海马CA1区NSF与空间学习记忆障碍关系的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     帕金森病(Parkinson’s Disease,PD)与癫痫(Epilepsy)临床表现不同,但均属于神经系统变性性疾病,神经元变性、脱失为其显著的神经病理学特征。发病机制均涉及脑内神经递质、神经肽释放异常。已有报道PD患者伴有认知障碍,主要表现为早期的视觉空间障碍及短时记忆受损等,严重时常合并痴呆。颞叶癫痫在成人癫痫中预后最差,其60~70%发展成难治性癫痫,病人长期甚至终身服药也不能控制其反复出现的癫痫发作,颞叶癫痫并发认知功能障碍比其它类型癫痫高4~12倍,多为痴呆或精神分裂症样特征。中科院上海生化所与我们合作研究在红藻氨酸(Kainic acid,KA)处理后3周出现癫痫反复发作(Spontaneous recurrent seizure,SRS)的Sprague-Dawley(SD)大鼠的海马结构中克隆出癫痫相关基因(Epilepsy related gene,ERG1)基因(GenBank序号AF142097)经同源性比较与中国仓鼠的N-乙基马来酰亚胺敏感融合蛋白(N-ethylmaleimide-sensitive fusion protein,NSF)以及人类的N-乙基马来酰亚胺敏感融合因子(N-ethylmaleimide-sensitive fusion factor,NEM)基因具有高度的同源性。其蛋白表达产物NSF参与神经递质释放过程中突触囊泡的锚定、融合以及突触可塑性的形成。但是NSF与学习记忆障碍关系不清楚。本研究分别采用颞叶癫痫KA大鼠模型和PD的1-甲基-4-苯基-1,2,3,6-四氢吡啶(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,MPTP)小鼠模型探讨NSF与空间学习记忆障碍的关系;进一步观察用蝎毒耐热蛋白处理对伴有学习记忆损害的MPTP小鼠模型海马CA1区NSF表达的改变及可能的神经肽及脑内神经炎症机制。
     方法
     本研究给予SD大鼠颈部皮下注射惊厥剂量(10mg/kg,5mg/ml)的KA,诱发急性癫痫发作,KA后连续观察3周,按Racine描述标准筛选癫痫发作敏感并具有反复发作行为特征的SD大鼠。给予C57BL/6小鼠MPTP(20mg/kg,s.c.)连续8天制备MPTP小鼠PD模型,设立为模型组,腹腔注射给予蝎毒耐热蛋白连续8
Background and Objective
    Although the clinical syndrome of Parkinson's disease (PD) and epilepsy are different, both of them belong to the neurodegenerative diseases and have the common typical neuropathological characters, which are the large degeneration and loss of the neurons. The pathological mechanisms are related to the abnormal release of neurotransmitters and neuropeptides. There is an increasing recognition of accompanying impairments in cognition in PD patients. These deficits predominantly affect visual-spatial working memory and develop into the idiot severely. In adults, complex partial seizures such as those occur in temporal lobe epilepsy have the poorest prognosis of all types of seizures, with about 60~70% of all patients having intractable seizures, whose main syndrome is that the patients can't control the spontaneous recurrent seizure (SRS) and depend on the antiepileptic drugs all life. Temporal lobe epilepsy accompanied the psychiatric comorbidity 4—12 times higher than the other types of epilepsy, which focused on the idiotic or psychiatric comorbidity. Shanghai Institute of Biochemistry in Chinese Academy of Sciences cooperated with us and identified an epilepsy-related gene named ERG1 (GenBank accession no. AF142097), which is a gene cloned in the hippocampus of the rats with SRS after kainic acid (KA) injection for 3 weeks. Sequence analysis revealed that ERG1, a SRS related gene, has high similarity to N-ethylmaleimide-sensitive fusion protein (NSF) gene. NSF encoded by ERG1/NSF is an ATPase, which plays a key role in vesicular trafficking and involves the fusion of synaptic vesicles with the presynaptic membrane during the release of neurotransmitter. It also regulates the formation of synapses plasticity. However, the relationship between NSF and learning memory is still unclear. In this study, we used
引文
1.高素荣,袁锦楣.痴呆诊疗学[M].北京:北京科学技术出版社,1998;113~113.
    2.徐德隆,陈生弟,刘振国.帕金森病临床新技术[M].北京:人民军医出版社,2002;61~62.
    3. Poewe W, Seppi K. Treatment options for depression and psychosis in Parkinson's disease. J Neurol. 2001; 248 Suppl 3: Ⅲ 12~21.
    4. Muller T. Non-dopaminergic drug treatment of Parkinson's disease. Expert Opin Pharmacother. 2001; 2: 557~572.
    5. Weiner DM, Vanover KE, Brain MR, et al. Psychosis of Parkinson's disease: serotonin 2A receptor inverse agonists as potential therapeutics. Curr Opin Investig Drugs. 2003; 4: 815~819.
    6. D'Souza C, Gupta A, Aldrick MD, et al. Management of psychosis in Parkinson's disease. Int J Clin Pract. 2003; 57: 295~300.
    7. Motamedi G, Meador K. Epilepsy and cognition.Epilepsy &behavior. 2003; 4: 25~38.
    8. Wanqin Z, William R, Linda T, et al. Decreased glutamate release correlates with elevated dynorphin content in the hippocampus of aged rats with spatial learning deficits. Hippocampus. 1991; 1: 391~398.
    9. Jiang HK, Owyang V, Hong JS, et al. Elevated dynorphin in the hippocampal formation of aged rats: Relation to cognitive impairment on a spatial learning task. Proc.Natl.Acad.Sci. 1989; 86: 2948~2951.
    10.韩济生.神经科学原理[M].北京:北京医科大学出版社,1999;1629.
    11. Ohno M, Yamamoto T, Watanabe S. Deficits in working memory following inhibition of hippocampai nitric oxide synthesis in the rat. Brain Res. 1993; 632: 36~40.
    12. Schuman E, Madison D. A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science. 1991; 254: 1503~1506.
    13. Kawasaki F, Mattiuz AM, Ordway RW. Synaptic physiology and ultrastructure in comatose mutants define an in vivo role for NSF in neurotransmitter release. J Neurosci. 1998; 15: 10241~10249.
    14. Tolar LA, Pallanck L. NSF function in neurotransmitter release involves rearrangement of the SNARE complex downstream of synaptic vesicle docking. J Neurosci. 1998; 18: 10250~10256.
    15. Kirchner L, Weitzdoerfer R, Hoeger H, et al. Impaired cognitive performance in neuronal nitric oxide synthase knockout mice is associated with hippocampal protein derangements. Nitric Oxide. 2004; 11: 316~330.16. Shin JH, London J, Le Pecheur M, et al. Aberrant neuronal and mitochondrial proteins in hippocampus of transgenic mice overexpressing human Cu/Zn superoxide dismutase 1. Free Radic Biol Med. 2004; 37: 643-653.
    
    17. Racine RJ, Okujava V, Chipashvili S. Modification of seizure activity by electrical stimulation. Electroencephalogr.Clin.Neurophysiol. 1972; 32: 295-299.
    
    18. Donnan GA, Willis GL, Kaczmarczyk SJ, et al. Motor function in the l-methyl-4-phenyl- 1,2,3,6- tetrahydropyridine -treated mouse. J Neurol Sci. 1987; 77:185-191.
    
    
    19. Morris RG. Spatial localization does not require the presence of local cues. J Learn Motic. 1981; 12:239-260.
    
    20. Leppik IE. Intractable epilepsy in adults. Epilepsy Res Suppl. 1992; 5: 7-11.
    
    21. Loscher W. Animal models of intractable epilepsy. Prog Neurobiol. 1997; 53 : 239-258.
    
    22. Hermann BP, Seidenberg M, Bell B. Psychiatric comorbidity in chronic epilepsy: identification, consequences, and treatment of major depression. Epilepsia. Suppl 2. 2000; 41 : 31-41.
    
    23. Dulac O. Epileptic encephalopathy. Epilepsia Suppl 3. 2001; 42: 23-26.
    
    24. Hermann BP, Seidenberg M, Schoenfeld J, et al. Neuropsychological characteristics of the syndrome of mesial temporal lobe epilepsy. Arch Neurol. 1997; 54: 369-376.
    
    25. Meador KJ. Cognitive outcomes and predictive factors in epilepsy. Neurology. 2002; 58: 21-26.
    
    26. Umbricht D, Degreef G, Barr WB, et al. Postictal and chronic psychoses in patients with temporal lobe epilepsy. Am J Psychiatry. 1995; 152: 224-231.
    
    
    27. Sperk G. Kainic acid seizures in the rat. Prog. Neurobiol. 1994; 42: 1-32.
    
    28. Hong JS, McGinty JF, Lee PH, et al. Relationship between hippocampal opioid peptides and seizures. Prog Neurobiol. 1993; 40: 507-528.
    
    
    
    29. Sun YP, Wang J, Zhang WQ, et al. A brief seizure episode induced long-lasting enhancement of seizure susceptibility :the changes of hippocampal opioid peptides. Chin. J.Physiol.Sci. 1995; 11:59-64.
    
    
    
    30. Guan Z, Lu L, Zheng, Z, et al. A spontaneous recurrent seizure-related Rattus NSF gene identified by linker capture subtraction. Brain Res Mol Brain Res. 2001; 87: 117-123.
    
    31. Yu F, Guan Z, Sun L, et al. Further identification of NSF as an epilepsy related gene. Brain Res Mol Brain Res. 2002; 99: 141-144.
    
    32. Leenders AG, Sheng ZH. Modulation of neurotransmitter release by the second messenger-activated protein kinases: Implications for presynaptic plasticity. Pharmacol Ther. 2005; 105: 69- 84.
    33. Holmes GL, Yang Y, Liu Z, et al. Seizure-induced memory impairment is reduced by choline supplementation before or after status epilepticus. Epilepsy Res. 2002; 48: 3-13.
    
    34. Jarrard LE. The hippocampus and motivation. Psychol. Bull. 1973; 79: 1-12.
    
    35. Cohen NJ, Eichenbaum H. The theory that wouldn't die: A critical look at the spatial mapping theory of hippocampus function. Hippocampus. 1991; 1: 265-268.
    
    36. Hock BJJ, Bunsey MD. Differential effects of dorsal and ventral hippocampal lesions. J Neurosci. 1998; 18: 7027-7032.
    
    37. Wilson MA, McNaughton BL. Dynamics of the hippocampal ensemble code for space. Science. 1993; 261: 1055-1058.
    
    38. Stubley L, Mungall BA, Wright JW. The disruption of spatial and associative memories after kainic acid - induced selective hippocampal lesions in rats. Soc. Neurosci. Abstr. 1994; 20: 807.
    
    39. Lothman EW, Bertram EH, Stringer JL, et al . Functional anatomy of hippocampal seizures, Prog. Neurobiol. 1991; 37: 1-82.
    
    40. Volpe BT, Davis HP, Towle A, et al. Loss of hippocampal CA1 pyramidal neurons correlate with memory impairment in rats with ischemia or neurotoxin lesions. Behav. Neurosci. 1992; 106:457-464.
    
    
    41. Wood ER, Mumby DG, Pinel JP, et al. Impaired object recognition memory in rats following ischemia-induced damage to the hippocampus. Behav. Neurosci. 1993; 107: 51-62.
    
    42. Haas A. NSF-fusion and beyond. Trends Cell Biol. 1998; 8: 471-473.
    
    43. Nishimune JT, Isaac E, Molnar J, et al. NSF binding to GluR2 regulates synaptic transmission. Neuron, 1998; 21 87-97.
    
    44. Song I, Huganir R.L. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci.,2002; 25: 578-588.
    
    45. Luscher C, Xia H, Beattie EC, et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron. 1999; 24:649-658.
    
    46. Luthi A, Chittajallu R, Duprat F, et al. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF-GluR2 interaction. Neuron. 1999; 24: 389-399.
    
    47. Vianna MR, Alonso M, Viola H, et al. Role of hippocampal signaling pathways in long-term memory formation of a nonassociative learning task in the rat. Learn Mem. 2000; 7:333-340.
    
    48. Jayakar SS, Dikshit M. AMPA receptor regulation mechanisms: future target for safer neuroprotective drugs. Int J Neurosci. 2004; 114:695-734.
    
    49. Lee HK, Takamiya K, Han JS, et al. Phosphorylation of the AMPA receptor GluRl subunit is required for synaptic plasticity and retention of spatial memory. Cell. 2003; 112: 631-643.50. Schott BH, Sellner DB. Activation of midbrain structures by associative novelty and the formation of explicit memory in humans.. Learn Mem. 2004; 4: 383-387.
    
    51. Wittmann BC, Schott BH. Reward-related FMR1 activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron. 2005; 45: 459-467.
    
    52. Morris RG, Frey U. Hippocampal synaptic plasticity: Role in spatial learning or the automatic recording of attended experience. Philos. Trans. R Soc. Lond. B Biol. Sci. 1997; 352:1489-1503.
    
    
    53. Pittenger C, Kandel ER. In search of genera! mechanisms for long-lasting plasticity: Aplysia and the hippocampus. Philos. Trans. R Soc. Lond. B Biol. Sci. 2003; 358:757-763.
    
    54. Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1 NMDA receptor- dependent synaptic plasticity in spatial memory. Cell. 1996; 87:1327-1338.
    
    55. Li S, Cullen WK, Anwyl R, et al. Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat. Neurosci. 2003; 6: 526-531.
    
    56. Bach M.E, Barad M, Son H, et al. Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway. Proc. Natl. Acad. Sci. 1999; 96:5280-5285.
    
    57. Gasbarri A, Sulli A, Innocenzi R, et al. Spatial memory impairment induced by lesion of the mesohippocampal dopaminergic system in the rat. Neuroscience. 1996; 74:1037-1044.
    
    58. Gasbarri A, Sulli A, Packard MG, et al. The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog. Neuropsychopharmacol. Biol. Psychiatry. 1997; 21: 1-22.
    
    59. Taylor AE, Saint-Cyr JA, Lang AE. Frontal lobe dysfunction in Parkinson's disease. Brain. 1986; 109:845-883.
    
    60. Owen AM, Beksinska M, James M, et al. Visuospatial memory deficits at different stages of Parkinson's disease. Neuropsychologia. 1993; 31: 627-644.
    
    61. Crucian GP, Barrett AM, Schwartz RL, et al. Cognitive and vestibulo-proprioceptive components of spatial ability in Parkinson's disease. Neuropsychologia. 2000; 38: 757-767.
    
    62. Martin SJ, Grimwood PD, Morris RGM. Synaptic plasticity and memory: An evaluation of the hypothesis. Annu. Rev. Neurosci. 2000; 23:649-711.
    
    63. Adamovich SV, Berkinblit MB, Hening W, et al. The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson's disease. Neuroscience . 2001; 104:1027-1041.
    
    64. Lewis SJ, Slabosz A, Robbins TW, et al. Dopaminergic basis for deficits in working memory??but not attentional set-shifting in Parkinson's disease. Neuropsychoiogia. 2005; 43: 823~32.
    65. Stelmach GE, Phillips JG, Chau AW. Visuo-spatial processing in parkinsonians. Neuropsychologia. 1989; 27: 485~493.
    66. Mortimer JA, Pirozzolo FJ, Hansch EC, et al. Relationship of motor symptoms to intellectual deficits in Parkinson disease.. Neurology. 1982; 32: 133~137.
    67. Kathleen YH, Deborah LH, Shannon O', et al. Cognitive-Motor Learning in Parkinson's Disease. Neuropsychology. 1997; 11: 180~186.
    68. Arai N, Misugi K, Goshima Y, et al. Evaluation of a 1-methyi-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated C57 black mouse model for parkinsonism. Brain Res. 1990; 7: 57~63.
    69. Stern Y, Tetrud JW, Martin WR, et al. Cognitive changes following MPTP exposure.. Neurology. 1990; 40: 261~264.
    70. Schneider JS. Chronic exposure to low doses of MPTP. Ⅱ. Neurochemical and pathological consequences in cognitively-impaired, motor asymptomatic monkeys. Brain Res. 1990; 534: 25~36.
    71. Schneider JS, Roeltgen DP. Delayed matching-to-sample, object retrieval, and discrimination reverasl deficits in chronic low dose MPTP treated monkeys. Brain Res. 1993; 615: 351~354.
    72. Slovin H, Abeles M, Vaadia E, et al. Frontal cognitive impairments and saccadic deficits in low-dose MPTP-treated monkeys. J Neurophysiol. 1999; 81: 858~874.
    73. Da CC, Angelucci ME, Canteras NS, et al. The lesion of the rat substantia nigra pars compacta dopaminergic neurons as a model for Parkinson's disease memory disabilities. J Cell Mol Neurobiol. 2002; 22: 227~237.
    74. Dhooge R, Deyn PP. Applications of the morris water maze in the study of learning and memory. Brain Res Rev. 2001; 36: 60~90.
    75. Leplow B, Holl D, Zeng L, et al. Spatial behaviour is driven by proximal cues even in mildly impaired Parkinson's disease. Neuropsychologia. 2002; 40: 1443~1455.
    76. Gao HM, Liu B, Zhang WQ, et al. Critical role of microglia NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson's disease. J FASEB. 2003; 17: 1954~1956.
    77.李学坤,张卿,郭安臣,等.移植的神经干细胞在帕金森病模型小鼠脑内的存活与分化.中国康复理论与实践.2003;9:387~389.
    78.张如意,张澜,叶翠飞,等.MPTP对小鼠行为学及脑纹状体多巴胺含量的影响.中国行为医学科学.2001;10:164~166.
    79. Fletcher PC, Henson RN. Frontal lobes and human memory Insights from functional neuroimaging. Brain. 2001; 124: 849~881.80. Rahman S, Sahakian BJ, Hodges JR, et al. Specific cognitive deficits in mild frontal variant frontotemporal dementia. Brain. 1999; 122:1469-1493.
    
    81. Jisheng H. Principles in neuroscience. In: Learning and memory, Chapter. 52 (Zhentong Mei). Peking: Peking Medical University Publisher. 1999; 923 .
    
    82. Selcher JC, Weeber EJ, Christian J, et al. A role for ERK MAP kinase in physiologic temporal integration in hippocampal area CA1. Learn Mem. 2003; 10:26-39.
    
    83. Brun VH, Otnass MK, Molden S, et al. Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science. 2002; 296: 2243-2246.
    
    84. Eric RK, James KS, Thimas MJ. Principles of Neural Science. In: Learning and Memory, Chapter 62 (Eric R.K, Irving K, Susan I), Peking: Scientific publisher. 2001; 1228-1229.
    
    85. Handelmann GE, Olton DS. Spatial memory following damage to hippocamal CA3 pyramidal cells with kainic acid: Impairment and recovery with preoperative training. Brain Res. 1981; 217:41-58.
    
    86. Ni JW, Matsumoto K, Li HB, et al. Neuronal damage and decrease of central acetylcholine level following permanent occlusion of bilateral common carotid arteries in rat. Brain Res. 1995; 673: 290-296.
    
    87. Thompson RF The neural basis of basic associative learning of discrete behavioral responses. TINS. 1998; 11:152-155.
    
    88. Tadahiro N, Yuki Y, Tetsuya I, et al. Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Human Molecular Genetics. 2004; 13: 2699-2708.
    
    89. Freeman W, Morton AJ. Regional and progressive changes in brain expression of complexin II in a mouse transgenic for the Huntington's disease mutation. Brain Res Bull. 2004; 63:45-55.
    
    90. Teng FYH, Wang Y, Tang BL. The syntaxins Genome Biol. Cell biology Evolution. 2001; 2:3012.1-3012.7.
    
    91. Song I, Kamboj S, Xia J, et al. Interaction of the N-ethylmaleimide-sensitive factor with AMPA receptors. Neuron. 1998; 21:393-400.
    
    92. Collingridge GL, Isaac JT. Functional roles of protein interactions with AMPA and kainite receptors. Neurosci Res. 2003; 47: 3-15.
    
    93. Lledo PM, Zhang X, Sudhof TC, et al. Postsynaptic membrane fusion and long-term potentiation. Science. 1998; 279:399-403.
    
    94. Morishita W, Kirov SA, Pitler TA, et al. N-ethylmaleimide blocks depolarization-induced suppression of inhibition and enhances GABA release in the rat hippocampus. J. Neurosci. 1997; 17:941-950.
    
    95. Cooper JA, Sagar HJ, Jordan N, et al. Cognitive impairment in early, untreated Parkinson's??disease and its relationship to motor disability. Brain. 1991; 114:2095—2122.
    
    96. Stefanova ED, Kostic VS, Ziropadja LJ, et al. Declarative memory in early Parkinson's disease: serial position learning effects. J Clin Exp Neuropsychol. 2001; 23:581-591.
    
    
    97. Auerbach JM, Segal M. A novel cholinergic induction of long-term potentiation in rat hippocampus. J Neurophysiol. 1994; 72: 2034-2040.
    
    98. Dujardin K, Laurent B. Dysfunction of the human memory systems: role of the dopaminergic transmission. Curr Opin Neurol. 2003; 16 Suppl 2:11 -16.
    
    99. 李时珍.本草纲目.北京:人民卫生出版社.1982;2282.
    
    100.谢启文.神经肽.上海:复旦大学出版社.2004:503-504.
    
    101. Pollack AE, Wooten GF Differential regulation of striatal preproenkephalin mRNA by D1 and D2 dopamine receptors. Mol Brain Res. 1992, 12:111-119.
    
    102. Asselin MC, Soghomonian J, Co^te' P et al. Striatal changes in preproenkephalin mRNA levels in parkinsonian monkeys. NeuroReport. 1994; 5:2137-2140.
    
    103. Bezard E, Ravenscroft P, Gross CE et al. Upregulation of striatal preproenkephalin gene expression occurs before the appearance of parkinsonian signs in I-methyl-4-phenyl- 1,2,3,6- etrahydropyridine monkeys. Neurobiol Dis. 2001; 8:343-350.
    
    104. Nisbet AP, Foster OJ, Kingsbury A et al.Preproenkephalin and preprotachykinin messenger RNA expression in normal human basal ganglia and in Parkinson's disease. Neuroscience. 1995; 66:361-376.
    
    105. Fernandez A, de Ceballos ML, Jenner P et al. Striatal neuropeptide levels in Parkinson's disease patients. Neurosci Lett. 1992; 145:171-174.
    
    106. Calon F, Di Paolo T. Levodopa response motor complications-GABA receptors and preproenkephalin expression in human brain. Parkinsonism Relat Disord. 2002; 8:449-454.
    
    107. Christopherson K S, Hillier B J, Lim W A, et al. PSD-95 assembles a ternary complex with the N-methyl-d-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol. Chem. 1999; 274: 27467-27473.
    
    108. Tipson K F, Singer T P. Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J Neurochem.. 1993; 61:1191- 1206.
    
    109. Kreutzberg GW. Microglia : a sensor for pathological events in the CNS. Trend. Neurosci. 1996; 19: 312-318.
    
    110. Liu B, Hong JS. Role of microglia in inflammation-mediated neurodegenerative disease: mechanisms and strategies for therapeutic intervention. J. Pharmacol Exp Ther 2003; 304: 1-7.
    
    
    111. Aloisi F. The role of microglia and astrocytes in CNS immune surveillance and immunopathology. Adv. Exp. Med. Biol. 1999; 468: 123-133.112. Gonzalez-Scarano F and Baltuch G. Microgiia as mediators of inflammatory and degenerative disease. Annu. Rev. Neurosci. 1999; 22: 219-240.
    
    113. Streit WJ. Microgiia response to brain injury: a brief synopsis. Toxicol.Pathol. 2000; 28: 28-30.
    
    114. Minghetti L and Levi G. Microgiia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog. Neurobiol. 1998; 54: 99-125.
    
    115. Hirsch EC. Glia cells and Parkinson's disese. J. Neurol. 2000; 247: 1158-1162.
    
    116. McGeer PL, Itagaki S, Boyes BE, et ai. Reactive microgiia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology. 1988; 38: 1285-1291.
    
    117. Banati RB, Daniel SE, Blunt SB. Glia pathology but absence of apoptotic nigral neurons in long-standing Parkinson's disease. Mov. Disord. 1998; 13: 221-227.
    
    118. Hunot S, Dugas N, Faucheux B, et al. FcepsilonRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J. Neurosci. 1999; 19: 3440-3447.
    
    119. Ravenholt RT, Foege WH. 1918 influenza, encephalitis lethargica, Parkinsonism. Lancet 1982;8303: 860-864.
    
    120. Factor SA, Sanchez-Ramos J, Weiner WJ. Trauma as an etiology of parkinsonism: a historical review of the concept, Mov, Disord. 1988; 3: 30-36.
    
    121. Williams DB, Annergers JF, Kokmen E, et al. Brain injury and neurologic sequelae : a cohort study of dementia, parkinsonism, and amyotrophic lateral sclerosis. Neurology. 1991; 41: 1554-1557.
    
    122. Plassman BL, Havlik RJ, Steffens DC, et al. Documented head injury in early adulthood and risk of Alzheimer's disease and other dementias. Neurology. 2000; 55: 1158-1166.
    
    123. Hara H, Waeber C, Huang PL et al. Brain distribution of nitric oxide synthase in neuronal or endothelial nitric oxide mutant mice using [3H]L-NG-nitro-arginine autoradiography. Neuroscience . 1996; 3: 881-890.
    
    124. Bredt D, Snyder S. Nitric oxide, a novel neuronal messenger. Neuron. 1992; 8:3-11.
    
    125. Vincent S, Kimura H. Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience. 1992; 46:755-784.
    
    126. Hijiri W, Yasuko M., Rumiko K, et al. Protective effects of neuronal nitric oxide synthase inhibitor in mouse brain against MPTP neurotoxicity: an immunohistological study. European Neuropsychopharmacology. 2004; 14: 93- 104.
    
    127. Matthews RT, Beal M F, Fallon J, et al. MPP+ induced substantia nigra degeneration is??attenuated in nNOS knockout in mice. Neurobiol. Dis. 1997; 4: 114-121.
    
    128. Hantraye P, Brouillet E, Ferrante R,et al. Inhibition of neuronal nitric oxide synthase prevents MPTP-induced-parkinsonism in baboons. Nat. Med. 1996; 2:1017-1021.
    
    129. Santiago M, Machado A, Cano J. Effect of 1-arginine/nitric oxide pathway on MPP(1)-induced cell injury in the striatum of rats. J Br. Pharmacol. 1994; 111: 837-842.
    
    
    130. Halasz A S, Palfi M, Tabi T, et al. Altered nitric oxide production in mouse brain after administration of 1-methyl-4-phenyl-l,2,3,6-tetrahydro-pyridin or methamphetamine. Neurochemistry International. 2004; 44:641-646.
    
    131. Bannerman D, Chapman P, Kelly P, et al. Inhibition of nitric oxide synthase does not impair spatial learning. J Neurosci. 1994; 14:7404-7414.
    
    132. Holscher C, McGlinchey L, Anwyl R et al. 7-Nitro indazole, a selective neuronal nitric oxide synthase inhibitor in vivo, impairs spatial learning in the rat. Learn Mem. 1996; 2:267-278.
    
    133. O'Dell T, Huang P, Dawson T et al. Endothelial NOS and the blockade of LTP by NOS inhibitors in mice lacking neuronal NOS. Science. 1994; 265:542-546.
    
    134. Dringenberg H. Alzheimer's disease: more than a 'cholinergic disorder'—evidence that cholinergic-monoaminergic interactions contribute to EEG slowing and dementia. Behav. Brain Res. 2000; 115:235-249.
    
    135. Araki T, Mizutani H, Matsubara M, et al. Nitric oxide synthase inhibitors cause motor deficits in mice. Eur. Neuropsychopharmacol. 2001; 11:125-133.
    
    136. Nelson R, Demas G, Huang P et al. Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase. Nature. 1995; 378:383-386.
    
    137. Weitzdoerfer R, Hoeger H, Engidawork E, et al. Neuronal nitric oxide synthase (nNOS) knock-out mice show impaired cognitive performance. Nitric Oxide. 2004; 10:130-140.
    
    138. Dinerman JL, Dawson TM, Schell MJ, et al. Endothelial nitric oxide synthase localized to hippocampal pyramidal cells : implications for synaptic plasticity. Proc. Natl. Acad. Sci. 1994; 91:4124-4128.
    
    139. Cai ZW, Xiao F, Lee B, et al. Rhodes Prenatal hypoxia-ischemia alters expression and activity of nitric oxide synthase in the young rat brain and causes learning deficits. Brain Research Bulletin. 1999; 49:359-365.
    
    140. Yu W, Juang S, Lee J, et al. Decrease of neuronal nitric oxide synthase in the cerebellum of aged rats. Neurosci. Lett. 2000; 291: 37-40.
    
    141. Law A, O'donneli J, Gauthier S. et al. Neuronal and inducible nitric oxide synthase expressions and activities in the hippocampi and cortices of young adult, aged cognitively unmimpaired, and impaired long-evans rats. Neuroscience. 2002; 112:267-275.142. Ohno M, Yamamoto T, Watanabe S. Deficits in working memory following inhibition of hippocampal nitric oxide synthesis in the rat. Brain Res. 1993; 632:36-40.
    
    143. Gribhoj VK, Lum-Ragan JT. Evidence for nitric oxide synthase inhibitor-sensitive and insensitive hippocampal synaptic potentiation. J Neurophysiol. 1992; 68:639-642.
    
    
    144. Bickford ME, Gunluck AE, Guido W, et al. Evidence that choiinergic axons from the parabrachial region of the brainstem are the exclusive source of nitric oxide in the lateral geniculate nucleus of the cat. J. Comp. Neurol. 1993; 334:410-430.
    
    145. Guevara-Guzman R, Emson PC, Kendrick KM. Modulation of in vivo striatal transmitter release by nitric oxide and cyclic GMP. J Neurochem. 1994; 62: 807-810.
    1. Wolfgang Loscher. Animal models of intractable epilepsy. Progress in Neurobiology 1997; 53: 239~258.
    2.洪震,黄茂盛,王蓓.癫痫患者的认知功能状况分析[J].临床神经电生理学杂志.2002;11:88~90.
    3.彭金玲,杨传友,王春阳.癫痫患者心理健康状况与认知功能研究[J].河南实用神经疾病杂志.2001:4:26~27.
    4. Motamedi G, Meador K. Epilepsy and cognition. Epilepsy &behavior 2003; 4: 25~38.
    5. Yung AW, Park YD, Cohen MJ, et al. Cognitive and behavioral problem in children with centrotemporal spikes. Pediatr Neural. 2000; 23: 391~395.
    6. Gerber PE, Hamiwka L, Connolly MB, et al. Factors associated with behabioral and cognitive abnormalities in children receiving topiramate. Pediatr Beurol. 2000; 22: 200~203.
    7. Meador KJ, Kimford J. Cognitove outcomes and predictive factors in epilepsy. Neurology 2002; 58 Suppl 5: 21~26.
    8. Kotloski R, Lynch M, Lauersdorf S, et al. Repeated brief seizures induce processive hippocampal neuron loss and memory deficits. Prog Brain Res. 2002; 135: 95~110.
    9. Sogann Y, Monokoahi M, Silveira DC, et al. Timing of cognitive deficits following neonatal seizures: relationship to histological charges in the hippocampus. Brain Res Dev Brain Res. 2001; 131: 73~83.
    10. Theodore WHM, Gaillard WD. Neuroimaging and the progression of epilepsy. Prog Brain Res. 2002; 135: 305~313.
    11. Galanopoulou AS, Bojko A, Lado F, et al. The spectrum of neuropsychiatric abnormalities associated with electrical status epilepticus in sleep. Brain Dev. 2000; 22: 279~295.
    12. Hermann BP, Seidenberg M, Bell B. The neurodevelopmental impact of childhood onset temporal lobe epilepsy on brain structure and function and the risk of progressive cognitive effects. Prog Brain Res.2002; 135: 429~438.
    13. Hermann B, Seidenberg M, Bell B, et al. The neurodevelopmental impact of children-onset temporal lobe epilepsy on brain structure and function. Epilepsia. 2002; 43: 1062~1071.
    14. Prevey MI, Delaney RC, Cramer JA et al. Complex partial and secondarily generalized aeizure patients: cognitive functioning prior to treatment with antiepileptic medication. VA Epilepsy Cooperative Study 264 Group. Epilepsy Res. 1998; 30: 1~9.
    15. Dodrill CB. Progressive cognitive decline in adolescents and adults with epilepsy. Prog Brain Res. 2002: 135: 399~407.16.贾金鼎,尤海峰,崔玮香.儿童癫痫大发作132例智力障碍分析.中国临床康复.2003;7:2990.
    17.吴晔,王丽.学龄期癫痫患儿认知功能的初步探讨.中国实用儿科杂志.2000;15:486~488.
    18. Bailei LI, Turk WH. The impact of children epilepsy on neurocognitive and behavioral performance: a prospective longitudinal study. Epilepsia. 2000; 41: 426~431.
    19. Cornaggia CM, Gobbi G. Learning disability in epilepsy: definition and classification. Epilepsia. 2001; 42 Suppl 1: 2~5.
    20. Culgonen S, Demirbilek V, Korkmaz B, et al. Neuropsychological functionsin idiopathic occipital lobe epilepsy. Epilepsia. 2000; 41: 405~411.
    21. Helmalaedter C, Kemper B, Elger CE. Neuropsychological aspects of frontal lobe epilepsy. Neuropsychologia. 1996; 34: 299~406.
    22. Culhane-Shelburne K, Chapieski L, Hiscok M, et al. Executive functions in children with frontal and temporal lobe epilepsy. J Int Neuropsuchol Soc. 2002; 8: 623~632.
    23. Dreifuss FE. Cognitive function-victim of disease or hostage to treatment. Epilepsia. 1992; 33 Suppl 1: 7~12.
    24. Kilpatrick C, Murrie V, Cook M, et al. Degree of left hippocampal atrophy correlates with severity of neuropsychological deficits. Seizure. 1997; 6: 213~218.
    25.朱丹彤,杨晓苏,金丽娟.颞叶癫痫与认知功能.现代康复.2001;5:54~55.
    26. Schoenfeld J, Woodard A, Hecox K, et al. Neuropsychological and behavioral status of children with complex partial seizure. Devel Med&Child Neurol. 1999; 41: 724~731.
    27. Tromp SC, Weber JW, Aldenkamp AP, et al. Relative influence of epileptic seizure and of epilepsy syndrome on cognitive function. J Child Neurol. 2003; 18: 407~412.
    28. Pulliainen V, Kuikka P, Jokelainen M. Motor and cognitive functions in newly diagnosed adult seizure patients before qntiepileptic medication. Acta Neurol Scand. 2000; 101: 73~78.
    29. Tatum WO, French JA, Faughi E, et al. Posimarketing experience with topiramate and cognition. Epilepsia. 2001; 42: 1134-1140.
    30. Brunbech L, Sabera A. Effect of antiepileptic drugs on cognitive function in individuals with epilepsy: a comparative review of newer versus older agents. Drugs. 2002; 62: 593~604.
    31. Crawford P. An audit of topiramate use in a general neurology climic. Seizure. 1998; 7: 207~211.
    32. Aldenkamp AP, Baker G, Mulder OG, et al. A multicenter, randomized clinical study to evaluate the effect on cognitive function of topiramate compared with valproate as add-on therapy to carbanazepine in patients with partial-onset seizures. Epilepsia. 2000; 41: 1167~1178.33.李晓裔,肖维,汪江.癫痫患者的事件相关电位与认知功能研究.临床神经电生理学杂志.2001;41:1167~1178.
    34. Deckers CL, Hekater YA, Keyser A, et al. Monotherapy versus polytherapy for epilepsy: a multicenter double-blind randomized study. Epilepsia. 2001; 42: 1387~1394.
    35. Deckers CL, Hekater YA, Keyser A, et al. Reappraisal of polytherapy in epilepsy: a critical review of drug load and adverse effect. Epilepsia. 1997; 38: 570~575.
    36.王丹歌,马琦.癫痫患者的生活质量.中国临床康复.2003;7:1562.
    37. Loring DW, Meader KJ. Cognitive and Behavioral Effects if Epilepsy Treatment. Epilepsia. 2001; 42 Suppl 8: 24~32.
    38. Clusmann H, Schramm J, Kral T, et al. Prognostic factors and outcome after different types of resection for temporal lobe epilepsy. J Neurosurg. 2002; 97: 1131~1141.
    39.郭瑞友,史庭慧,唐荣华.癫痫患者事件相关电位(P300)与认知功能相关性研究.卒中与神经疾病.1999;6:199~201.
    40. Reynolds EH. Anticonvulsants, folic acid, and epilepsy. Lancet. 1973: 1: 1376~1378.
    41.于欢,洪震.癫痫患者的认知功能障碍.中国临床康复.2004;8:4586~4588.
    42. Engelberts NH, Klein M, Ader HJ, et al. The effectiveness of cognitive rehabilitation for attention defictia in focal seizures: a randomized controlled study. Epilepsia. 2002; 43: 587~595.
    43. GoldmanWP, Baty JD, Buckles VD, et al. Cognitive and motor functioning in Parkinson's disease. Arch Neurol. 1998; 55: 674~680.
    44. Korczyn AD. Dementia in Parkinson's disease. JNeurol. 2001; 248 suppl3: 1~4.
    45. Aarsland D, Andersen K, Larsen JP, et al. Risk of dementia in Parkinson's disease: a community based, prospective study. Neurology. 2001; 56: 730~736.
    46. Murat E.Dementia associated with Parkinson's disease. Lancet Neurol. 2003; 2: 229~237.
    47.付希久.尼莫通与调心方改善帕金森病认知功能障碍的疗效分析.中国临床康复.2002;6:1346~1347.
    48. Girotti F, Soliveri P, Carella F, et al. Dementia and cognitive impairment in Parkinson's disease. J Neurol Neurosurg Psychiat. 1988; 51: 1498~1502.
    49. Starkstein SE, Preziosi TJ, Berthier ML, et al. Depression and cognitive impairment in Parkinson's disease. Brain. 1989; 112: 1141~1153.
    50. Kulisevsky J, Pascual SB. Parkinson disease and cognition. Neurologia. 1999; 14 Suppl1: 72~81.
    51. Puisinelli WA, Brierley JB. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke. 1979; 10: 267~272.52.王丽娟,赵洁皓,詹培源等.帕金森病患者脑代谢与认知功能的研究.中华老年医学杂志 2002;21:336~339.
    53.高国栋,徐书雯,莫建伟等.帕金森病患者的抑郁障碍和认知功能分析.中国老年学杂志.2003;23:829~830.
    54. Gotham AM, Brown R G, Marsden CD, et al. Frontal cognitive function in Parkinson's disease on and off evoda. Brain. 1988; 111: 299.
    55. Farina E, Cappa SF, Polimeni M, et al. Frontal dysfunction in early Parkinson's disease. Acta Neurol. Scand. 1994; 90: 34.
    56. AnnE, Taylor JA, Saint Cyr, Long AE. Frontal lobe dysfunction in Parkinson's disease. Brain.1986; 109: 845.
    57. Burrner T, Kuhn W, Muller T, et al. Chromatic and a chromatic visual evoked potentials in Parkinson's disease. J Electroenc ephalogr Clin Neurophysiol. 1996; 100: 443~447.
    58. Koller WC, Silver DE, Lieberman A. A nalgorithum for the management of Parkinson's disease. Neurology. 1994; 44 suppl 10: 1~2.
    59. Tison F, Dartigues JF, Auriacombe S, et al. Dementia in Parkinson's disease: A population based study in ambulatory and in stitutionalized individuals. Neurology. 1995; 45: 705~708.
    60. Marder K, Ming XT, Cote L, et al. The frequency and associated risk factor in patients with Parkinson's disease. Arch Neurol. 1995; 52: 695~709.
    61. Roskin SA, Borod JC, Wasserstein J, et al. Visuospatial orientationin Parkinson's disease. Intern J Neuroscience. 1990; 51: 9.
    62. Mohr E, Mendis T, Grimes GD. Late cognitive changes in Parkinson's disease with an emphasis on dementia. Behavioral neurology of movement disorders, advances in neurology. 1995; 113~197.
    63. Growdon JH. Corkin S.Cognitive impairments in Parkinson's disease. Advances in Neurology. 1987; 45: 383.
    64.徐姜定.痴呆的诊断分类与治疗.浙江临床医学.2005;7:1~2.
    65.胡昌恒,袁光固,罗祖明.帕金森病的神经心理学研究.中华神经精神科杂志.1995;18:219.
    66. Cummings JU. The dementias of Parkinson's disease: prevalence, characteristics, neurology and comparison with dementia of the Alzheimer type. Eur Neurol. 1988; 28: 15.
    67. Brown RG, Marsden CD. How common is dementia in Parkinson's disease.Lancet. 1984; 2: 1262~1265.
    68. Ebmeier KP, Clader SA, Crawford JR, et al. Clinical features predicting dementia in idiopathic Parkinson's disease: A followup study. Neurology. 1990; 40: 1222~1224.
    69.陈蓓,刘剑立,王耀山等.震颤麻痹与智能障碍.中国神经精神疾病杂志.1990;16:171。70. Mayeux R, Stern Y, Rosenstein R, et al. An estimate of the prevalence of dementia in idiopathic Parkinson's disease. Arch Neurol. 1988; 45: 2602~2621.
    71. Bayle KA, Tomoeda CK, Wood JA, et al. Change in cognitive function in idiopathic Parkinson disease. Arch Neurol, 1996; 53: 1140~1146.
    72. Wermuth L, Knudsen L, Boldsen J. A study of cognitive functions in young Parkinsonian patients. Acta Neurol Scand. 1996; 93: 21~24.
    73.柴滨,张小英,龙洁.帕金森病患者认知功能障碍及其相关因素分析.北京医学.2000;22:198~201.
    74. Levin BE, Llabre MM, Reisman S, et al. Visuospatial impairment in Parkinson's disease. Neurology. 1991; 4: 365~369.
    75. Cooper JA, Sagar HJ, Jordan N, et al. Cognitive impairment in early, untreated Parkinson's disease and its relationship to motor disability. Brain. 1991; 114: 2095~2122.
    76. Dubois B, Pillon B. Cognitive deficits in Parkinson's disease. J Neurology. 1997; 244: 228.
    77.陈海波,蔡晓杰,王新德.帕金森病患者的记忆障碍.临床神经病学杂志.1997;10:360~362.
    78.蔡晓杰,陈海波,王新德.帕金森病患者的智能障碍瑞文测验的应用及意义.脑与神经疾病杂志.1997;5:94~96.
    79.王新德,蔡晓杰,陈海波.帕金森病患者镜像书写的随访研究.临床神经病学杂志.1998;11:216.
    80. Lund-Johansen M, Hugdahl M, Wester K. Cognitive function in patients with Parkinson's disease undergoing stereotaxic thalamotomy. J Neurol Neurosurg Psychiat. 1996; 60: 564.
    81.汤慈美,刘颖.帕金森病患者的智力和视空间知觉障碍.中华老年医学杂志.1993;12:2002~2041.
    82.汤慈美,刘颖.帕金森病病人的图形辨别障碍.心理学报.1993;25:2582~2631.
    83.汤慈美,刘颖,张小英.帕金森病患者在图形和汉字辨认中的障碍中华神经科杂志.1998;31:274~276.
    84.成义仁.帕金森病情绪障碍的认知治疗.中国临床康复.2002;6:940.
    85.党雷,索爱琴,张健.帕金森病抑郁状态影响冈素研究.中国临床康复.2003;7:1168~1169.
    86. Cummings JL. Depression and Parkinson's disease: a review. AM J Psychiatry. 1992; 149: 443~454.
    87. Kuhn W, Muller T, Gerlach M et al. Depression in Parkinson's disease: biogenic amines in CSF of "de novo" Patients. J Neural Transmission. 1996; 103: 1141~1145.
    88. Starkstein SE, Preziosi TJ, Bolduc PL, et al. Depression in Parkinson's disease. J Nervous Mental Dis. 1990; 178: 27~31.89. Dooneief G, Mirabello E, Bell K, et al. An estimate of the incidence of depression inidiopathic parkinson's disease. Archives Neurology. 1992; 49: 305~307.
    90.乔晋,屈秋民,曹红梅等.帕金森病患者神经心理学特点1:1病例对照分析.中国临床康复.2003;7:1094~10945.
    91. Menza MA, Mark MH. Parkinson's disease and depression: the relationship to disabilityand person. J Neuropsychiatry Clin Neurosci. 1994; 6: 165.
    92.李淑华,陈海波,王新德等.帕金森病患者工作记忆障碍研究.中华神经科杂志.2002;35:528.
    93. Morris RG, Downes JJ, Sahakian BJ, et al. Planning and spatial working memory in Parkinson's disease. J Neurol Neurosurg Psychiat. 1988; 51: 757~766.
    94. Owen AM, Doyon J, Dagher A, et al. Abnormal basal ganglia outflow in Parkinson's disease identified with PET implications for higher cortical functions. Brain. 1998; 121: 949~965.
    95. Postle BR, Locascio JJ, Corkin S, et al. The time course of spatial and object learning in Parkinson's disease. Neuropsychologia. 1997; 35: 1413~1422.
    96. Postle BR, Jonides J, Smith EE, et al. Spatial but not object delayed response is impaired in early Parkinson's disease. Neuropsychology. 1997; 11: 171~179.
    97. Kosslyn SM, Thomspon WL, Gitelman DR, et al. Neural systems that encode categorical versus coordinate spatial relations: PET investigations. Psychology. 1998; 26: 333~347.
    98. Laeng B. Lateralization of categorical and coordinate spatial functions: a study of unilateral stroke patients. J Cog Neurosci. 1994; 6: 189~203.
    99.陈海波,李淑华,王新德.早期帕金森病患者工作记忆障碍的临床特点.中华医学杂志.2002;82:949~951.
    100.高素荣,袁锦楣主编.痴呆诊疗学.北京:北京科学技术出版社第1版.1995;111~123.
    101. Hughes TA, Ross HF, Musa S, et al. A 10-year study of the incidence of and factors predicting dementia in Parkinson's disease. Neurology. 2000; 54: 1596~1602.
    102. Portin R, Rinne UK. Predictive factors for cognitive deterioration and dementia in Parkinson's disease. Adv Neurol. 1986; 45: 413.
    103. Breteler MM, DeGroot RR, VanRomunde LK, et al. Risk of dementia in patients with Parkinson's disease. Epilepsy and severe head trauma: are gister based followup study. J Am Epidemiol. 1995; 142: 1300~1305.
    104.乔晋,屈秋民,郭峰等.55岁以上自然人群中帕金森病患者认知功能障碍的临床研究.西安交通大学学报(医学版).2004;25:100~104.
    105.成义仁,杜召云,陈景清等.帕金森氏病患者的记忆和情绪障碍.中国行为医学科学.2000;9:193.106. Levin BE, et al. Behavioral Neurology of Movement Disorders Advances in Neurology. New York: Raven Press. 1995; 65: 85.
    107. Lange KW, Paul GM, Naumann M, et al. Dopaminergic effects on cognitive performance in patients with Parkinson's disease. J Neural Transm Suppl. 1995; 46: 423~432.
    108. Nishiyama K, Momose T, Sugishita M, et al. Positron emission tomography of reversible intellectual impairment induced by long-term anticholinergic therapy. J Neurol Sci. 1995; 132: 89~92.
    109. Gasparini M, Fabrizio E, Bonifati V, Meco G.. Cognitive improvement during Tolcapone treatment in Parkinson's disease. Neural Transm. 1997; 104: 887~894.
    110. Molinari SP, Kaminski R, Di Rocco A, et al. The use of famotidine in the treatment of Parkinson's disease: a pilot study. J Neural Transm Park Dis Dement Sect. 1995; 9: 243~247.
    111. Tsuchiya H, Yamaguchi S, Kobayashi S. Impaired novelty detection and frontal lobe dysfunction in Parkinson's disease. Neuropsychologia. 2000; 38: 645~654.
    112. Dager A, Owen Am, Boecker H, et al. The role of the streatum and hippocampus in planning: PET activation study in Parkinson's disease. Brain. 2001; 124: 1020~1032.
    113. Pal PK, Lee CS, Samii A, et al. Alternating two finger tapping with contra lateral activation in an objective measure of clinical severity in Parkinson's disease and correlates with PET [18F] DOPAKi. Parkinsonism&Related Disorders. 2001; 7: 305.
    114. Thobois S, Guillouet E, Broussolle. Contributions of PET and SPECT to the understanding of the pathophysiology of Pakinson's disease. Neurophysiologic Clinique/Clinical Neurophysiology. 2001; 31: 321.
    115. Broussolle E, Dentresangle C, Landais P, et al. The relation of putarnen and caudate nucleus 18F2 Dopa uptake to motor and cognitive performances in Parkinson's disease. J Neurol Sci. 1999; 166: 141~151.
    116. Alexander GE, Delong MR, Strick PL, et al. Parallel organization of functionally segregated circuits linking basalganglia and cortex. Annual Review of Neuroscience. 1986; 48: 357.
    117.王丽娟,郑芷萍,唐安戊等.阿尔茨海默病18F2FDGPET显像诊断的研究.中国神经精神疾病杂志.2001:27:260~262.
    118.张小英,柴滨,龙洁等.帕金森病脑萎缩定量分析及其与运动障碍和认知功能的相关研究.中华神经科杂志.1996;29:361~364.
    119. Cammings JL, Benson DF, et al. Dementia: a clinical approach. Boston: Butter worths. 1983; 89~102.
    120. Bonnie EL, Maria ML, William JW. Cognitive impairments associated with early Parkinson's disease. Neurology. 1989; 39: 557.121. David GL, Alastair JC, Gerrard MF, et al. Cognitive and motor dysfunction in Parkinson's disease. Arch Neurol. 1988; 45: 854.
    122. Leslie IW, Klaus LL, Lucy LB, et al. Alterations of regional cerebral blood flow and oxygen metabolism in Parkinson's disease. Neurology. 1985; 35: 1399.
    123. Mortimer JA, Pirozzolo FJ, Hansch EC, et al. Relationship of motor symptoms to intellectual deficits in Parkinson's disease. Neurology. 1982; 32: 133~137.
    124. Owen AM, James M, Leigh PN, et al. Frontostriatal cognitive deficits at different stages of Parkinson's disease. Brain. 1992; 115: 1727~1751.
    125.汤慈美,王新德.帕金森病的认知功能改变.中华神经科杂志.1999;32:239~241.
    126. Roland PE, Skinhoj E. Extra striate cortical areas activated during visual discrimination in man. Brain Research. 1981; 222: 166~171.
    127. Brozoski TJ, Brown RM, Rosvoid HE. Cognitive deficit caused by regional depletion of dopaminein prefrontal cortex ofrhesusmon key. Science. 1979; 205: 929~932.
    128. Fabrizio S, Livia B. Cognition and emotion in different stages and subtype of Parkinson's Disease. J Neurol 2000; 247 suppl 2: 114~121.
    129. Koller WC, Silver DE, Lieberman A. An algorithm for the management of Parkinson's disease. Neurology. 1994; 44 Suppl 10: 12~21.
    130.王炜,苗丹民,解恒革等.老年轻度认知损害的神经心理特点横断面比较.中国临床康复.2003;7:2702~2073.
    131.王丽娟,唐安戊,刘斌等.帕金森病18F2FDGPET显像临床研究.中华核医学杂志.2002;22:17~18.
    132.Maeshima S,帕金森病患者的视空间损害与日常生活活动能力Am J Phys Med Rehabil.1997;76:383~388.
    133.马建军,孙翠萍,李德霞等.帕金森病患者的智能及事件相关电位研究.中华老年医学杂志.1996;15:97~100.
    134.罗华,熊先冀,张泽兰.脑与神经疾病杂志.1998;6.274~276.
    135.宗文斌,路英智,陈兴时等.治疗中期的帕金森病患者辅助练习医疗气功前后认知电位P300变化的观察.中国临床康复.2003;7:3090~3091.
    136. Bauer LO, Costa L, Hesseibrock VW. Effects of alcoholism, anxiety and depression on P300 in women: a pilot study. J Stud Alcohol. 2001; 62: 571~579.
    137. Jeon YW, Polich J. P300 asymmetry in schizophrenia; a meta-analysis. Psychiatry Res. 2001; 104: 61~74.
    138.Aotsuka A,Electromyogr Clin帕金森病的事件相关诱发电位研究[英]/Neurophysiol.1996;36:215~220.139. Sklare DA, Lynn GE. Latency of the P3 event related potential: normative aspects and within subject variability. Electroencephalogr Clin Neurophysiol. 1984; 59: 4202~4241.
    140. Tachibana H. Cognitive impairment in Parkinson's disease—a visual event related potential study. Nippon Rinsho. 1997; 55: 1892~1941.
    141. Kimura T, Ohunma A, Seki H, et al. Cognitive impairment in Parkinson disease assessed by visuo motor performance and P300 potential. Tohoku J Exper Med. 1990; 16 suppl: 155~157.
    142. Hayashi R, Hanyu N, Kurashima T, et al. Relationship between cognitive impairment, event related potentials, and motor disability scores in patients with PD: 22 year follow up study. J Neurol Sck. 1996; 141: 45~46.
    143. Wang L, Kuroiwa Y, Kamitani T. Visual event related potential changes at two different tasks in nondemented Parkinson's disease. J Neurol Sci, 1999. 164: 1392~1471.
    144. Polich J. P300 in clinical application: meaning, method, and measure-ment. AM J EEG Technol. 1991; 31: 201.
    145.潘红,蒋雨平,李盛昌.帕金森病患者的认知电位研究.中国临床神经科学.2002;10:169~174.
    146. McCarthy G, Donchin E. A metric for thought: a comparison of P300 latency and reaction time. Science. 1981; 211: 77~80.
    147.张丽华,毕须光,唐玉璋等.帕金森病认知功能与事件相关电位P300.临床神经科学.1997;5:38~39.
    148.陈圣鑫,陈生弟.帕金森病患者的健康相关生活质量及其影响因素.中国临床康复.2003;7:48~49.
    149. Hayashi R, Hanyu N, Tamaru F. Cognitive impairment in Parkinson's disease a 6 year follow-up study. Parkinsonism. Related Disorder. 1998; 4: 81~85.
    150.愈丽华,王根发,周永炜等.痴呆诊断的探讨.临床神经科学.1994;2:32~36.
    151. Goodin DS. Clinical utility of long latency cognitive event-related potentials (P3): Pros EEG Clin Neurophysiol. 1990; 76: 2.
    152. Wang L, Kuroiwa Y, Li M, et al. The correlation between P300 alteration and regional cerebral blood flow in nondemented Parkinson disease. Neurosci Lett. 2000; 282: 133~136.
    153. Kong J, Wang Y, Zhang W, et al. Event related brain potentials elicited by a number discrimination task. Neuroreport. 2000; 11: 11952~11971.
    154. Wang H, Wang Y, Kong J, et al. Enhancement of conflict processing activity in human brain under task relevant condition. Neurosci Lett. 2001; 298: 1552~1581.
    155. Cui L, Wang Y, Wang H, et al. Human brain subsystems for discrimination of visual shapes. Neuroreport. 2000; 11: 24152~24181.156.丸山正弘.特异性认知机能障碍和全面性痴呆.日本医学介绍.1999.20:298.
    157. Wang Y, Kong J, Tang X, et al. Event related potential N270 is elicited by mental conflict processing in human brain. Neurosci Lett. 2000; 293: 172~201.
    158. Mattila PM, Roytta M, Lonnberg P, et al. Cholineacety transferase activity and striatal dopamine receptors in Parkinson's disease in relation to cognitive impairment. Acta Neuropathol. 2001; 102: 1602~1661.
    159.王玉平,王惠军,王德泉等.事件相关电位N270在揭示帕金森病患者轻度认知损害中的应用.中华神经科杂志.2002;35:9~12.
    160. Langheinrische T, Tebaritzvan EL, Lagrege WA, et al. Visual contra stre sponse functions in Parkinson disease: evidence from electroretino grams, visually evoked potentials and psychopyysics. Clin Ncurophysioh. 2000; 111: 66~74.
    161.马顺天,楼美珍,王晓玲等.阿尔茨海默病的非匹配负波的实验研究.中国临床康复.2003;7:1102~1103.
    162. Lard MH, Perrin F, Pernier J, et al. Brain generators implicated in processing of auditory atimulus deviance: a topographic event-related potential study. Psychophysinlogy 1990; 27: 627~640.
    163. Aavilaninen P, Alho K, Reinikainen K, et al. Right-hemisphere dominance of different mismatch negativities, Electroeneephalogr. Clin. Neurophysiol. 1991; 78: 466~479.
    164. Pekkonen E, Jousmaki V, Kononen M, et al. Auditory sensory memory impairment in Alzheimer's disease: an event-related potential study. Neuroreport. 1994; 5: 2537~2540.
    165.蔡增林,金蕾,薛寿儒等.应用失匹配负波评估帕金森病患者轻度认知功能损害.中国临床康复.2004;8:1220~1221.
    166. Fillit H, Butler R, O'Connell A, et al. Achieving and maintaining cognitive vitality with aging. Mayo Clinic Proceedings 2002; 77: 681~696.
    167. Koller WC, Glatt SL, Hubble JP, et al. Apoplipoprotein E genotypes in Parkinson's disease with and without dementia. Ann Neurol 1995; 37: 242~245.
    168.闫荣,张朝东.事件相关电位在帕金森病认知障碍康复治疗中的应用.中国临床康复.2003;7:1096~1097.
    169.潘小平,杨志华.帕金森病患者情绪障碍的特征及药物、心理干预效果分析.中国临床康复.2004;8:3016~3017.
    170.张明园.精神科评定量表手册.长沙:湖南科学技术出版社.1998;184~187.
    171.蔡晓杰,李淑华,王新德等.帕金森病的认知障碍及康复治疗.现代康复.2000;4:181~183.1. Rothman JE. Mechanisms of intracellular protein transport. Nature. 1994; 372: 55~63.
    2. Scheller RH. Membrane trafficking in the presynaptic nerve terminal. Neuron. 1995; 14: 893~897.
    3. Sudhof TC. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature. 1997; 375: 645~653.
    4. Harald H, Richard H. S. Phosphorylation of synaptic vesicle proteins: Modulation of the a SNAP interaction with the core complex. Neurobiology. Proc. Natl. Acad. Sci. 1996; 93: 11945~11949.
    5. Castillo P E, Janz R., Su "dhof TC, et al. Rab 3A is essential for mossy fiber long-term potentiation in hippocampus. Nature. 1997; 388: 590~593.
    6. Choi S, Lovinger DM. Decreased probability of neurotransmitter release underlies striatal long-term depression and postnatal development of corticostriatal synapses. Proc. Natl. Acad. Sci. USA. 1997; 94: 2665~2670.
    7. Lin RC, Scheller RH. Mechanisms of synaptic vesicle exocytosis. Annu Rev Cell Dev Biol. 2000; 16: 19~49.
    8. Kirchner L, Weitzdoerfer R, Hoeger H, et al. Impaired cognitive performance in neuronal nitric oxide synthase knockout mice is associated with hippocampal protein derangements. Nitric Oxide. 2004; 11: 316~330.
    9. Shin JH, London J, Le Pecheur M, et al. Aberrant neuronal and mitochondriat proteins In hippocampus of transgenic mice overexpressing human Cu/Zn superoxide dismutase 1. Free Radic Biol Med. 2004; 37: 643~653.
    10. Hanson P, Roth R, Morisaki H, et al. Structure and conformation changes in NSF and its membrane receptor complexes visualized by quick-frezze/deep-etch electron microscopy. Cell. 1997; 90: 523~535.
    11. Fleming KG, Hohl TM, Yu RC, et al. A revised model for the oligometric state of the N-ethylmaleimide-sensitive fusion protein, NSF. J Biol Chem. 1998; 273: 15675~15681.
    12. BeyerA. Sequence analysis of the AAA protein family. Protein Sci. 1997, 6: 2043~2058.
    13. Patel S, Latterich M. The AAA team: related ATPases with diverse functions. Trends Cell Biol. 1998; 8: 65~71.
    14.张弗盈,王文杰.膜融合中的SNAREs及其相关蛋白研究进展医学综.述.2004;10:734~736.
    15.李志琴,俞彰,凌诒萍.NSF在细胞分泌中的作用,生理科学进展.2001;32:77~79.16. Whiteheart SW, Griff IC, Brunner M., et al. Nature. 1993; 362: 353-355.
    
    17. Walsh DA, Van Patten SM.. Multiple pathway signal transduction by the cAMP-dependent protein kinase. J FASEB. 1994; 8:1227-1236.
    
    
    
    18. Popoli M. Synaptotagmin is endogenously phosphorylated by Ca2+/calmodulin protein kinase II in synaptic vesicles. FEBS Lett. 1993; 8:85-88.
    
    19. Puschel AW, O'Connor V, Betz H. The N-ethylmaleimide-sensitive fusion protein (NSF) is preferentially expressed in the nervous system. FEBS Lett. 1994; 20:55—58.
    
    20. Kawasaki F, Mattiuz AM, Ordway R.W. Synaptic physiology and ultrastructure in comatose mutants define an in vivo role for NSF in neurotransmitter release. J Neurosci. 1998; 18: 10241-10249.
    
    21. Leenders AG, Sheng ZH. Modulation of neurotransmitter release by the second messenger- activated protein kinases: Implications for presynaptic plasticity. Pharmacol Then 2005; 105: 69- 84.
    
    22. Tolar LA, Pallanck L. NSF function in neurotransmitter release involves rearrangement of the SNARE complex downstream of synaptic vesicle docking. J Neurosci. 1998; 15: 10250-10256.
    
    23. Guan Z, Lu L, Zheng Z, et al. A spontaneous recurrent seizure-related Rattus NSF gene identified by linker capture subtraction. Brain Res Moi Brain Res. 2001; 87: 117-123.
    
    24. Kawasaki F, Mattiuz AM, Ordway RW. Synaptic physiology and ultrastructure in comatose mutants define an in vivo role for NSF in neurotransmitter release. J Neurosci. 1998; 15:10241-10249.
    
    25. Tolar LA, Pallanck L. NSF function in neurotransmitter release involves rearrangement of the SNARE complex downstream of synaptic vesicle docking. J Neurosci. 1998; 18:10250-10256.
    
    
    26. Haas A. NSF-fusion and beyond.Trends Cell Biol. 1998; 8: 471-473.
    
    27. Auerbach JM, Segal M. A novel cholinergic induction of long-term potentiation in rat hippocampus. J. Neurophysiol. 1994; 72:2034-2040.
    
    28. Dujardin K, Laurent B. Dysfunction of the human memory systems: role of the dopaminergic transmission. Curr Opin Neurol. 2003; 16 Suppl 2:11-16.
    
    29. Zhang WQ, Mundy WR, Thai L, et al. Decreased glutamate release correlates with elevated dynorphin content in the hippocampus of aged rats with spatial learning deficits. Hippocampus. 1991; 1:391-397.
    
    30. Castillo PE, Janz R, Su'dhof TC, et al. Rab 3A is essential for mossy fiber long-term potentiation in hippocampus. Nature. 1997; 388:590-593.
    
    31. Choi S, Lovinger DM. Decreased probability of neurotransmitter release underlies striatal??long-term depression and postnatal development of corticostriatal synapses. Proc. Natl. Acad. Sci. USA. 1997; 94: 2665-2670.
    
    32. 韩济生.神经科学原理.北京:北京医科大学出版社.1999;923~923.
    
    33. Alexandre B. Modulation of spontaneous quantal release of neurotransmitters in the hippocampus. Progress in Neurobiology. 2001; 63: 613-635.
    
    34. Bliss TV, and Collingridge GL A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993; 361:31-39.
    
    35. Hanson PI, Otto H, Barton N, et al. The N-ethylmaleimidesensitive fusion protein and alpha-SNAP induce a conformational.change in syntaxin. J Bio/Chem. 1995; 270:16955-16961.
    
    36. Leo P, Richard W, Mani R et al, Distinct roles for ethylmaieimide-sensitive fusion protein (NSF) suggested by the identification of a second drosophila NSF homolog. The Journal of Biological.Chemistry. 1995; 270:18742-18744.
    
    37. Luscher B, Keller CA. Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. Pharmacol Ther. 2004; 102:195-221.
    
    38. Weidmen PJ, Melancon P, B;ock MR, et al. Binding of an N-ethylmaleimide-sensitive fusion protein to Golgi membranes requires both a soluble proteins and an intergral membrane receptor. J. Cell Biol. 1989; 108:1589-1596.
    
    39. Sollner T, Whiteheart SW, Brunner M, et al. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993; 362:318-324.
    
    40. Clary DO, Griff IC, Rothman JE. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell. 1990; 61:709-721.
    
    41. Whiteheart SW, Brunner M, Wilson DW, et al. Soluble N-ethylmaleimide-sensitive fusion attachment proteins (SNAPs) bind to a multi-SNAP receptor complex in Golgi membranes. J Biol Chem. 1992; 267:12239-12243.
    
    42. Jayakar SS, Dikshit M et al. AMPA receptor regulation mechanisms: future target for safer neuroprotective drugs. Int J Neurosci. 2004; 114:695-734.
    
    43. Eric R, James H, Schwartz T M, et al. Principles of Neural Science. Scientific publisher. 2001; 1228-1229.
    
    44. Bennett MK, Calakos N, Schelier RH. Syntaxin: A synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science. 1992; 257:255-259.
    
    45. Inoue A, Obata K, Akagawa K. Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen,HPC-1. J.Biol. Chem. 1992; 267:10613-10619.
    
    
    
    46. Robinson LJ, Martin TF. Docking and fusion in neurosecretion.Curr Opin Cell Biol. 1998; 10:483-492.47. So'llner T, Bennett MK, Whiteheart SW, et al. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation and fusion. Cell. 1993; 75:409-418.
    
    48. Woodman PG. The roles of NSF, SNAPs, and SNAREs during membrane fusion. Biochim. Biophys. Acta. 1997; 1357:155-172.
    
    49. Banerjee A, Barry VA, DasGupta BR, et al. N-ethylmaleimide-sensitive factor acts at a pre- fusion ATP-dependent step in Ca21-activated exocytosis. J. Biol. Chem. 1996; 271:20223-20226.
    
    50. Zheng X, Bobich JA. MgATP-dependent and MgATP-independent [3H]noradrenaline release from perforated synaptosomes both use N-ethylmaleimide-sensitive fusion protein. Biochemistry. 1998; 8: 37: 12569-12575.
    
    51. Parsons TD, Coorssen JR, Horstmann H, et al. Docked granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells. Neuron. 1995; 15:1085-1096.
    
    52. Felicia YHT, Ya W, Bor L et al. The syntaxins Genome Biol. Cell biology, Evolution. 2001; 2: 3012.1-3012.7.
    
    53. Jahn R, Sudhof TC. Membrane fusion and exocytosis [J]. Annu Rev Biochem. 1999; 68:863-911.
    
    54. Sollner T, Bennett MK, Whiteheart SW, et al. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell. 1993; 75:409-418.
    
    55. Bittner MA, Holz RW. Kinetic analysis of secretion from permeabilized adrenal chromaffin cells reveals distinct components. J Biol Chem. 1992; 267:16219 -16225.
    
    56. Holz RW, Bittner MA, Peppers SC, et al. MgATP-independent and MgATP-dependent exocytosis. J. Biol. Chem. 1989; 264:5412-5419.
    
    57. Aballay A, Arenas GN, Mayorga LS. Calcium- and zinc-binding proteins in intracellular transport. Biocell. 1996; 20:339-342.
    
    58. Walsh MJ, Kuruc N. The postsynaptic density: constituent and associated proteins characterized by electrophoresis, immunoblotting, and peptide sequencing. J. Neurochem. 1992; 59:667-678.
    
    59. Ziff EB. Enlightening the postsynaptic density. Neuron. 1997; 19:1163-1174.
    
    60. Lledo PM, Zhang X, Sudhof TC, et al. Postsynaptic membrane fusion and long-term potentiation. Science. 1998; 279:399-403.
    
    
    61. Collingridge G.L, Isaac JT. Functional roles of protein interactions with AMPA and kainite receptors. Neurosci Res. 2003; 47:3-15.62. Lledo PM, Zhang X, Sudhof TC, et al. Postsynaptic membrane fusion and long-term potentiation. Science. 1998; 279: 399-403.
    
    63. Morishita W, Kirov SA, Pitler TA, et al. N-ethylmaleimide blocks depolarization-induced suppression of inhibition and enhances GABA release in the rat hippocampus. J. Neurosci. 1997;17: 941-950.
    
    64. Huang YY, Li XC, Kandel ER. cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase.. Cell. 1994; 79:69-79.
    
    65. Weisskopf MG, Castillo PE, Zalutsky RA, et al. Mediation of hippocampal mossy fiber long- term potentiation by cyclic AMP. Science. 1994; 265:1878-1882.
    
    66. Hanley JG, Khatri L, Hanson PI, et al. NSF ATPase and alpha-/beta-SNAPs disassemble the AMPA receptor-PICK1 complex. Neuron. 2002; 34:53-67.
    
    67. Hanley JG, Khatri L, Hanson P.L, et al. NSF ATPase and a-/b-SNAPs disassemble the AMPA receptor-PICKl complex. Neuron. 2003; 34: 53-67.
    
    68. Jayakar SS, Dikshit M.. AMPA receptor regulation mechanisms: future target for safer neuroprotective drugs. Int J Neurosci. 2004; 114:695-734.
    
    69. Lee HK, Takamiya K, Han J.S., et al. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell. 2003; 112:631-643.
    
    70. Shi S, Hayashi Y, Esteban JA, et al. Subunitspecific rules governing ampa receptor trafficking to synapses in hippocampal pyramidal neurons. Cell. 2001; 105: 331-343.
    
    71. Jia Z, Agopyan N, Miu P, et al. Enhanced LTP in mice deficient in the AMPA receptor GluR2. J.Neuron. 1996 ; 17: 945-956.
    
    72. Passafaro M, Piech V, Sheng, M. spatial patterns of AMPA receptor neurons. Nat. Neurosci. 2001; 4: 917-926.
    
    73. Lee SH, Liu L, Wang, YT, et al. Clathrin adaptor AP2 and NSF interact with cverlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD.Neuron. 2003; 36: 661-674.
    
    74. Graham LC, John TR.I. Functional roles of protein interactions with AMPA and kainite receptors. Neuroscience Research. 2003; 47:3-15.
    
    75. Song I, Kamboj S, Xia J et al.Interaction of the N-ethylmaleimide-sensitive factor with AMPA receptors. Neuron. 1998; 21:393-400.
    
    76. Kittler JT, Rostaing P, Schiavo G, et al. The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABA(A) receptors. Mol. Cell Neurosci. 2001; 18:13-25.77. Thomas HS, Sonia S. S-Nitrosylation of NSF.Controls Membrane Trafficking. Cell. 2005; 115:127-133.
    
    78. Handelmann GE, Olton DS. Spatial memory following damage to hippocama! CA3 pyramidal cells with kainic acid: Impairment and recovery with preoperative training. Brain Res. 1981; 217:41-58.
    
    79. Ni JW, Matsumoto K, Ki HB, et al. Neuronal damage and decrease of central acetylcholine level following permanent occlusion of bilateral common carotid arteries in rat. Brain Res. 1995; 673:290-296.
    
    80. Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell. 1996; 87: 1327-1338.
    
    81. Zola Morgan S, Squire LR, Amaral DG. Human amnesia and the medial temporal region: Enduring memory impairment following a bilateral lesion limited to field CAI of hippocampus. J Neurosci. 1986; 6: 2950-2967.
    
    82. Selcher JC, Weeber EJ, Christian J, et al. A role for ERK MAP kinase in physiologic temporal integration in hippocampal area CA1. Learn Mem. 2003; 10:26-39.
    
    83. Vianna MR, Alonso M, Viola H, et al. Role of hippocampal signaling pathways in long-term memory formation of a nonassociative learning task in the rat. Learn Mem. 2000; 7:333-340.
    
    84. Volpe BT, Davis H.P, Towle A, et al. Loss of hippocampal CAI pyramidal neurons correlate with memory impairment in rats with ischemia or neurotoxin lesions. Behav. Neurosci. 1992; 106: 457-464.
    
    85. Wood ER, Mumby DG, Pinel JP, et al. Impaired object recognition memory in rats following ischemia-induced damage to the hippocampus. Behav. Neurosci. 1993; 107: 51-62.
    
    86. Eric RK, James HS, Thimas MJ. Principles of Neural Science. In: Learning and Memory, Chapter 62, (Eric R.K, Irving K, Susan I), Peking: Scientific publisher. 2001; 1228-1229.
    
    87. Brun VH, Otnass MK, Molden S, et al. Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science. 2002; 296: 2243-2246.
    
    88. Yin SM, Liu CQ, Gao X, et al. Effects of Cerebral Ischemia on the Susceptibility to Seizure and Immunoreacitivity of GFAP in Rats. Basic Medical Sciences and Clinics. 2003; 23: 53-58.
    
    89. Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002; 35: 605-623.
    
    
    90. Morris RG, Garrud P, Rawlins JN, et al. Place navigation impaired in rats with hippocampal lesions. Nature. 1982; 297: 681-683.
    
    91. Squire LR, Zola SM. Amnesia, memory and brain systems. Philos. Trans. R Soc. Lond. B B??iol. Sci. 1997; 352: 1663-1673.
    
    92. Eichenbaum H. A cortical-hippocampal system for declarative memory. Nat. Rev. Neurosci. 2000; 1:41-50.
    
    93. Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. 1957. J. Neuropsych. Clin. Neurosci. 2000; 12: 103-113.
    
    94. Witter MP, Groenewegen HJ, Lopes da Silva FH, et al. Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog. Neurobiol. 1989; 33: 161-253.
    
    95. Hjorth-Simonsen A, Jeune B. Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation. J. Comp. Neurol. 1972; 144: 215-232.
    
    96. Steward O. Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J. Comp. Neurol. 1976; 167: 285-314.
    
    97. Steward O, Scoville SA. Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J. Comp. Neurol. 1976; 169: 347-370.
    
    98. Lorente de No R. Studies on the structure of the cerebral cortex. II. Continuation of the study of ammonic system. J Psych. Neurol. 1934; 46: 113-177.
    
    99. Friedman HR, Goldman-Rakic PS. Activation of the hippocampus and dentate gyrus by working -memory: A 2-deoxyglucose study of behaving rhesus monkeys. J. Neurosci. 1988; 8: 4693-4706.
    
    100. Sybirska E, Davachi L, Goldman-Rakic PS. Prominence of direct entorhinal-CA1 pathway activation in sensorimotor and cognitive tasks revealed by 2-DG functional mapping in nonhuman primate. J Neurosci. 2000; 20: 5827-5834.
    
    101. Remondes M, Schuman EM. Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory. Nature. 2004; 431:699~703.
    
    102. Colbert CM, Levy WB. Electrophysiological and pharmacological characterization of perforant path synapses in CA1: Mediation by glutamate receptors. J Neurophysiol. 1992; 68: 1-8.
    
    103. Doller HJ, Weight FF. Perforant pathway activation of hippocampal CA1 stratum pyramidale neurons: Electrophysiological evidence for a direct pathway. Brain Res. 1982; 237: 1-13.
    
    104. Yeckel MF, Berger TW. Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: Redefinition of the role of the trisynaptic pathway. Proc. Natl. Acad. Sci. 1990; 87: 5832-5836.
    
    105. Empson RM, Heinemann U. The perforant path projection to hippocampal area CA1 in the rat hippocampal-entorhinal cortex combined slice. J. Physiol. 1995; 484: 707-720.106. Leung LS, Roth L, Canning KJ. Entorhinal inputs to hippocampal CA1 and dentate gyrus in the rat: A current-source-density study. J. Neurophysiol. 1995; 73:2392-2403.
    
    107. Doller HJ, Weight FF. Perforant pathway-evoked long-term potentiation of CA1 neurons in the hippocampal slice preparation. Brain Res. 1985; 333: 305-310.
    
    108. Colbert CM, Levy WB. Long-term potentiation of perforant path synapses in hippocampal CA1 in vitro. Brain Res. 1993; 606: 87-91.
    
    109. Dvorak-Carbone H, Schuman EM. Long-term depression of temporcammonic-CA1 hippocampal synaptic transmission. J. Neurophysiol. 1999; 81: 1036-1044.
    
    110. Riedel G, Micheau J, Lam AG, et al. Reversible neural inactivation reveals hippocampal participation in several memory processes. Nat. Neurosci. 1999; 2: 898-905.
    
    111. Jarrard LE, Okaichi H, Steward O, et al. On the role of hippocampal connections in the performance of place and cue tasks: Comparisons with damage to hippocampus. Behav. Neurosci. 1984; 98: 946-954.
    
    112. McNaughton BL, Barnes CA, Meltzer J, et al. Hippocampal granule cells are necessary for normal spatial learning but not for spatially-selective pyramidal cell discharge. Exp. Brain Res. 1989; 76: 485-496.
    
    113. Vinogradova OS. Current concepts of general properties and plastic phenomena in hippocampal neurons. Usp. Fiziol. Nauk. 1984; 15: 28-54.
    
    114. Frank LM, Brown EN, Wilson M. Trajectory encoding in the hippocampus and entorhinal cortex. Neuron. 2000; 27:169-178.
    
    115. Fyhn M, Molden S, Witter MP, et al. Spatial representation in the entorhinal cortex. Science. 2004; 305:1258-1264.
    
    116. Phillips RG, LeDoux JE. Differential contribution of amygdale and hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 1992; 106: 274-285.
    
    117. Micheau J, Riedel G. Protein kinases: Which one is the memory molecule? Cell. Mol. Life Sci. 1999; 55: 534-548.
    
    118. Bliss TVP, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate of the anesthetized rabbit following stimulation of the perforant path. J Physiol. 1973; 232: 331-356.
    
    119. Remondes M, Schuman EM. Direct cortical input modulates plasticity and spiking in CA1 pyramidal neurons. Nature. 2002; 416: 736-740.
    
    120. Golding NL, Staff PP, Spruston N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature . 2002; 418: 326-331.
    
    121 Chapman CA, Perez Y, Lacaille JC. Effects of GABAA inhibition on the expression of long- term potentiation in CA1 pyramidal cells are dependent on tetanization parameters.??Hippocampus. 1998; 8: 289-298.
    
    122. Davies CH, Starkey SJ, Pozza MF, et al. GABA autoreceptors regulate the induction of LTP. Nature. 1991; 349: 609-611.
    
    123. Mott DD, Lewis DV. GABAB receptors mediate disinhibition and facilitate long-term potentiation in the dentate gyrus. Epilepsy Res. Suppl. 1992; 7: 119-134.
    
    124. Davis HP, Squire LR. Protein synthesis and memory: A review. Psychol. Bull. 1984; 96: 518-559.
    
    125. Aakalu G, Smith WB, Nguyen N, et al. Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron.2001; 30: 489-502.
    
    126. Monica R.M. V, Mariana A, Haydee V, et al. Role of Hippocampal Signaling Pathways in Long-Term Memory Formation of a Nonassociative Learning Task in the Rat. Learn Mem. 2000; 7:333-340.
    
    127. Zhengping J, YouMing L, Jeff H, et al. Selective Abolition of the NMDA Component of Long-Term Potentiation in Mice Lacking mGluR5. Learn Mem. 1998; 5:331-343.
    
    128. Hyeon S, Yun-Fei L, Min Z, et al. The Specific Role of Cgmp in Hippocampal LTP Learn Mem. 1998; 5:231-245.
    
    129. Steven N. D, Kenneth JC.Ted A, et al. Environmental Enrichment Modifies the PKA- Dependence of Hippocampal LTP and Improves Hippocampus-Dependent Memory. Learn Mem. 2001; 8:26-34.
    
    130. Gagne J, Gelinas S, Baudry M, et al. AMPA receptor properties in adult rat hippocampus following environmental enrichment. Brain Res. 1998; 799: 16-25.
    
    131. Holland PC, Bolton ME. Hippocampus and context in classical conditioning. Curr. Opin. Neurobiol. 1999; 9: 195-202..
    
    132. Kim JJ, Rison RA, Fanselow MS. Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear. Behav. Neurosci.1993; 107: 1093-1098.
    
    133. Joel CS, Edwin JW, Jill C, et al. A Role for ERK MAP Kinase in Physiologic Temporal Integration in Hippocampal Area CA1. Learn Mem. 2003; 10:26-39.
    
    134. Winder DG, Martin KC, Muzzio IA, et al. ERK plays a regulatory role in induction of LTP by frequency stimulation and its modulation by adrenergic receptors. Neuron. 1999; 24: 715-726.
    
    135. Watabe AM, Zaki PA, O'Dell TJ. Coactivation of adrenergic and cholinergic receptors enhances the induction of long-term potentiation and synergistically activates mitogen- activated protein kinase in the hippocampal CA1 region. J. Neurosci. 2000; 20: 5924-5931.
    
    136. Segal RA, Greenberg ME. Intracellular signaling pathways activated by neurotrophic factor. Annu. Rev. Neurosci. 1996; 19: 463-489.137. Finkbeiner S, Tavazoie S, Maloratsky A, et al. CREB: A major mediator of neuronal neurotrophin responses. Neuron. 1997; 19: 1031-1047.
    
    138. Gottschalk WA, Jiang H, Tartaglia N, et al. Signaling mechanisms mediating BDNF modulation of synaptic plasticity in the hippocampus. Learn Mem. 1999; 6: 243-256.
    
    139. Blanquet PR. Identification of two persistently activated neurotrophin-regulated pathways in rat hippocampus. Neuroscience. 2000; 95: 705-719.
    
    140. Pizzorusso T, Ratto G.M, Putignano E, et al. Brain-derived neurotrophic factor causes cAMP response element-binding protein phosphorylation in absence of calcium increase in slices and cultured neurons from rat visual cortex. J. Neurosci. 2000; 20: 2809-2816.
    
    141. Alonso M, Vianna MRM, Depino AM, et al. BNDF-triggered events in the rat hippocampus are required for both short-and long-term memory formation Hippocampus. 2002; 12: 551-560.
    
    142. Joel CS, Tanya N, Richard P, et al. Mice Lacking the ERK1 Isoform of MAP Kinase Are Unimpaired in Emotional Learning. Learn Mem. 2001; 8:11-19 .
    
    143. Heather L, Hinds, ST, Roberto M. CAl Long-Term Potentiation Is Diminished but Present in Hippocampal Slices from a-CaMKII Mutant Mice. Learn Mem. 1998; 5:344-354.
    
    144. Toshihiko K, Ai-Jun L, Seiichi H, et al. Impairment of Spatial Learning and Hippocampal Synaptic Potentiation in c-kit Mutant Rats Learn Mem. 2000; 7:383-392.
    
    145. Satoshi F, Mineo M, Kotaro I, et al. Synaptic Plasticity in Hippocampal CAl Neurons of Mice Lacking Type 1 Inositol-1,4,5-Trisphosphate Receptors. Learn Mem. 2000; 7:312-320.
    
    146. Kisun J, Gildon C, Sung-GuY, et al. Enhanced Hippocampal CA1 LTP but Normal Spatial Learning in Inositol 1,4,5-trisphosphate 3-kinase(A)-Deficient Mice. Learn Mem. 1998; 5:317-330.
    
    147. Banko JL, Hou L, Klann E. NMDA receptor activation results in PKA- and ERK-dependent Mnkl activation and increased eIF4E phosphorylation in hippocampal area CA1. J Neurochem. 2004; 91:462-470.
    
    148. Yang SN, Huang CB, Yang CH, et al. Impaired SynGAP expression and long-term spatial learning and memory in hippocampal CAl area from rats previously exposed to perinatal hypoxia-induced insults: beneficial effects of A68930. Neurosci Lett. 2004; 371:73~78.
    
    149. Mariana A, Jorge H. M, Lucas PM . ERK1/2 Activation Is Necessary for BDNF.to Increase Dendritic Spine Density in Hippocampal CAl Pyramidal Neurons.Learn Mem. 2004; 11:172-178.
    
    
    150. Long M, Gerald R, Luis FP, et al. Neuronal NT-3 Is not Required For Synaptic Transmission or Long-Term Potentiation in Area CAl of the Adult Rat Hippocampus Learn Mem. 1999;??6:267-275.
    
    151. Wolfram AG, Hao J, Nicole T, et al. Signaling Mechanisms Mediating BDNF Modulation of Synaptic Plasticity in the Hippocampus. Learn Mem. 1999; 6:243-256.
    
    152. Joanna L. Jankowsky, Brian E. Derrick, and Paul H. Cytokine Responses to LTP Induction in the Rat Hippocampus: A Comparison of In Vitro and In Vivo Techniques Patterson. Learn Mem. 2000; 7:400-412.
    
    153. Kondo T, Tominaga T, Ichikawa M, et al. Differential alteration of hippocampal synaptic strength induced by pituitary adenylate cyclase activating polypeptide-38 (PACAP-38). Neurosci. Lett. 1997; 221: 189-192.
    
    154. Marisa R, Rossana S, Marcello B. Differential Effects of PACAP-38 on Synaptic Responses in Rat Hippocampal CA1 Region. Learn Mem. 2001; 8:265-271.
    
    155. Scholz KP, Miller RJ. Analysis of adenosine actions on Ca 2+ currents and synaptic transmission in cultured rat hippocampal pyramidal neurones. J. Physiol. 1991; 435: 373-393.
    
    156. Gereau RWIV, Conn PJ. Potentiation of cAMP responses by metabotropic glutamate receptors depresses excitatory synaptic transmission by a kinase-independent mechanism. Neuron. 1994; 12:1121-1129.
    
    157. Marisa R, Marcello B. PACAP-38 Enhances Excitatory Synaptic Transmission in the Rat Hippocampal CA1 Region. Learn Mem. 2000; 7:303-311.
    
    158. Littleton JT, Serano TL, Rubin GM, et al. Synaptic function modulated by changes in the ratio of synaptotagmin I and IV. Nature. 1999; 400:757-760.
    
    159. Ferguson GD, Wang H, Herschman HR, et al. Altered hippocampal short-term plasticity and associative memory in synaptotagmin IV (-/-) mice.. Hippocampus. 2004; 14:964-974.
    
    160. Watanabe S, Hoffman DA, Migliore M, et al. Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. Proc. Natl. Acad. Sci. 2002; 99: 8366-8371.
    
    161. Yuan LL, Adams JP, Swank M, et al. Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway. J. Neurosci. 2002; 22: 4860-4868.
    
    162. Karl PG, Johan FS, Dirk R, et al. Reduced K+ Channel Inactivation, Spike Broadening, and After-Hyperpolarization in Kvb 1.1-Deficient Mice with Impaired Learning. Learn Mem. 1998; 5:257-273.
    
    163. Henry M, Helmut S, Karl-Heinz S, et al. Enhancement of Glutamate Release by L-Fucose Changes Effects of Glutamate Receptor Antagonists on Long-Term Potentiation in the Rat Hippocampus. Learn Mem. 2000; 7:227-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700