulate sorting and recycling of the glutamate receptor subunit GluR2.EMBO J. 24:2873–84
    [56] Mukhopadhyay D, Riezman H. 2007. Proteasome-independent functions ofubiquitin in endocytosis and signaling. Science 315:201–5
    [57] Burbea M, Dreier L, Dittman JS, Grunwald ME, Kaplan JM. 2002. Ubiquitin and AP180 regulate the abundance of GLR-1 glutamate receptors at postsynaptic elements in C. elegans. Neuron 35:107–20
    [58] van Roessel P, Elliott DA, Robinson IM, Prokop A, Brand AH. 2004. Independent regulation of synaptic size and activity by the anaphase-promoting complex. Cell 119:707–18
    [59] Schaefer H, Rongo C. 2006. KEL-8 is a substrate receptor for CUL3-dependent ubiquitin ligase that regulates synaptic glutamate receptor turnover. Mol. Biol. Cell 17:1250–60
    [60] Patrick GN, Bingol B,Weld HA, Schuman EM. 2003. Ubiquitin-mediated proteasome activity is required for agonist-induced endocytosis of GluRs. Curr. Biol. 13:2073–81
    [61] Malenka RC, Bear MF. 2004. LTP and LTD: an embarrassment of riches. Neuron 44:5–21
    [62] Bredt DS, Nicoll RA. 2003. AMPA receptor trafficking at excitatory synapses. Neuron 40:361–79
    [63] Turrigiano GG, Nelson SB. 2004. Homeostatic plasticity in the developing nervous system.Nat. Rev. Neurosci. 5:97–107
    [64] Thomas GM, Huganir RL. 2004. MAPK cascade signalling and synaptic plasticity. Nat. Rev.Neurosci. 5:173–83
    [65] Lee HK, Takamiya K, Han JS, Man H, Kim CH, et al. 2003. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory.Cell 112:631–43
    [66] Steinberg JP, Takamiya K, Shen Y, Xia J, Rubio ME, et al. 2006. Targeted in vivo mutations of the AMPA receptor subunit GluR2 and its interactingprotein PICK1 eliminate cerebellar long-term depression. Neuron 49:845–60
    [67] Lisman J, Schulman H, Cline H. 2002. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3:175–90
    [68] Fukunaga K, Stoppini L, Miyamoto E, Muller D. 1993. Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem.268:7863–67
    [69] Malenka RC, Kauer JA, Perkel DJ, Mauk MD, Kelly PT, et al. 1989. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature 340:554–57
    [70] Malinow R, Schulman H, Tsien RW. 1989. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245:862–66
    [71] Silva AJ, Stevens CF, Tonegawa S,Wang Y. 1992. Deficient hippocampal long-term potentiation inα-calcium-calmodulin kinase II mutant mice. Science 257:201–6
    [72] Lledo PM, Hjelmstad GO, Mukherji S, Soderling TR, Malenka RC, Nicoll RA. 1995. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc. Natl. Acad. Sci. USA 92:11175–79
    [73] Barria A, Derkach V, Soderling T. 1997a. Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alpha-amino-3-hydroxyl-5- methyl-4-isoxazole-propionate-type glutamate receptor. J. Biol. Chem. 272:32727–30
    [74] Mammen AL, Kameyama K, Roche KW, Huganir RL. 1997. Phosphorylation of theα-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. J. Biol. Chem.272:32528–33
    [75] Benke TA, Luthi A, Isaac JT, Collingridge GL. 1998. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393:793–97
    [76] Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL. 2000. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405:955–59
    [77] Banke TG, Bowie D, Lee H, Huganir RL, Schousboe A,Traynelis SF. 2000. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J. Neurosci. 20:89–102
    [78] Malinow R. 2003. AMPA receptor trafficking and long-term potentiation. Philos. Trans. R. Soc. London Ser. B 358:707–14
    [79] Man HY, Sekine-Aizawa Y, Huganir RL. 2007. Regulation ofα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu receptor 1 subunit. Proc. Natl. Acad. Sci. USA 104:3579–84
    [80] Oh MC, Derkach VA, Guire ES, Soderling TR. 2006. Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation. J. Biol. Chem. 281:752–58
    [81] Piccini A, Malinow R. 2002. Critical postsynaptic density 95/disc large/zonula occludens-1 interactions by glutamate receptor 1 (GluR1) and GluR2 required at different subcellular sites. J. Neurosci. 22:5387–92
    [82] Kim CH, Chung HJ, Lee HK, Huganir RL. 2001. Interaction of the AMPA receptor subunit GluR2/3 with PDZ domains regulates hippocampal long-term depression. Proc. Natl.Acad. Sci. USA 98:11725–30
    [83] Takahashi T, Svoboda K, Malinow R. 2003. Experience strengthening transmission by driving AMPA receptors into synapses. Science 299:1585–88
    [84] Zamanillo D, Sprengel R, Hvalby O, Jensen V, Burnashev N, et al. 1999. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science284:1805–11
    [85] Zhu JJ, Esteban JA, Hayashi Y, Malinow R. 2000. Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity. Nat. Neurosci. 3:1098–106
    [86] Bergles DE, Roberts JD, Somogyi P, Jahr CE. 2000. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:187–91
    [87] Liao D, Zhang X, O’Brien R, Ehlers MD, Huganir RL. 1999. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat. Neurosci. 2:37–43
    [88] Lin JW, Ju W, Foster K, Lee SH, Ahmadian G, et al. 2000. Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nat. Neurosci. 3:1282–90
    [89] Man HY, Lin JW, Ju WH, Ahmadian G, Liu L, et al. 2000. Regulation of AMPA receptormediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25:649–62
    [90] Carroll RC, Lissin DV, von Zastrow M, Nicoll RA, Malenka RC. 1999b. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat. Neurosci. 2:454–60
    [91] Heynen AJ, Quinlan EM, Bae DC, Bear MF. 2000. Bidirectional, activity-dependent regulation of glutamate receptors in the adult hippocampus in vivo. Neuron 28:527–36
    [92] Luscher C, Xia H, Beattie EC, Carroll RC, von Zastrow M, et al. 1999. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron24:649–58
    [93] Lin JW, Ju W, Foster K, Lee SH, Ahmadian G, et al. 2000. Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nat. Neurosci. 3:1282–90
    [94] Snyder EM, Philpot BD, Huber KM, Dong X, Fallon JR, Bear MF. 2001. Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat. Neurosci. 4:1079–85
    [95] Xiao MY, Zhou Q, Nicoll RA. 2001. Metabotropic glutamate receptor activation causes a rapid redistribution of AMPA receptors. Neuropharmacology 41:664–71
    [96] Zhou Q, Xiao M, Nicoll RA. 2001. Contribution of cytoskeleton to the internalization of AMPA receptors. Proc. Natl. Acad. Sci. USA 98:1261–66
    [97] Lee SH, Liu L, Wang YT, Sheng M. 2002. Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 36:661–74
    [98] Osten P, Khatri L, Perez JL, Kohr G, Giese G, et al. 2000. Mutagenesis reveals a role for ABP/GRIP binding to GluR2 in synaptic surface accumulation of the AMPA receptor.Neuron 27:313–25
    [99] Linden DJ, Connor JA. 1991. Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science 254:1656–59
    [100] Xia J, Chung HJ, Wihler C, Huganir RL, Linden DJ. 2000. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron 28:499–510
    [101] Chung HJ, Xia J, Scannevin RH, Zhang X, Huganir RL. 2000. Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domaincontaining proteins. J. Neurosci.20:7258–67
    [102] Matsuda S, Mikawa S, Hirai H. 1999. Phosphorylation of serine-880 in GluR2 by protein kinase C prevents its C terminus from binding with glutamate receptor-interacting protein. J. Neurochem. 73:1765–68
    [103] Perez JL, Khatri L, Chang C, Srivastava S, Osten P, Ziff EB. 2001. PICK1 targets activated protein kinase Ca toAMPAreceptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2. J. Neurosci. 21:5417–28
    [104] Chung HJ, Steinberg JP, Huganir RL, Linden DJ. 2003. Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 300:1751–55
    [105] Seidenman KJ, Steinberg JP, Huganir R, Malinow R. 2003. Glutamate receptor subunit 2 serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J. Neurosci. 23:9220–28
    [106] Lissin DV, Gomperts SN, Carroll RC, Christine CW, Kalman D, et al. 1998. Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc. Natl. Acad. Sci. USA 95:7097–102
    [107] Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. 1998. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:892–96
    [108] Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N, et al. 2006. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52:475–84
    [109] Deisseroth K, Feng G, Majewska AK, Miesenbock G, Ting A, Schnitzer MJ. 2006. Nextgeneration optical technologies for illuminating geneticallytargeted brain circuits. J.Neurosci. 26:10380–86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700