聚氨酯脲水分散液及其高内相乳液的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水性聚氨酯因其低污染和可持续发展而成为聚氨酯发展的热点。然而,水性聚氨酯大分子链中的亲水性链节或离子基团,不可避免地使其在实际使用过程中,表现出较高的吸水率和表面亲水性,限制了其在涂料、胶粘剂,以及生物医用(如软组织工程)等领域的应用。本文通过在聚氨酯脲(PUU)软段合成中使用新的二元醇和含氟单体改变PUU分子结构,制备了稳定的聚氨酯脲水分散液,其成膜后既具有较好的耐水性,又具有良好的力学性能。在此基础上,实现了聚氨酯脲水分散液中的纳米粒子对油包水(W/O)型和水包油(O/W)型Pickering高内向乳液(HIPE)的稳定,分别制备了大孔表面PUU功能化的开孔疏水性和亲水性聚合物多孔材料(Poly-Pickering-HIPEs)。PUU在HIPE中的使用丰富了水性聚氨酯脲的研究内容和应用领域,克服了传统HIPE制备中大量乳化剂使用的弊端,首次实现了同一粒子对W/O和O/W型乳液的稳定。此外,针对Poly-Pickering-HIPEs普遍具有的脆性和较低的力学性能,本文以乙烯基酯树脂(VER)为有机相,制备了具有较高压缩强度和韧性的VER基Poly-Pickering- HIPEs。主要研究结果如下:
     1、以C9二元醇合成的聚已二酸多元醇(POA)、聚已二酸新戊二醇酯(PNA)为原料制备和表征了一系列具有不同软段组成的PUU水分散液。结果表明,用POA可以成功地制备PUU水分散液,这些PUU水分散液具有优良的冻融稳定性和高温稳定性。在所有PUU膜中,仅含POA的水性PUU (OPU)膜的拉伸强度最大(51.3MPa),水解稳定性最好,吸水率最低。实验数据还表明,含有POA的PUU膜的耐水性能和力学性能明显提高,这是由于硬段间脲羰基的氢键作用增强引起的。
     2、用少量氟醇改性OPU,可以得到稳定的含氟聚氨酯脲水分散液。研究表明,此水分散液的粒径与体系中的氟含量无关,氟醇的引入可以提高改性OPU膜表面的疏水性(接触角从88°增加到113°)。当氟醇含量在3%左右时,改性膜的吸水率较低,拉伸强度较高(44.3MPa),具有较好的综合性能。随着氟醇含量的增加,改性OPU膜的硬度、拉伸强度下降,伸长率增大,这与硬段间脲羰基的氢键作用有关。
     3、以PUU水分散液为水相,苯乙烯(St)和二乙烯基苯(DVB)的混合物为有机相,制得了water-in-St/DVB Pickering HIPEs,并以此为模板制备了大孔表面PUU功能化的疏水性聚合物基Poly-Pickering-HIPEs。Pickering HIPE的近红外光背散射研究表明,仅由1.0wt% PUU粒子稳定的Pickering HIPEs的水相体积分数上限介于93.3和97 vol%之间,且此Pickering HIPEs具有温度依赖性。稳定机理研究表明,PUU粒子在水油界面的吸附及其在有机相中形成的3D网络结构是Pickering HIPEs稳定的关键。形貌分析表明,通过改变Pickering HIPE的水相体积分数、交联剂浓度、水相电解质浓度、PUU浓度和聚合温度可以方便地实现Poly-Pickering-HIPEs形貌调控。
     4、以PUU水分散液为连续相,制备了一系列分散相体积分数可达95%的O/W型Pickering HIPEs o研究表明,PUU纳米粒子有效吸附在水油界面,在分散相液滴表面形成了紧密的粒子膜,阻止了分散相液滴之间的合并;同时,PUU纳米粒子在连续相中形成了3D网络结构,提高了连续相粘度,增强了Pickering HIPE的稳定性。进一步以丙烯酰胺(AM)和N,N'-亚甲基二丙烯酰胺(MBAM)为单体和交联剂,制备了具有开孔结构的亲水性聚合物基Poly-Pickering-HIPEs.研究表明,通过乳液制备条件如水相体积分数、PUU浓度、交联剂浓度和电解质浓度等的改变,能有效实现对Poly-Pickering-HIPEs形貌的控制。
     5、以乙烯基酯齐聚物(VEO)的苯乙烯(St)(或甲基丙烯酸甲酯(MMA))溶液(VER)为有机相,以其中的VEO为交联剂,制备了由共聚微球稳定的W/O型Pickering HIPEs;在此基础上,制备了VER基Poly-Pickering-HIPEs。稳定性研究表明,此类Pickering HIPEs的分散相体积分数上限介于95~97 vol%之间;适当提高VER中的VEO含量,有利于Pickering HIPE的稳定。力学测试表明,此类Poly-Pickering-HIPEs表现出较高的压缩强度和韧性,其杨氏模量随着有机相中VEO含量的提高而提高。SEM分析表明,随着水相体积分数的提高和VEO含量的降低,Poly-Pickering-HIPEs的大孔平均孔径增加,孔径分布变宽。
For environmental and economic reasons, waterborne polyurethane (PU) aqueous dispersions have attracted increasing interest in recent years. However, the built-in hydrophilic segments in the macromolecular chain inevitably impart undesirable water-resistance performance to waterborne PU in industrial applications. In this dissertation, a series of stable polyurethaneurea (PUU) aqueous dispersions were prepared with C9-diol-based polyester polyol (POA) and/or fluoro Oligomer(Zonyl BA-N). The PUU films prepared with these aqueous dispersions showed excellent water-resistence performance and high tensile strength. Moreover, PUU nanoparticles in PUU aqueous dispersions were used to stabilize both water-in-oil (W/O) and oil-in-water (O/W) Pickering high internal phase emulsions (HIPE). Based on these two types of Pickering HIPEs, hydrophobic and hydrophilic open porous polymers (Poly-Pickering-HIPEs) with void wall functionalized by PUU were prepared respectively. This work enlarged research fields and applications of PUU, eliminated large quantity of surfactants used in the traditional HIPEs, and firstly prepared W/O and O/W Pickering HIPE with one type of particle. In addition, some vinyl ester resin (VER)-based Poly-Pickering-HIPEs was prepared using VER as the organic phase and exhibited high compressive strength and toughness. The main results were descripted as follows:
     1. A series of PUU aqueous dispersions were prepared with C9-diol-based polyester polyol (POA) and/or poly(neopentylene adipate) polyol (PNA). The high-temperature stability and freeze-thaw stability for all the aqueous dispersions are excellent. The PUU film prepared only with the POA exhibited the lowest water-absorbing amount, the highest tensile strength (51.3 MPa) and the best hydrolytic stability over all PUU films studied. The experimental results also showed a high degree of hydrogen bonding for urea groups, resulting in excellent water resistance performance and mechanical properties.
     2. A series of stable fluoro-containing PUU aqueous dispersions were prepared from POA and fluoro oligomer(Zonyl BA-N). The particle sizes of these aqueous dispersions were less sensitive to Zonyl BA-N content. The introduction of fluoroalcohol could increase the surface hydrophobicity of modified PUU films and the contact angle of water on the surface of these films increased from 88 to 113°. When Zonyl BA-N content was about 3%, the modified PUU films showed low water absorption and high tensile strength (44.3MPa). With the increase of fluoro oligomer content, the hardness and tensile strength of the modified PUU films decreased and elongation of the films increased resulting from the strong hydrogen bonding in urea carbonyl groups in the hard segments of PUU.
     3. With PUU aqueous dispersion as aqueous phase and mixture of styrene (St) and divinylbenzene (DVB) as the organic phase, temperature-dependent water-in-St/DVB Pickering HIPEs were prepared. And with these Pickering HIPEs as templates, the hydrophobic polymer Poly-Pickering-HIPEs with void wall surface functionalized by PUU was prepared. The measurements of near-infrared light backscattering showed that the upper limit of internal phase volume fraction of Pickering HIPEs stabilized solely by 1.0 wt% PUU nanoparticle was from 93.3 to 97 vol%. It is of interest to note that PUU particle layers adsorption at the water-oil interface and 3D network formed by PUU particles in organic phase played key roles in the stability of Pickering HIPEs. It was also found that Poly-Pickering-HIPEs morphology could be controlled by changing the Pickering HIPE aqueous phase volume fraction, polymerization temperature, as well as the crosslinker, electrolyte and PUU concentration.
     4. Using PUU aqueous dispersion as continuous phase, O/W Pickering HIPEs having dispersed phase volume fraction of up to 95% were prepared. It was found that the particles membrane made by adsorption of PUU nanoparticles at water-oil interface around the dispersed phase droplet, and prevented the coalescence between the neighboring dispersed droplets; in the same time, PUU nanoparticles formed a 3D network in continuous phase, which rose the continuous phase viscosity and enhanced Pickering HIPE stability. Furthermore, with acrylamide (AM) and N,N'-methylenebis acrylamide (MBAM) as monomer and crosslinker respectively, the open porous hydrophilic polymer-based Poly-Pickering-HIPEs were prepared. It was also found that the Poly-Pickering-HIPEs morphology could be effectively controlled by changing HIPE preparation conditions, such as aqueous phase volume fraction, as well as the concentrations of PUU, crosslinker and electrolyte.
     5. With vinyl ester oligomer (VEO) and styrene (or methyl methacrylate) mixture (VER) as the organic phase, W/O Pickering HIPEs were prepared with copolymer microspheres as sole stabilizer. Using the Pickering HIPEs as emulsion-templating, VER-based Poly-Pickering-HIPEs were prepared. Stability studies showed that the up limited internal phase volume fraction of this type of Pickering HIPEs was between 95 and 97 vol%; an appropriate increase in the VEO content is conducive to the stability of Pickering HIPE. Mechanical test showed that the Poly-Pickering-HIPEs had high compressive strength and toughness, and its Young's modulus increased with increasing the VEO content of the organic phase. SEM analysis showed that with increasing the aqueous phase volume fraction and/or decreasing the VEO content, the average void size of Poly-Pickering-HIPEs increased, and their void size distribution became broad.
引文
[1]许戈文等编著,水性聚氨酯材料[M],北京:化学工业出版社.2007
    [2]Grasel T G, Cooper S L. Surface properties and blood compatibility of polyurethane-ureas[J]. Biomatierials.1986,7(5):315-328.
    [3]Game P, Sage D, Chapel J P. Surface mobility of polyurethane networks containing fluorinated amphiphilic reactive additives[J]. Macromolecules.2002,35(3):917-923.
    [4]Vaidya A, Chaudhury M K, Synthesis and surface properties of environmentally responsive segmented polyurethanes[J]. J Colloid Interf Sci.2002,249(1):235-245.
    [5]Yoon S S, Kim J H, Kim S C. Synthesis of biodegradable PU/PEGDA IPNs having micro-separated morphology for enhanced blood compatibility [J]. Polym Bull.2005, 53(5-6):339-347.
    [6]Hsu S H, Kao Y C. Biocompatibility of poly(carbonate urethane)s with various degrees of nanophase separation[J]. Macromol Biosci.2005,5(3):246-253.
    [7]Lin Y H, Chou N K, Chang C H, Wang S S, Chu S H, Hsieh K H. Blood compatibility of fluorodiol-containing polyurethanes[J]. J Polym Sci Part A:Polym Chem.2007, 45(15):3231-3242.
    [8]Lissant K J, editor. Emulsions and emulsion technology part 1 [M]. New York:Marcel Dekker Inc,1974.189-196.
    [9]Cameron N R. High internal phase emulsion templating as a route to well-defined porous polymers[J]. Polymer.2005,46:1439-1449.
    [10]Myers D. Surfaces, and colloids:Principles and applications[M], Wiley-VCH,2nd., 1999.
    [11]Cameron N R, Sherrington D C. Non-aqueous high internal phase emulsions (HIPEs): pre-paration and stability[J]. J Chem Soc-Faraday Trans.1996,92:1543-1547.
    [12]Menner A, Powell R, Bismarck A. Open Porous Polymer Foams via Inverse Emulsion Polymerization:Should the Definition of High Internal Phase (Ratio) Emulsions Be Extended?[J]. Macromolecules.2006,39:2034-2035.
    [13]周润培.环氧乙烯基酯树脂(工)环氧乙烯基酯树脂的分类、合成和固化[J].热固性树脂2002,17:31-33.
    [14]Al-Salah H A, Frisch K C, Xiao H X, Malean J A. Polyurethane anionomers. I. Structure properties of polyurethane anionomers [J]. J Polym Sci Part A:Polym Chem. 1987,25(8):2127-2137.
    [15]Kim B K, Lee Y M. Structure-property relationship of polyurethane ionomer[J]. Colloid Polym Sci 1992,270(10):956-961.
    [16]Lee Y M, Lee J C, Kim B K. Effect of soft segment length on the properties of polyurethane anionomer dispersion[J]. Polymer.1994,35(5):1095-1099.
    [17]Lee K H, Kim B K. Structure-property relationships of polyurethane anionomer acrylates[J]. Polymer.1996,37(11):2251-2257.
    [18]Madbouly S A, Otaigbe J U, Nanda A K, Wicks D A. Thermal-induced simultaneous liquid-liquid phase separation and liquid-solid transition in aqueous polyurethane dispersions[J]. Polymer.2005,46(24):10897-10907.
    [19]Al-Salah H A, Frisch K C, Xiao H X, Malean J A. Polyurethane cationomers. I. Structure-properties relationships[J]. J Polym Sci:Part A:Polym Chem.1988,26(6): 1609-1620.
    [20]Santerre J P, Brash J L. Physical properties of nonionomeric and ionomeric segmented polyurethanes:effect of sulfonate, carboxylate, and quaternary ammonium ions in the hard segment[J]. Ind Eng Chem Res.1997,36(4):1352-1359.
    [21]Buruiana E C, Buruiana T, Strat G, Strat M. Synthesis and optical properties of new polyurethane cationomers with anchored stilbene chromophores[J]. J Polym Sci:Part A:Polym Chem.2002,40(11):1918-1928.
    [22]Sriram V, Sundar S, Dattatheryan A, Radhakrishnan B. Synthesis and characterization of cationomeric AB crosslinked polyurethane polymers based on different chain extenders[J]. React Funct Polym.2005,64(1):25-34.
    [23]Kim B K. Aqueous polyurethane dispersions [J]. Colloid Polym Sci.1996,274(7): 599-611.
    [24]Yuan J, Chen L, Jiang X F, Shen J, Lin S C. Chemical graft polymerization of sulfobetaine monomer on polyurethane surface for reduction in platelet adhesion[J]. Colloid Surface B Biointerf.2004,39(1-2):87-94.
    [25]Kim C K, Kim B K. IPDI-based polyurethane ionomer dispersions:Effects of ionic, nonionic hydrophilic segments, and extender on particle size and physical properties of emulsion cast film[J]. J Appl Polym Sci.1991,43(12):2295-2301.
    [26]Mohaghegh S M S, Barikani M, Entezami A A. Preparation and properties of aqueous polyurethane dispersions [J]. Iran Polym J.2005,14(2):163-168.
    [27]Sung C S P, Smith T W, Sung N H. Properties of segmented polyether poly(urethane-ureas) based of 2,4-toluene diisocyanate.2. Infrared and mechanical studies[J]. Macromolecules.1980,13(1):117-121.
    [28]Wang C B, Cooper S L. Morphology and properties of segmented polyether polyurethane -ureas[J]. Macromolecules.1983,16(5):775-786.
    [29]Coleman M M, Skrovanek D J, Hu J B, Painter P C. Hydrogen bonding in polymer blends.1. FTIR studies of urethane-ether blends[J]. Macromolecules.1988,21(1): 59-65.
    [30]Coleman M M, Lee K H, Skrovanek D J, Painter P C. Hydrogen bonding in polymers. 4 Infrared temperature studies of a simple polyurethane[J]. Macromolecules.1986, 19(8):2149-2157.
    [31]Wang F C, Feve M, Lam T M, Pascault J P. FTIR analysis of hydrogen bonding in amorphous linear aromatic polyurethanes. I. Influence of temperature [J]. J Polym Sci: Part B:Polym Phys.1994,32(8):1305-1313.
    [32]Luo N, Wang D N, Ying S K. Hydrogen bonding between urethane and urea:band assignment for the carbonyl region of FTIR. spectrum. [J] Polymer.1996,37(14): 3045-3047.
    [33]Luo N, Wang D N, Ying S K. Crystallinity and hydrogen bonding of hard segments in segmented poly(urethane urea) copolymers[J]. Polymer.1996,37(16):3577-3583.
    [34]Luo N, Wang D N, Ying S K. Hydrogen-bonding properties of segmented polyether poly(urethane urea) copolymer[J]. Macromolecules.1997,30(15):4405-4409.
    [35]Marcos-Fernandez A, Lozano A E, Gonzalez L, Rodriguez A. Hydrogen Bonding in Copoly(ether-urea)s and Its Relationship with the Physical Properties[J]. Macromolecules.1997,30(12):3584-3592.
    [36]Wen T C, Wu M-S. Spectroscopic investigations of poly(oxypropylene)glycol-based waterborne polyurethane doped with lithium perchlorate[J]. Macromolecules.1999, 32(8):2712-2720.
    [37]Wen T C, Wang Y J, Chang T T, Yang C H. The effect of DMPA units on ionic conductivity of PEG-DMPA-IPDI waterborne polyurethane as single-ion electrolytes[J]. Polymer.1999,40(14):3979-3988.
    [38]Shi Y, Zhan X L, Luo Z H. Zhang Q H, Chen F Q. Quantitative IR characterization of urea groups in waterborne polyurethanes [J]. J Polym Sci Part A:Polym Chem.2008, 46(7):2433-2444.
    [39]Goering H, Kruger H, Bauer M. Multimodal polymer networks:design and characterisation of nanoheterogeneous PU elastomers [J]. Macromol Mater Eng.2004, 278(5):23-35.
    [40]Cooper S L, Tobolsky A V. Properties of linear elastomeric polyurethanes [J]. J Appl Polym Sci.1966,10(12):1837-1844.
    [41]Estes G M, Seymour R W, Cooper S L. Infrared studies of segmented polyurethane elastomers. II. Infrared dichroism[J]. Macromolecules.1971,4(4):452-457.
    [42]Bonart R. X-ray investigations concerning the physical structure of cross-linking in segmented urethane elastomers[J]. J Macromol Sci Part B:Phys.1968,2(1):115-138.
    [43]Bonart R, Morbitzer L, Miiller E H. X-ray investigations concerning the physical structure of crosslinking in urethane elastomers. III. Common structure principles for extensions with aliphatic diamines and diols[J]. J Macromol Sci Part B:Phys.1974, 9(3):447-461.
    [44]Wilkes C E, Yusek C S. Investigation of domain structure in urethan elastomers by X-Ray and thermal methods [J]. J Macromol Sci Part B:Phys.1973,7(1):157-175
    [45]Wilkes G L, Abouzahr S. SAXS studies of segmented polyether poly(urethaneurea) elastomers [J]. Macromolecules.1981,14(2):456-458.
    [46]Blackwell J, Gardner K H. Structure of the hard segments in polyurethane elastomers[J]. Polymer.1979,20(1):13-17.
    [47]Blackwell J, Lee C D. Hard-segment domain sizes in MDI/diol polyurethane elastomers[J]. J Polym Sci:Polym Phys Ed.1983,21(10):2169-2180.
    [48]Koberstein J T, Stein R S. Small-angle X-ray scattering studies of microdomain stru-cture in segmented polyurethane elastomers[J]. J Polym Sci:Polym Phys Ed.1983, 21(8):1493-1472.
    [49]Sung C S P, Hu C B. Orientation studies of segmented polyether poly(urethaneurea) elastomers by infrared dichroism[J]. Macromolecules.1981,14(1):212-215.
    [50]Kimura I, Ishihara H, Ono H, Yoshihara N, Nomura S, Kawai H. Morphology and deformation mechanism of segmented poly(urethaneureas) in relation to spherulitic crystalline textures[J]. Macromolecules.1974,7(3):355-363.
    [51]Hu C B, Ward R S, Schneider N S. A new criterion of phase separation:The effect of diamine chain extenders on the properties of polyurethaneureas[J]. J Appl Polym Sci. 1982,27(6):2167-2177.
    [52]Clough S B, Schneider N S. Structural studies on urethane elastomers [J]. J Macromol Sci Part B:Phys.1968,2(4):553-566.
    [53]Lipatov Y S, Dmitruk N V, Tsukruk V V, Shilov V V, Priss L S, Dashevsky L I. Microphase state of oligobutadienediol-based polyurethaneureas[J]. J Appl Polym Sci. 1984,29(6):1919-1927.
    [54]Aitken R R, Jeffs G M F. Thermoplastic polyurethane elastomers based on aliphatic diisocyanates:thermal transitions[J]. Polymer.1977,18(2):197-198.
    [55]Camberlin Y, Pascault J P. Quantitative DSC evaluation of phase segregation rate in linear segmented polyurethanes and polyurethaneureas[J]. J Polym Sci:Polym Chem Ed.1983,21(2):415-423.
    [56]Hourston D J, Williams G, Satguru R, Padget J D, Pears D. Structure-property study of polyurethane anionomers based on various polyols and diisocyanates [J]. J Appl Polym Sci.1997,66(10):2035-2044.
    [57]Yang D Y, Hu C P, Ying S K. Preparation and characterization of waterborne poly(urethane urea) with well-defined hard segments[J]. J Polym Sci Part A:Polym Chem.2005,43(12):2606-2614.
    [58]Kim B K, Lee J C. Polyurethane ionomer dispersions from poly(neopentylene phthalate) glycol and isophorone diisocyanate[J]. Polymer.1996,37(3):469-475.
    [59]Kwak Y S, Kim E Y, Yoo B H, Kim H D. Preparation and properties of waterborne poly(urethane urea)s for adhesives:The effects of the 2,2-bis(hydroxylmethyl)propionic acid content on the properties [J]. J Appl Polym Sci. 2004,94(4):1743-1751.
    [60]Bao H, Zhang Z P, Ying S K. Effect of ionic group on the behaviour of polyurethane-urea emulsion[J]. Polymer.1996,37(13):2751-2754.
    [61]Kim B K, Yang J S, Yoo S M, Lee J S. Waterborne polyurethanes containing ionic grou-ps in soft segments[J]. Colloid Polym Sci.2003,281(5):461-468.
    [62]Bao L H, Lan Y J, Zhang S F. Synthesis and properties of waterborne polyurethane dispersions with ions in the soft segments[J]. J Polym Res.2006,13(6):507-514
    [63]Hourston D J, Williams G, Satguru R, Padget J D, Pears D. A structure-property study of IPDI-based polyurethane anionomers[J]. J Appl Polym Sci.1998,67(8): 1437-1448.
    [64]Kwaks Y S, Park S W, Kim H D. Preparation and properties of waterborne polyurethane -urea anionomers-influences of the type of neutralizing agent and chain extender[J]. Colloid Polym Sci.2003,281(10):957-963.
    [65]Chattopadhyay D K, Sreedhar B, Raju K V S N. Effect of chain extender on phase mixing and coating properties of polyurethane ureas[J]. Ind Eng Chem Res.2005, 44(6):1772-1779.
    [66]Jiang L, Chen Y L, Hu C P. Polyurethaneurea aqueous dispersions prepared with diethyltoluenediamine as chain extender[J]. J Coat Technol Res.2007,4(1):59-66.
    [67]Delpech M C, Coutinho F M B. Waterborne anionic polyurethanes and poly(urethane-urea)s:influence of the chain extender on mechanical and adhesive properties[J]. Polym Test.2000,19(8):939-952.
    [68]Yen M S, Chen P Y, Tsai H C. Synthesis, properties, and dyeing application of nonionic waterborne polyurethanes with different chain length of ethyldiamines as the chain extender[J]. J Appl Polym Sci.2003,90(10):2824-2833.
    [69]Jhon Y K, Cheong I W, Kim J H. Chain extension study of aqueous polyurethane dispersions[J]. Colloid Surface A Physicochem Eng Asp.2001,179(1):71-78.
    [70]Lahtinen M, Pinfield R K, Price C. The chain extension of anionic prepolymers in the preparation of aqueous poly(urethane-urea) dispersions[J]. Polym Int.2003,52(6): 1027-1034.
    [71]Kim B K, Lee J C. Waterborne polyurethanes and their properties[J]. J Polym Sci:Part A:Polym Chem.1996,34(6):1095-1104.
    [72]Durrieu V, Gandini A. Preparation of aqueous anionic poly(urethane-urea) dispersions. Influence of the structure and molecular weight of the macrodiol on the dispersion and polymer properties[J]. Polym Int.2005,54(9):1280-1287.
    [73]Yen M S, Kuo S C. PCL-PEG-PCL triblock copolydiol-based waterborne polyurethane. I. Effects of the soft-segment composition on the structure and physical properties[J]. J Appl Polym Sci.1997,65(5):883-892.
    [74]Coutinho F M B, Delpech M C, Alves L S. Anionic waterborne polyurethane dispersions based on hydroxyl-terminated polybutadiene and poly(propylene glycol): Synthesis and characterization[J]. J Appl Polym Sci.2001,80(4):566-572.
    [75]Coutinho F M B, Delpech M C, Alves L S, Ferreira A A. Degradation profiles of cast films of polyurethane and poly(urethane-urea) aqueous dispersions based on hydroxy-terminated polybutadiene and different diisocyanates[J]. Polym Degrad Stab. 2003,81(1):19-27.
    [76]Durrieu V, Gandini A. Preparation of aqueous anionic poly(urethane-urea) dispersions. Influence of the incorporation of acrylic, polycarbonate and perfluoro-oligoether diols on the dispersion and polymer properties[J]. Polym Adv Technol.2005,16(11-12): 840-845.
    [77]Jiang L, Xu Q, Hu C P. Preparation and characterization of waterborne polyurethaneurea composed of dimer fatty acid polyester polyol[J]. J Nanomater.2006, Article Number:14906.
    [78]Lee D K, Tsai H B, Wang H H, Tsai R S. Aqueous polyurethane dispersions derived from polycarbonatediols[J]. J Appl Polym Sci.2004,94(4):1723-1729.
    [79]Lee D K, Tsai H B, Tsai R S. Effect of composition on aqueous polyurethane disperse-ons derived from polycarbonatediols[J]. J Appl Polym Sci.2006,102(5):4419-4424.
    [80]Lee D K, Tsai H B, Tsai R S. Aqueous polyurethane dispersions derived from polycarbonatediols and Di-(4-isocyanatocyclohexyl) methane[J]. Polym Eng Sci.2006, 46(5):588-293.
    [81]Yen M S, Kuo S C. PCL-PEG-PCL triblock ester-ether copolydiol-based waterborne polyurethane. Ⅱ. Effect of NCO/OH mole ratio and DMPA content on the physical properties[J]. J Appl Polym Sci.1998,67(7):1301-1311.
    [82]Chen Y, Chen Y L. Aqueous dispersions of polyurethane anionomers:Effects of counteraction[J]. J Appl Polym Sci.1992,46(3):435-443.
    [83]Harjunalanen T, Latinen M. The effects of altered reaction conditions on the properties of anionic poly(urethaneurea) dispersions and films cast from the dispersions[J]. Eur Polym J.2003,39(4):817-824.
    [84]Decker C, Masson F, Schwalm R. Dual-curing of waterborne urethane-acrylate coatings by UV and thermal processing[J]. Macomol Mater Eng.2003,288(1):17-28.
    [85]Otts D B, Heidenreich E, Urban M W. Novel waterborne UV-crosslinkable thiol-ene polyurethane dispersions:Synthesis and film formation[J]. Polymer.2005,46(19): 8162-8168.
    [86]Blank W J, Tramontano V J. Properties of crosslinked polyurethane dispersions [J]. Prog Org Coat.1996,27(1-4):1-15.
    [87]Cui G J, Xia W B, Chen G J, Wei M, Huang J. Enhanced mechanical performances of waterborne polyurethane loaded with lignosulfonate and its supramolecular complexes[J]. J Appl Polym Sci.2007,106(6):4257-4263.
    [88]Elrehim M A, Voit B, Bruchmann B, Eichhorn K J, Grundke K, Bellmann C. Structural and end-group effects on bulk and surface properties of hyperbranched poly(urea urethane)s[J]. J Polym Sci Part A:Polym Chem.2005,43(15):3376-3393.
    [89]Asif A, Shi W F. UV curable waterborne polyurethane acrylate dispersions based on hyperbranched aliphatic polyester:effect of molecular structure on physical and thermal properties [J]. Polym Adv Technol.2004,15(11):669-675.
    [90]Asif A, Shi W F, Shen X F, Nie K M. Physical and thermal properties of UV curable waterborne polyurethane dispersions incorporating hyperbranched aliphatic polyester of varying generation number[J]. Polymer.2005,46(24):11066-11078.
    [91]Zhang J, Hu C P. Synthesis, characterization and mechanical properties of polyester-based aliphatic polyurethane elastomers containing hyperbranched polyester segments[J]. Eur Polym J.2008,44(11):3708-3714.
    [92]张杰,胡春圃.具有超支化聚酯结构的聚醚型脂肪族聚氨酯弹性体的合成、表征和力学性能研究[J],高分子学报.2009,(9):840-846.
    [93]Padget J C. Polymers for water-based coatings-a systematic overview[J]. J Coating Technol.1994,66(839):89-105.
    [94]Hirose M, Kadowaki F, Zhou J H. The structure and properties of core-shell type acrylic-polyurethane hybrid aqueous emulsions[J]. Prog Org Coat.1997,31(1-2): 157-169.
    [95]Dong A J, An Y L, Feng S Y, Sun D X. Preparation and morphology studies of core-shell type waterborne polyacrylate-polyurethane microspheres[J]. J Colloid Interf Sci.1999,214(1):118-122.
    [96]Dong A J, Wan T, Feng S Y, Sun D X. IR spectra studies of core-shell type waterborne polyacrylate-polyurethane microemulsions[J]. J Polym Sci Part B:Polym Phys.1999, 37(18):2642-2650.
    [97]Hu Y S, Tao Y, Hu C P. Polyurethaneurea/vinyl polymer hybrid aqueous dispersions based on renewable material[J]. Biomacromolecules.2001,2(1):80-84.
    [98]Seo J W, Kim B K. Preparations and properties of waterborne polyurethane/nanosilica composites[J]. Polym Bull.2005,54(1-2):123-128.
    [99]Kwon J, Kim H. Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid-treated multiwalled carbon nanotube composites prepared by in situ polymerization[J]. J Polym Sci Part A:Polym Chem.2005,43(17): 3973-3985.
    [100]Shen Q, Sun J L, Wei H, Zhou Y, Su Y L, Wang D J. Fabrication of silver nanorods controlled by a segmented copolymer[J]. J Phys Chem C.2007,111(37):13673-13678.
    [101]Pan H X, Chen D J. Preparation and characterization of waterborne polyurethane/ attapulgite nanocomposites[J]. Eur Polym J.2007,43(9):3766-3772.
    [102]Chen G J, Wei M, Chen J H, Huang J, Dufresne A, Chang P R. Simultaneous reinforcing and toughening:New nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals[J]. Polymer.2008,49(7):1860-1870.
    [103]Deng X H, Liu F, Luo Y F, Chen Y J. Preparation, structure and properties of comb-branched waterborne polyurethane/OMMT nanocomposites[J]. Prog Org Coat. 2007,60(1):11-16.
    [104]Lee H T, Hwang J J, Liu H J. Effects of ionic interactions between clay and waterborne polyurethanes on the structure and physical properties of their nanocomposite dispersions[J]. J Polym Sci Part A:Polym Chem.2006,44(19):5801-5807.
    [105]Hsu S H, Chou C W. Enhanced biostability of polyurethane containing gold nanoparticles[J]. Polym Degrad Stab.2004,85(1):675-680.
    [106]Jou C C, Kuo M Y, Wang N H, et al. Effect of dimethyldichlorosilane on the oxygen permeated through a siloxane-based polyurethane ionomer[J]. J. Appl. Polym.Sci.1997, 66(5):981-988.
    [107]Wang H H, Lin Y T. Silicon-containing anionic water-borne polyurethane with covalently bonded reactive dye[J]. J Appl Polym Sci.2003,90(8):2045-2052.
    [108]Li X R, Fei G Q, Wang H H. Mechanical and surface properties of membranes prepared from waterborne cationic hydroxyl-terminated polydimethylsiloxane/polyurethane surfactant-free micro-emulsion[J]. J Appl Polym Sci.2006,100(1):40-46.
    [109]Fei G Q, Shen Y D, Wang H H, Shen Y. Effects of polydimethylsiloxane concentration onproperties of polyurethane/polydimethylsiloxane hybrid dispersions[J]. J Appl Polym Sci.2006,102(6):5538-5544.
    [110]Chen H, Fan Q L, Chen D Z, Yu X H. Synthesis and preperties of polyurethane modified with an aminoethylaminopropyl-substituted polydimethylsiloxane. Ⅱ. waterborne polyurethanes[J]. J Appl Polym Sci.2001,79(2):295-301.
    [111]Chen R S, Chang C J, Chang Y H. Study on siloxane-modified polyurethane dispersions from various polydimethylsiloxanes[J]. J Polym Sci:Part A:Polym Chem.2005, 43(16):3482-3490.
    [112]江琳,陈永林,胡春圃等.氨乙基氨丙基聚二甲基硅氧烷改性水性聚酯型聚氨酯的研究[J].功能高分子学报.2004,17(4):565-569.
    [113]王武生,潘才元,曾俊交联聚氨酯水分散体的合成[J].高分子学报.2003(3):319-324.
    [114]Chapman T M, Benrashid R, Marra K G, et al. Determination of low critical surface tensions of Novel fluorinated poly(amide urethane) block copolymers.1. Fluorinated side chains[J]. Macromolecules.1995,28:331-335.
    [115]Subramani S, Lee J M, Cheong I W, et al. Synthesis and characterization of water-borne crosslinked silylated polyurethane dispersion[J]. J Appl Polym Sci.2005,98(2): 620-631.
    [116]周成,张兴元,戴家兵,张和平.硅氧烷改性水性聚氨酯的制备及性能[J].化学物理学报.2005,18(3):448-452.
    [117]Kim Y S, Lee J S, Ji Q, McGrath J E. Surface properties of fluorinated oxetane polyol modified polyurethane block copolymers[J]. Polymer.2002,43(25):7161-7170
    [118]Kanno M, Kawakami H, Nagaoka S, Kubota S. Biocompatibility of fluorinated polyimide[J]. J Biomed Mater Res Part A.2002,60(1):53-60.
    [119]Hansen N M L, Haddletion D M, Hvilsted S. Fluorinated bio-acceptable polymers via an ATRP macroinitiator approach[J]. J Polym Sci:Part A:Polym Chem 2007,45(24): 5770-5780.
    [120]Thomas R R, Anton D R, Graham W F, Darmon M J, Stika K M. Films containing reactive mixtures of perfluoroalkylethyl methacrylate copolymers and fluorinated isocyanates:synthesis and surface properties[J]. Macromolecules.1998,31(14): 4595-4604.
    [121]Lim C H, Choi H S, Noh S T. Surface modification with waterborne fluorinated anionic polyurethane dispersions[J]. J Appl Polym Sci.2002,86(13):3322-3330
    [122]Wang L F, Wei Y H. Effect of soft segment length on properties of fluorinated polyurethanes[J]. Colloid Surface B Biointerf.2005,41(4):249-255.
    [123]Tan H, Xie X Y, Li J H, Zhong Y P, Fu Q. Synthesis and surface mobility of segmented polyurethanes with fluorinated side chains attached to hard blocks[J]. Polymer.2004, 45(5):1495-1502.
    [124]Tan H, Guo M, Du R N, Xie X Y, Li J H, Zhong Y P, Fu Q. The effect of fluorinated side chain attached on hard segment on the phase separation and surface topography of polyurethanes[J]. Polymer.2004,45(5):1647-1657.
    [125]Tan H, Li J H, Guo M, Du R N, Xie X Y, Zhong Y P, Fu Q. Phase behavior and hydrogen bonding in biomembrane mimicing polyurethanes with long side chain fluorinated alkyl phosphatidylcholine polar head groups attached to hard block[J]. Polymer.2005,46(18):7230-7239.
    [126]Lim H, Lee Y, Park I J, Lee S B. Synthesis and surface property of aqueous fluorine-containing polyurethane[J]. J Colloid Interf Sci.2001,241(1):269-274.
    [127]Temtchenko T, Turri S, Novelli S, Delucchi M. New developments in perfluoropoly-ether resins technology:high solid and durable polyurethanes for heavy duty and clear OEM coatings[J]. Prog Org Coat.2001,43(1-3):75-84.
    [128]Turri S, Levi M, Trombetta T. Process design of fluorinated polyurethane-urea anionomer aqueous dispersions[J]. Macromol Symp.2004,218(1):29-38.
    [129]Turri S, Levi M, Trombetta T. Waterborne anionomeric polyurethane-ureas from functionalized fluoropoly ethers [J]. J Appl Polym Sci.2004,93(1):136-144.
    [130]Su T, Wang G Y, Xu X D, Hu C P. Preparation and Properties of Waterborne Polyuret-haneurea Consisting of Fluorinated Siloxane Units[J]. J Polym Sci Part A:Polym Chem.2006,44:3365-3373.
    [131]Su T, Wang G Y, Hu C P, Preparation and Properties of Well-defined Waterborne Polyurethaneurea with Fluorinated Siloxane Units in Hard or Soft Segments[J]. J Polym Sci Part A:Polym Chem.2007,45:5005-5016.
    [132]Tanaka H, Suzuki Y, Yoshino F. Synthesis and coating application of waterborne fluoroacrylic-polyurethane composite dispersions [J]. Colloid Surface A Physicochem Eng Asp 1999,153(1-3):597-601.
    [133]Jiang M, Zhao X L, Ding X B, Zhang Z H, Peng Y X. A novel approach to fluorinated polyurethane by macromonomer copolymerization[J]. Eur Polym J.2005,41(8): 1798-1803.
    [134]Li G H, Li X R, Shen Y D, Ren Q H. Effect of hydrophilic monomer on the surface properties of cationic polyurethane-fluorinated acrylate hybrid dispersions[J]. J Appl Polym Sci.2006,99(5):2721-2725.
    [135]Chao J, Zhang X Y, Dai J B, Zhen G E, Feng L L. Synthesis of a novel core-shell type acrylic-polyurethane hybrid emulsion containing siloxane and fluorine as well as water and the oil resistances of cured film[J]. Chinese Chem Lett.2006,17(8):1121-1124.
    [136]Dai J B, Zhang X Y, Chao J, Bai C Y. A new core-shell type fluorinated acrylic and siliconated polyurethane hybrid emulsion[J]. J Coat Technol Res.2007,4(3):283-288.
    [137]刘国杰,夏正斌.国内外地板涂料的进展简述[J].现代涂料与涂装.2007,10(11):27-29.
    [138]许君栋,濮国尧,王宏.高性能双组分聚氨酯汽车面漆的研制[J].涂料工业.2004,(7):26-29.
    [139]雷玉林.合成革与人造革的湿法涂层技术的研究[J].中国塑料.1999,13(1):52-59.
    [140]沈一丁,张彩霞.阳离子有机硅聚氨酯自交联乳液的制备和应用[J].中国皮革.2000,29(17):13-17.
    [141]叶青萱.聚氨酯复合胶粘剂技术进展[J].化学推进剂与高分子材料.2008,6(5):1-5.
    [142]唐邓,张彪,李智华.水性聚氨酯纺织涂层的研制[J].化学推进剂与高分子材料.2008,25(12):8-10.
    [143]罗祥林,何斌,李赛.表面紫外光接润滑改性医用聚氨酯材料[J].高分子材料科学与工程.2000,16(2):132-135.
    [144]Su T, Wang G Y, Wang S L Hu C P. Fluorinated siloxane-containing waterborne polyurethaneureas with excellent hemocompatibility, waterproof and mechanical properties[J]. Eur Polym J.2010,46(3):472-483.
    [145]Cooper A I. Porous materials and supercritical fluids[J]. Adv Mater.2003,15: 1049-1059.
    [146]Butler R, Davies C M, Cooper A I. Emulsion Templating Using High Internal Phase Supercritical Fluid Emulsions[J]. Adv Mater.2001,13:1459-1463.
    [147]Butler R, Hopkinson I, Cooper A I. Synthesis of porous emulsion-templated polymers using high internal phase CO2-in-water emulsions[J]. J Am Chem Soc.2003,125: 14473-14481.
    [148]Li Q, Matuana L M. Foam extrusion of high density polyethylene/wood-flour composites using chemical foaming agents[J]. J Appl Polym Sci.2003,88:3139-3150.
    [149]Xia Y, Gates B, Yin Y, Lu Y, Monodispersed colloidal spheres:old materials with new applications[J]. Adv Mater.2000,12:693-713.
    [150]Walsh D, Arcelli L, Dujardin E, Mann S. Dextran templating for the synthesis of metallic and metal oxide sponges[J]. Nat Mater.2003,2:386-390.
    [151]Zhang S, Chen J, Lykakis I N, Perchyonok V T. Streamlining organic free radical synthesis through modern molecular technology:from polymer supported synthesis to microreactors and beyond. Curr Org Synth,2010,7,177-188.
    [152]Tiller J C, Sprich C, Hartmann. Amphiphilic conetworks as regenerative controlled releasing antimicrobial coatings[J]. J Control Release.2005,103:355-367.
    [153]Carnachan R J, Bokhari M, Przyhorski S A, Cameron N R. Tailoring the morphology of emulsion templated porous polymers. Soft Matter.2006,2:608-616.
    [154]Deleuze H, Raivre R, Herroguez V. Preparation and functionalisaiton of emulsion-derived microcellular polymeric foams (polyHIPEs) by ring-opening metathesis polymerization(ROMP) [J]. Chem Comm.2002:2822-2823.
    [155]Benmachou K, Deleuze H, Heroguez V. Ring opening polymerisation of highly concentrated inverse emulsions to obtain microcellular foams[J]. React Funct Polym. 2005,55:211-217.
    [156]Edwards C J C, Gregory D P, Sharples M. Low density porous elastic cross-linked polymer -ic materials and their preparation[P]. US Patent No.4,788,225; 1988.
    [157]Cameron N R, Sherrington D C. Preparation and glass transition temperatures of elastomeric PolyHIPE materials[J]. J Mater Chem.1997,7:2209-2212.
    [158]Edwards C J C, Gregory D P, Sharples M. Low density porous elastic cross-linked polymeric materials and their preparation[P]. US Patent No.4,788,225; 1988.
    [159]Thunhorst K L, Gehlsen M D, Wright R E, Nelson E W, Koecher S D, Gold D. Rotary engine with plurality of stationary adjacent combustion chambers[P]. PCT Int Appl, 0121693; 2001.
    [160]Jomes K, Lothian B R, Martin A, Taylor G, Haq Z. Porous polymers[P]. US Pat Appl 4611014,1986.
    [161]Haq Z. Porous cross-linked absorbent polymeric materials [P]. US Pat Appl 4536521, 1985.
    [162]Katagawa N. Hydrophilic polymeric material and method of preparation[P]. US Pat Appl 6218440,2001.
    [163]Krajnc P, stefanec D, Pulko I. Acrylic acid "reversed" PolyHIPEs[J]. Macromol Rapid Commum.2005,16:1289-1293.
    [164]Kovaaia S, Stefanec D, Krajnc P. Highly porous open-celluar monoliths from 2-hydroxyethyl methacrylate based high internal phase emulsions(HIPEs):Preparation and voids size tuning[J]. Macromolecules.2007,40:8056-8060.
    [165]Kulygin O, Silverstein M S. Porous poly(2-hydroxyethyl methacrylate) hydrogels synthesized within high internal phase emulsions[J]. Soft Matter.2007,3:1525-1529.
    [166]Zhang S, Chen J. PMMA based foams made via surfactant-free high internal phase emulsion templates[J]. Chem Commum.2009,2217-2219.
    [167]Zhang S, Chen J, Taha M. Synthesis of Monodisperse Styrene/Methyl Methacrylate/ Acrylic Acid Latex using Surfactant-free Emulsion Copolymerization in Air[J]. J App Polym Sci.2009,114:1598-1605.
    [168]Tai H, Sergienko A, Silverstein M S. Organic-inorganic networks in foams from high internal phase emulsion polymerizations [J]. Polymer.2001,42:4473-4482.
    [169]Zhang H, Hardy G C, Rosseinsky M J, Cooper A I. Uniform emulsion-templated silica beads with high pore volume and hierarchical porosity[J]. Adv Mater.2003,15:78-81.
    [170]Maekawa H, Esquena J, Bishop S, Solans C, Chmelka B F. Meso/Macroporous Inorganic Oxide Monoliths from Polymer Foams[J]. Adv Mater.2003,15:591-596.
    [171]Zhang H, Hardy G C, Khimyak Y Z, Rosseinsky M J, Cooper A I. Synthesis of hierarchically porous silica and metal oxide beads using emulsion-templated polymer scaffolds[J]. Chem Mater.2004,16:4245-4256.
    [172]Araya A. Hydrophobic, highly porous, three-dimensional inorganic structures[P]. US Pat Appl,4888309,1989.
    [173]Sen T, Tiddy G J T, Casci J L, Anderson M W. Macro-cellular silica foams:synthesis during the natural creaming process of an oil-in-water emulsion[J]. Chem Commun. 2003,2182-2183.
    [174]Sen T, Tiddy G J T, Casci J L, Anderson M W. Meso-cellular silica foams, macro-cellular silica foams and mesoporous solids:a study of emulsion-mediated synthesis[J]. Microporous Mesoporous Mater.2005,78:255-263.
    [175]Imhof A, Pine D J. Ordered macroporous materials by emulsion templating[J]. Nature. 1997,389:948-951.
    [176]Imhof A, Pine D J. Uniform macroporous ceramics and plastics by emulsion templ-ating [J]. Adv Mater.1998,10:697-700.
    [177]Yi G R, Yang S M. Microstructures of porous silica prepared in aqueous and nonaqueous emulsion templates[J]. Chem Mater.1999,11:2322-2325.
    [178]Zhang H, Hussain I, Brust M, Cooper A I. Emulsion-templated gold beads using gold nanoparticles as building blocks[J]. Adv Mater.2004,16:27-30.
    [179]Wang D, Smith N L, Budd P M. Polymerization and carbonization of high internal phase emulsions[J]. Polym Int.2005,54:297-303.
    [180]Menner A, Bismarck A. New evidence for the mechanism of the pore formation in polymerising high internal phase emulsions or why polyHIPEs have an interconnected pore network structure[J]. Macromol Symp.2006,242:19-24.
    [181]Williams J M, Wrobleski D A. Spatial distribution of the phases in water-in-oil emulsions. Open and closed microcellular foams from cross-linked polystyrene [J]. Langmuir.1988,4:656-662.
    [182]Williams J M. Toroidal microstructures from water-in-oil emulsions [J]. Langmuir.1988, 4:44-49.
    [183]Williams J M, Gray A J, Wilkerson M H. Emulsion stability and rigid foams from styrene or divinylbenzene water-in-oil emulsions[J]. Langmuir.1990,6:437-444.
    [184]Williams J M. High internal phase water-in-oil emulsions:influence of surfactants and cosurfactants on emulsion stability and foam quality[J]. Langmuir.1991,7:1370-1377.
    [185]Cameron N R, Sherrington D C, Albiston L, Gregory D P. Study of the formation of t-he opening-cellular morphology of poly(styrene/divinybenzene) polyHIPE materials by cryo-SEM[J]. Colloid Polym Sci.1996,274:592-595.
    [186]Hoisington M A, Duke J R, Apen P G. High temperature, polymeric, structural foams from high internal phase emulsion polymerizations[J]. Polymer.1997,38:3347-3357.
    [187]Duke J R, Hoisington Jr M A, Langlois D A, Benicewicz B C. High temperature properties of poly(styreneco-alkylmaleimide) foams prepared by high internal phase emulsion polymerization[J]. Polymer.1998,39:4369-4378.
    [188]Cameron N R, Sherrington D C. High internal phase emulsions (HIPEs)—Structure, properties and use in polymer preparation[J]. Adv Polym Sci.1996,126:163-214.
    [189]K. Haibach, A. Menner, R. Powell, A. Bismarck, Tailoring mechanical properties of highly porous polymer foams:Silica particle reinforced polymer foams via emulsion templating[J]. Polymer.2006,47:4513-4519.
    [190]Mercier A, Deleuze H, Mondain-Monval O. Thiol addition to the pendant vinylbenzene groups of (vinyl)polystyrene polyHIPE via a batch and a cross-flow Method [J]. Macromol Chem Phys.2001,202:2672-2680.
    [191]Gregory D P, Sharples M, Tucker I M. Use of viscosity as an in-line diagnostic for high internal phase emulsion generation[P]. Eur Pat Appl.299762; 1989.
    [192]Freire M G, Dias A M, Coelho M A Z, Coutinho J A P, Marrucho L M. Aging mechanisms of perfluorocarbon emulsions using image analysis[J]. J Colloid Interface Sci.2005,286:224-232.
    [193]Jiao J, Burgess D J. Ostwald ripening of water-in-hydrocarbon emulsions[J]. J Colloid Interface Sci.2003,264:509-516.
    [194]Taylor P. Ostwald ripening in emulsions[J]. Colloids Surf A.1995,99:175-185.
    [195]Kabalnov A S, Shchukin E G, Ostwald ripening theory:applications to fluorocarbon emulsion stability[J]. Adv Colloid Interface Sci.1992,38:69-97.
    [196]Aronson M P, Petko M F. Highly Concentrated Water-in-Oil Emulsions:Influence of Electrolyte on Their Properties and Stability[J]. J Colloid Interface Sci.1993,159: 134-149.
    [197]Kent P, Saunders B R. The Role of Added Electrolyte in the Stabilization of Inverse Emulsions[J]. J Colloid Interface Sci.2001,242:437-442.
    [198]Opawale F O, Burgess D J. Influence of Interfacial Properties of Lipophilic Surfactants on Water-in-Oil Emulsion Stability [J]. J Colloid Interface Sci.1998,197:142-150.
    [199]Emulsions and Emulsion Technology Part 1, ed. K. J. Lissant, Marcel Dekker Inc., N-ew York,1974.
    [200]Dreher T M, Glass J, O'Connor A J, Stevens G W. Effect of rheology on coalescence rates and emulsion stability [J]. AIChE J.1999,45(6):1182-1190.
    [201]Das A K, Mukesh D, Swayambunathan V, Kotkar D D, Ghosh P K. Concentrated emulsions.3. Studies on the influence of continuous-phase viscosity, volume fraction, droplet size, and temperature on emulsion viscosity [J]. Langmuir.1992,8:2427-2436.
    [202]Rondon-Gonzalez M, Sadtler V, Choplin L, Salager J L. Emulsion catastrophic inversion from abnormal to normal morphology.5. Effect of the water-in-oil ratio and surfactant concentration on the inversion produced by continuous stirring[J]. Ind Eng Chem Res.2006,45:3074-3080.
    [203]Welch C F, Rose G D, Malotky D, Eckersley S T. Rheology of High internal phase emulsions[J]. Langmuir.2006,22:1544-1550.
    [204]Leal-Calderon F, Mondain-Monval O, Pays K, Royer N, Bibette J. Water-in-oil emulsions:Role of the solvent molecular size on droplet interaction [J]. Langmuir.1997, 13:7008-7011.
    [205]kay G, Bhumgara Z, Wakeman R J. Self-supported porous. channel filtration modules: Preparation, properties and. performance [J]. Trans ICHemE.1995,73:782-785.
    [206]Ruckenstein E, Hong L. Sedimentation polymerization[J]. Polymer.1995,36(14): 2857-2860.
    [207]Zhang H, Cooper A I. Compressed fluid sedimentation polymerization[J]. Macromol-ecules.2003,36:5061-5064.
    [208]Zhang H, Cooper A I. Synthesis of monodisperse emulsion-templated polymer beads by oil-in-water-in-oil (O/W/O) sedimentation polymerization [J]. Chem Mater.2002,14: 4017-4020.
    [209]Zhang H, Cooper A I. Thermoresponsive"Particle Pumps":Activated release of organic nanoparticles from open-cell macroporous polymers[J]. Adv Mater.2007,19: 2439-2444.
    [210]Zhang H, Cooper A I. Emulsion-templated hierarchically porous silica beads using silica nanoparticles as building blocks[J]. Ind Eng Chem Res.2005,44:8707-8714.
    [211]Cooper A I, Hems W P, Holmes A B. Synthesis of highly cross-linked polymers in supercritical carbon dioxide by heterogeneous polymerization[J]. Macromolecules. 1999,32:2156-2166.
    [212]Desforges A, Arpontet M, Deleuze H, Mondain-Monval O. Synthesis and functionali-sation of polyHIPE beads[J]. React Funct Polym.2002,53:183-192.
    [213]Wood C D, Cooper A I. Synthesis of macroporous polymer beads by suspension polymerization using supercritical carbon dioxide as a pressure-adjustable porogen[J]. Macromolecules.2001,34:5-8.
    [214]Zhang H, Long J, Cooper A I. Aligned porous materials by directional freezing of solution in liquid CO2[J]. J Am Chem Soc.2005,127:13482-13483.
    [215]Guyot A. In:Sherrington D C, Hodge P, editors. Syntheses and separations using functional polymers[M]. Chichester:Wiley; 1988. Chapter 1:178.
    [216]Cameron N R, Barbetta A. The influence of porogen type on the porosity, surface area and morphology of poly(divinylbenze) PolyHIPE foams[J]. J Mater Chem.2000,10: 2466-2472.
    [217]Barbetta A, Cameron N R. The morphology and surface area of emulsion-derived (PolyHIPE) foams prepared with oil-phase soluble porogenic solvents:span 80 as surfactant[J]. Macromolecules.2004,37:3188-3201.
    [218]Barbetta A, Cameron N R. Morphology and surface area of emulsion-derived (PolyHIPE) solid foams prepared with oil-phase soluble porogenic solvents: three-component surfactant system[J]. Macromolecules.2004,37:3202-3213.
    [219]Bass R M, Brownscombe T F. Process to prepare low density porous crosslinked polymeric materials [P]. PCT Int Appl WO 97/45479; 1997.
    [220]Alexandratos S D, Beauvais R, Duke J R, Jorgensen B S. Functionalized polymer foams as metal ion chelating agents with rapid complexation kinetics[J]. J Appl Polym Sci. 1998,68:1911-1916.
    [221]Benicewicz B C, Jarvinen G D, Kathios D J, Jorgensen B S. Open-celled polymeric foam monoliths for heavy metal separations study [J]. J Radioanal Nucl Chem.1998, 235:31-35.
    [222]Schoo H F M, Challa G, Rowatt B, Sherrington D C. Immobilization of flavin on highly porous polymeric disks:Three routes to a catalytically active membrane[J]. React Polym.1992,16:125-136.
    [223]Safinia L, Datan N, Hohse M, Mantalaris A, Bismarck A. Towards a methology for the effective surface modidication of porous polymer scaffolds[J]. Biomaterials.2005,26: 7537-7547.
    [224]Krajnc P, Brown J F, Cameron N R. Monoliths scavenger resins by amine functionalize-tions fo poly(4-vinylbenzyl chloride-co-divinylbenzene) polyHIPEs materials[J]. Org Lett.2002,4:2497-2500.
    [225]Cameron N R, Sherrington D C, Ando I, Kurosu H. Chemical Modification of Monolithic Poly(styrene/divinylbenzene) PolyHIPE Materials[J]. J Mater Chem.1996, 6:719-726.
    [226]Muller H, Leube W, Tauer K, Forster, Antonietti M. Polyelectrolyte block copolymers as effective stabilizers in emulsion polymerization[J]. Macromolecules.1997,30: 2288-2293.
    [227]Cummins D, Wyman P, Duxbury C J, Thies J, Koning C E, Heise A. Synthesis of functional photopolymerized macroporous polyHIPEs by atom transfer radical polymerization surface grafting. Chem Mater.2007,19:5285-5292.
    [228]Kanamori K, Nakanishi K, Hanada T. Rigid macroporous poly(divinylbenzene) monoliths with a well-defined bicontinuous morphology prepared by living radical polymerization[J]. Adv Mater.2006,18:2407-2411.
    [229]Lepine O, Birot M, Deleuze H. Preparaton of macrocellular PU-PS interpenetrating networks [J]. Polymer.2005,46:9653-9663.
    [230]Lepine O, Birot M, Deleuze H. Elaboration of open-cell microcellular nanocomposites [J]. J Poly Sci, Part A:Polym Chem.2007,45:4193-4203.
    [231]Ungureanu S, Birot M, Laurent G, Deleuze H, Babot O, JuliAn-lopez B, Achard M F, Popa M I, Sanchez C, Backov R. One-pot syntheses of the first series of emulsion based hierarchical hybrid organic-inorganic open-cell monoliths possessing tunable functionality (organo-Si(HIPE) series)[J]. Chem Mater.2007,19:5786-5796.
    [232]Normatov J, Silverstein M S. Higly porous elastomer-silsesquioxane nanocomposites synthesized with high internal phase emulsions [J]. J Polym Sci, Part A Polym Chem. 2008,46:2357-2366.
    [233]Menner A, Haibach K, Powell R, Bismarck A. Tough reinforced open porous polymer foams via concentrated emulsion templating[J]. Polymer.2006,47:7628-7635.
    [234]Haibach K, Menner A, Powell R, Bismarck A. Tailoring mechanical properties of highly porous polymer foams:Silica particles reinforced polymer foams via emulsion polymerization[J]. Polymer.2006,47:4513-4519.
    [235]Livshin S, Silverstein M S. Crystallinity and cross-linking in porous polymers synthesized from long side chain monomers through emulsion templating[J]. Macromolecules.2008,41:3930-3938.
    [236]Cameron N R, Sherrington D C. Low density porous cross-linked polymeric materials. Macromolecules.1997,30:5860
    [237]Tai H, Sergienko A, Silverstein M S. Organic-inorganic networks in foams from high internal phase emulsion polymerizations[J]. Polymer.2001,42:4473-4482.
    [238]Silverstein M S, Tai H, Sergienko A, Lumelsky Y, Pavlovsky S. PolyHIPE:IPNs, hybrids, nanoscale porosity, silica monoliths and ICP-based sensors[J]. Polymer.2005, 46:6682-6694.
    [239]Normatov J, Silverstein M S. Porous interpenetrating network hybrids synthesized within high internal phase emulsions[J]. Polymer.2007,48:6648-6655.
    [240]Normatov J, Silverstein M S. Interconnected silsesquioxane-organic networks in porous nanocomposites synthesized within high internal phase emulsions[J]. Chem Mater. 2008,20:1571-1577.
    [241]Normatov J, Silverstein M S. Silsesquioxane-cross-linked porous nanocomposites synthesized within high internal phase emulsions[J]. Macromolecules.2007,40: 8329-8335.
    [242]Pickering S U. Emulsions [J]. J Chem Soc Trans.1907,91:2001-2020.
    [243]Binks B P. Modern Aspects of Emulsion Science, ed. B. P. Binks, RSC, Cambridge, 1998, Chapter 1.
    [244]Binks B P. Particles as surfactants-silmilarities and differences [J]. Curr Opin Colloid Interface Sci.2002,7:21-41.
    [245]Kralchevsky PA, Ivanov IB, Ananthapadmanabhan KP, Lips A. Latex-particle-stabilized emulsions of anti-Bancroft type[J] Langmuir.2005,21:50-63.
    [246]Binks BP, Lumsdon SO. Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica[J]. Langmuir.2000,16:2539-2547.
    [247]Binks BP, Lumsdon SO. Pickering emulsions stabilized by monodisperse latex parti-cles:Effects of particle size[J]. Langmuir.2000,16:8622-8631.
    [248]Menner A, Verdejo R, Shaffer M, Bismarck A. Particle-stabilized surfactant-free medium internal phase emulsions as templates for porous nanocomposite materials: poly-Pickering-Foams [J]. Langmuir.2007,23:2398-2403.
    [249]Menner A, Ikem V, Salgueiro M, Shaffer M S P, Bismarck A. High internal phase emulsion templates solely stabilised by functionalised titania nanoparticles[J]. Chem Commun.2007,4274-4276.
    [250]Ikem V O, Menner A, Bismarck A. High Internal Phase Emulsions Stabilized Solely by Functionalized Silica Particles[J]. Angew Chem Int Ed.2008,47,8277-8279.
    [251]Busby W, Cameron N R, Jahoda C B A. Emulsion-derived (PolyHIPE) Foams Containing Poly (ε--caprolactone) as Matrixes for Tissue Engineering [J]. Biomacromolecules.2001,2:154-164.
    [252]Busby W, Cameron N R, Jahoda C B A.. Tissue engineering matrixes by emulsion templating[J]. Polym Int.2002,51:871-881.
    [253]Akay G, Birch M A, Bokhari M A. Microcellular polyHIPE polymer supports osteo-blast growth and bone formation in vitro[J]. Biomaterials.2004,25:3991-4000.
    [254]Bokhari M A, Akay G, Zhang S, Birch M A. The enhancement of osteoblast growth and differentiation in vitro on a peptide hydrogel-polyHIPE polymer hybrid material [J]. Biomaterials.2005,26:5198-5208.
    [255]Christenson E M, Soofi W, Hilm J L, Cameron N R, Mikos A G. Biodegradable fumarate-based polyHIPEs as tissue engineering scaffolds [J]. Biomacromolecules. 2007,8:3806-3814.
    [256]Lumesky Y, Zoldan J, Levenberg S, Silverstein M S. Porous polycaprolactone-polystyrene semi-interpenetrating polymer networks synthesized within high internal phase emulsions[J]. Macromolecules.2008,41:1469-1474.
    [257]Hayman M W, Smith K H, Cameron N R, Przyborski S A. Growth of human stem cell-derived neurons on solid three-dimensional polymers[J]. J Biochem Biophys Methods.2005,62:231-240.
    [258]Hayman M W, Smith K H, Cameron N R, Przyborski S A. Enhanced neurite outgrowth by human neurons grown on solid three-dimensional scaffolds[J]. Biochem Biophys Res Commun.2004,314:483-488.
    [259]Sohier J, Haan R E, de Groot K, Bezemer J M. A novel method to obtain protein re-lease from porous polymer scaffolds:emulsion coating[J]. J Controlled Release.2003, 87:57-68.
    [260]Bokhari M, Carnachan R J, Przyborski S A, Cameron N R. Emulsion-templated porous polymers as scaffolds for three dimensional cell culture:effect of synthesis parameters on scaffold formation and homogeneity[J]. J Mater Chem.2007,17:4088-4094.
    [261]Bokhari M, Carnachan R J, Cameron N R, Przyborski S A. Novel cell culture device enabling three-dimensional cell growth and improved cell function [J]. Biochem Bioph Res Co.2007,354:1095-1100.
    [262]Ottens M, Leene G, Beenackers A, Cameron N, Sherrington D C. PolyHipe:A New Polymeric Support for Heterogeneous Catalytic Reactions:Kinetics of Hydration of Cyclohexene in Two- and Three-Phase Systems over a Strongly Acidic Sulfonated PolyHipe[J]. Ind Eng Chem Res.2000,39:259-266.
    [263]Pierre S J, Thies J C, Dureault A, Cameron N R, van Hest J C M, Carette N, Michon T, Weberskirch R. Covalent enzyme immobilization onto photopolymerized highly porous monoliths[J].Adv Mater.2006,18:1822-1826.
    [264]Zhang S, Chen S. Synthesis of open porous emulsion-templated monoliths using cetyltrimethylammonium bromide[J]. Polymer,2007,48:3021-3025.
    [265]Zhang S, Chen S, Perchyonok V T. Stability of high internal phase emulsions with sole cationic surfactant and its tailoring morphology of porous polymers based on the emulsions[J]. Polymer,2009,50,1723-1731.
    [266]Zhang S, Chen S, Perchyonok V T, PolyHIPEs as novel media for conventional free adical chemistry[J]. Lett Org Chem.2008,5:304-307.
    [267]Johnson A J, Zhang S, Chen J, Perchyonok V T. On the use of β-cyclodextrins as molecular reactors for the radical cyclizations under tin free conditions [J]. Curr Org Chem.2009,13:1746-1750.
    [268]Wakeman R J, Bhumgara Z G, Akay G. Ion exchange modules formed from polyhipe foam precursors[J]. Chem Eng J.1998,70:133-141.
    [269]Brown I J, Clift D, Sotiropoulos S. Preparation of microporous nickel electrodeposits using a polymer matrix[J]. MRS Bull.1999,34:1055-1064.
    [270]Brown I J, Sotiropoulos S. Electrodeposition of Ni from a high internal phase emul-sion (HIPE) template[J]. Electrochimica Acta.2001,46:2711-2720.
    [271]Zhao C, Danish E, Cameron N R, Kataky R. Emulsion-templated porous materials (PolyHIPEs) for selective ion and molecular recognition and transport:application in electrochemical sensing [J]. J Mater Chem.2007,17:2446-2453.
    [272]赵鸿汉.中国环氧乙烯基酯树脂(VER)市场分析报告[J].纤维复合材料.2008,1:61-63.
    [273]周润培.环氧乙烯基酯树脂[J].热固性树脂2002,17:31-33.
    [274]曹万荣.有机金属络合物催化丙烯酸与环氧树脂的酯化反应[J].热固性树脂,1991,(1):35-39.
    [275]高俊刚,王逢利.季铵盐催化合成不饱和酸环氧酯的反应动力学[J].热固性树脂,1992,(4):5-10.
    [276]Afirev T, Bohrer J, Mark H. Copolymerization [M].1952.
    [277]Hu Y S, TAO Y, HU C P, Polyurethaneurea aqueous dispersions based on renewable materials[J]. Acta Polymerica Sinica.2001,24(3):306-310.
    [278]Park S H, Il D. Chung, A. Hartwig, Kim K B. Hydrolytic stability and physical properties of waterborne polyurethane based on hydrolytically stable polyol. Colloids and Surfaces A:Physicochem. Eng. Aspects,2007,305:126-131.
    [279]Fan L H, Hu C P, Ying S K. Thermal analysis during the formation of polyurethane and vinyl ester resin interpenetrating polymer networks[J]. Polymer.1996,37(6):975-981.
    [280]Fan L H, Hu C P, Pan Z Q, Zhang Z P, Ying S K. Polymerization of polyurethane and vinyl ester resin interpenetrating polymer networks during reaction injection moulding process[J]. Polymer.1997,38(14):3609-3616.
    [281]Wang G Y, Zhu M Q, Hu C P. Interpenetrating polymer networks of polyurethane and graft vinyl ester resin-polyurethane formed with diphenylmethane diisocyanate[J]. J Polym Sci:Part A:Polym Chem.2000,38(1):136-144.
    [282]Wang G Y, Wang Y L, Hu C P. Interpenetrating polymer networks of polyurethane and graft vinyl ester resin polyurethane formed with toluene diisocyanate[J]. Eur Polym J. 2000,36(4):735-742.
    [283]Su T, Hu C P. Preparation and Properties of Waterborne Interpenetrating Polymer Networks Composed of Polyurethaneurea and Graft Vinyl Ester Resin. J Appl Polym Sci.2009,114(2):1070-1079.
    [284]Wu S H. Polymer Interface and Adhesion[M]. New York:Marcel Dekker INC,1982, 178-180.
    [285]Christenson, C P, Harthcock, M A, Model MDI/butanediol polyurethanes:Molecular structure, morphology, physical and mechanical properties[J]. J Polym Sci Part B: Polym Phy.1986,24:1401-1439.
    [286]Li H, Zhang Z B, Hu C P, Wu S S, Ying S K. Surface composition and property of film prepared with aqueous dispersion of polyurethaneurea-acrylate including fluorinated block copolymer[J]. Eur Polym J.2004,40(9):2195-2201.
    [287]Park S H, Lee S K, Choi H Y, Lee E M, Kim E Y, Lim C H, Lee D W, Kim B K. Mechanical and Surface Properties and Hydrolytic Stability of Cycloaliphatic Polyester-Based Waterborne Polyurethanes Modified with Fluoro Oligomer[J]. J Appl Polym Sci.2009,111:1828-1834.
    [288]Dang X, Yuan Q, Fang J, Wang D. Phase reversal during water dispersion of polyure-thane anionomer[J]. J Appl Polym Sci.2006,99:1234-1239.
    [289]Binks B P, Murakami R, Armes S P, Fujii S. Temperature-induced inversion of nanoparticle-stabilized emulsions[J]. Angew Chem Int Ed.2005,44:4795-4798.
    [290]Horozov T S, Binks B P. Particle-stabilized emulsions:A bilayer or bridging monolayer? [J]. Angew Chem Int Ed.2006,45:773-776.
    [291]Kim J W, Lee D, Shum H C, Weitz D A. Colloid surfactants for emulsion stabiliz-ation[J]. Adv Mater.2008,20:3239-3243.
    [292]Fujii S, Read E S, Binks B P, Armes S P. Stimulus-responsive emulsifier based on nanocomposite microgel particles[J]. Adv Mater.2005,17:1014-1017
    [293]Okay O. Macroporous copolymer networks [J]. Prog Polym Sci.2000,25:711-779.
    [294]Albright, R L. Porous polymers as an anchor for catalysis[J]. React Polym.1986,4:155-174.
    [295]Gurevitch I, Silverstein M. S. Polymerized pickering HIPEs:Effects of synthesis parameters on porous structure[J]. J Polym Sci Part A:Polym Chem.2010,48, 1516-1525.
    [296]Horozov T S.Foams and Foam Films Stabilized by Solid Particles[J]. Curr Opin Colloid Interface Sci.2008,13,134-140.
    [297]Binks B P, Lumsdon S O. Stability of oil-in-water emulsions stabilised by silica particles[J]. Phys Chem Chem Phys.1999,1:3007-3016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700