粒子稳定的乳液和高内相乳液的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米技术的发展,纳米粒子在油-水界面的吸附行为及其稳定的乳液越来越受到人们的关注,但目前人们对于此类乳液的研究还不是很完善。本论文中,我们首先合成了一种新型的两亲性聚合物粒子,将其用于稳定乳液的研究;然后合成了一种AOA改性的磁性纳米粒子,并将其用于高内相乳液的研究中。具体的工作内容概括如下:
     1.通过反相微乳液法合成了聚(甲基丙烯酸十八酯-co-丙烯酰胺-co-丙烯酸),这种粒子内部亲水、外部疏水,通过调节油溶性单体和水溶性单体的比例,可以很方便地改善粒子的润湿性。将上述聚合物粒子用于稳定苯乙烯的正相乳液体系,聚合之后我们得到了尺寸分布较均匀的亚微米级聚苯乙烯微球。通过研究我们发现,在乳液的制备过程中,刚开始乳化时会形成Pickering乳液;但是随着时间的延长,大的液滴逐渐消失,聚合物粒子有可能被溶胀、脱落,成为种子球,即发生Pickering乳液向种子乳液的转变;这是与无机粒子稳定乳液的不同之处。
     2.通过共沉淀法制备磁性纳米粒子,并用12-丙烯酰氧基-9-十八烯酸(AOA)对其进行表面改性,将改性的磁性粒子用于St-DVB高内相乳液(HIPE)的制备和聚合中。由于AOA结构中含有活性双键,经AOA修饰后的磁性粒子(MPs)可以参与聚合,进一步提高了乳液稳定性和界面结合力;而且,磁性粒子的添加对聚合物多孔材料起到一定的增强作用。我们研究了MPs浓度和内水相含量对高内相乳液稳定性和多孔材料结构的影响。结果表明,当粒子浓度达到20%时,材料的杨氏模量达到最大值(69.7 MPa),压缩强度也提高到5.29 MPa。同时,材料的孔洞尺寸也随粒子浓度的增大而逐渐降低并且尺寸大小趋向均匀。然而,增加内水相含量会导致材料的机械性能下降,密度降低,孔洞尺寸增加,但是有利于多孔贯通结构的形成。
     3.我们还研究了室温下γ-射线辐射引发和60°C下热引发高内相乳液聚合时,表面活性剂Span 80的浓度对乳液稳定性和多孔材料结构形貌的影响。结果发现,室温下引发聚合有利于乳液的稳定,而且当表面活性剂的用量降低到1.4 wt%时,依然可以获得良好的多孔贯通的聚合物大孔材料。
With the development of nanotechnology, the adsorption behavior of nano-particles in the oil - water interface and the stability of the emulsion attract more and more attention, but the study of such emulsions is not very systemic. In this thesis, we first synthesized a new kind of amphipathic polymer particles, and used them to stablilize emulsion; then synthesized magnetite nanoparticles surface-modified with AOA for the study of high internal phase emulsion (HIPE). The specific contents of the work are summarized as follows:
     1. Poly(stearyl methacrylate-co-acrylamide-co-acrylic acid) [P(SMA-co-AM-co- AA)] was synthesized through inverse microemulsion polymerization which owns the hydrophilic interior core and hydrophobic surface. By changing the ratio of oil-soluble monomers to water-soluble monomers, it is easy to control the wettability of nanoparticles. The P(SMA-co-AM-co-AA) nanoparticles were used to stabilize styrene- water emulsion, and submicron-sized polystyrene (PS) microspheres with a relatively narrow particle size distribution were obtained after polymerization. We found that Pickering emulsion was first formed after emulsification, but the big droplets disappeared grasually with the passage of time, and the polymer nanoparticles might be swollen, dropped off and became seeds, namely Pickering emulsion would change into seeded emulsion afterwards,which is different from the emulsions stabilized by inorganic particles.
     2. Magnetite nanoparticles (MPs) modified with 12-acryloxy-9-octadecenoic acid (AOA) were synthesized by the coprecipitation method, and St-DVB HIPEs were prepared solely stabilized by MPs. Due to the existence of an active double bond in the structure of AOA, AOA-modified magnetite nanoparticles would take part in the polymerization, improving on their binding to the interface and the stability of HIPE. Moreover, MPs play an important role in the reinforcement for macroporous polymer foams. We studied the effects of MPs concentration and internal phase weight fraction on the stability of HIPE and the structure of macroporous materials. It is found that when the concentration of MPs was 20 wt% based on oil phase, the Young’s modulus reached to the maximum value (69.7 MPa) and the compression strength was improved to 5.29 MPa. Meanwhile, the void sizes and size distributions decreased with increasing the content of MPs until up to 20 wt%. However, increasing the internal phase fraction would lead to the decrease of mechanical properties and foam density and the increase of voids size, but it is favorable for the formation of macroporous interconnected structure.
     3. We also studied the effect of the surfactant Span 80 concentration on the stability of HIPE and the structure of macroporous materials when the polymerization is initiated byγ-ray at room temperature or by chemical initiator at 60°C. The results showed that it is beneficial to the stability of HIPE when polymerized at room temperature, and even if the Span 80 concentration is as low as 1.4 wt% we can still obtain macroporous interconnected polymer materials.
引文
1. Pickering SU. J. Chem. Soc., 1907, 91: 2001-2021.
    2. Jutz G, B?ker A. J. Mater. Chem., 2010, 20: 4299-4304.
    3. Yuan QC, Cayre OJ, Fujii S, Armes SP, Williams RA, Biggs S. Langmuir, 2010, 26: 18408-18414.
    4. Chen WB, Liu XY, Liu YS, Kim H. Mater. Lett., 2010, 64: 2589-2592.
    5. Li J, St?ver HDH. Langmuir, 2010, 26: 15554-5560.
    6. Zhang K, Wu W, Guo K, Chen JF, Zhang PY. Langmuir, 2010, 26:7971-7980.
    7. Frelichowska J, Bolzingera MA, ValourJP, Mouaziz H, Pelletier J, Chevalier Y. Int. J. Pharm., 2009, 368: 7-15.
    8. Binks BP. Curr. Opin. Colloid Interface Sci., 2002, 7: 21-24.
    9. Aveyard R, Binks B P, Clint J H. Adv. Colloid Interface Sci., 2003, 100: 503-546.
    10. Binks BP, Lumsdon SO. Phys. Chem. Chem. Phys., 2000, 2: 2959-2967.
    11. Binks BP, Lumsdon SO. Langmuir, 2000, 16: 8622-8631.
    12. Herrera NN, Letofe JM, Putaux JL, David L, Bourgeat L E. Langmuir, 2004, 20: 1564-1571.
    13. Herrera NN, Letofe JM, Reymond JP, Bourgeat L E. J. Mater. Chem., 2005, 15: 863-871.
    14. Wheeler PA, Wang J, Baker J, Mathias LJ. Chem. Mater., 2005, 17: 3012-3018.
    15. Cui YN, Threlfall M, Duijneveldt JS. J. Colloid Interface Sci., 2011, 356: 665-671.
    16. Aizawa M, Nosaka Y, Miyama H. J. Colloid Interface Sci., 1990, 139: 324-330.
    17. Haase MF, Grigoriev D, Moehwald H, Tiersch B, Shchukin DG. J. Phys. Chem. C, 2010, 114: 17304-17310.
    18. He XD, Ge XW, Liu HR. Chem. Mater., 2005, 17: 5891-5892.
    19. Ngai T, Auweter H, Behrens SH. Macromolecules, 2006, 39: 8171-8177.
    20. Ngai T, Behrens SH, Auweter H. Chem. Commun., 2005, 41, 331-333.
    21. Pelton R. Adv. Colloid Interface Sci., 2000, 85, 1-33.
    22. Fernandez NA, Fernandez BA, Vincent B, Nieves F J. Langmuir, 2001, 17: 1841-1846.
    23. Kim K S, Vincent B. Polym. J., 2005, 37, 565-570.
    24. Kratz K, Hellweg T, Eimer W. Colloids Surf. A., 2000, 170: 137-149.
    25. Pinkrah VT, Snowden MJ, Mitchell JC, Seidel J, Chowdhry BZ, Fern GR. Langmuir, 2003, 19: 585-590.
    26. Hoare T, Pelton R. Langmuir, 2004, 20, 2123-2133.
    27. Loxley A, Vincent B. Colloid Polym. Sci., 1997, 275, 1108-1114.
    28. Rooney MTV, Seitz WR. Anal. Commun., 1999, 36, 267-270.
    29. Brugger B, Rosen BA, Richtering W. Langmuir, 2008, 24: 12202-12208.
    30. Binks BP, Murakami R, Armes ST, Fujii S. Angew. Chem. Int. Ed., 2005, 44: 4795-4798.
    31. Binks BP, Fletcher PDI. Langmuir, 2001, 17, 4708-4710.
    32. Briggs TR. J. Ind. Eng. Chem., 1921, 13, 1008-1010.
    33. Binks BP, Lumsdon SO. Phys. Chem. Chem. Phys., 1999, 1: 3007-3016.
    34. Ashby NP, Binks BP. Phys. Chem. Chem. Phys., 2000, 2: 5640-5646.
    35. Haase MF, Grigoriev D, Moehwald H, Tiersch B, Shchukin DG. Langmuir, 2011, 27: 74-82.
    36. Yan N, Masliy JH. J. Colloid Interface Sci., 1996, 181: 20-27.
    37. Binks BP, Rodrigues JA. Angew. Chem. Int. Ed., 2005, 44: 441-444.
    38. Saleh N, Sarbu T, Sirk K, Lowry GV, Matyjaszewski K, Tilton RD. Langmuir, 2005, 21: 9873-9878.
    39. Fujii S, Read ES, Binks BP, Armes SP. Adv. Mater., 2005, 17: 1014-1018.
    40. Fujii S, Cai Y, Weaver JVM, Armes SP. J. Am. Chem. Soc., 2005, 127: 7304-7305.
    41. Liu XY, Yi CL, Zhu Y, Yang YQ, Jiang JQ, Cui ZG, Jiang M. J. Colloid Interface Sci., 2010, 351: 315-322.
    42. Tanaka T, Okayama M, Minami H, Okubo M. Langmuir, 2010, 26: 11732-11736.
    43. Binks BP, Kellay H, Meunier J. Europhys. Lett. 1991, 16: 53-58.
    44. Levine S, Bowen BD, Partridge SJ. Colloid Surf. A., 1989, 38: 325-336.
    45. Yan N, Masliyah JH. Colloid Surf. A., 1995, 96: 229-242.
    46. Reincke F, Hickey SG, Kegel WK, Vantnaekelbergh D. Angew. Chem. Int. Ed., 2004, 43: 458-462.
    47. Duan H, Wang D, Kurth DG, Mohwald H. Angew. Chem. Int. Ed., 2004, 43: 5639-5642.
    48. Wang D, Duan H, MShwald H. Soft Matter, 2005, 1: 412-416.
    49. Beatie JK, Djerdjev AM. Angew. Chem. Int. Ed., 2004, 43: 3568-3571.
    50. Franks GV, Djerdjev AM, Beatie JK. Langmuir, 2005, 21: 8670-8674.
    51. Williams FD, Berg JC. J. Colloid Interface Sci., 1992, 152: 218-229.
    52. Abdel-Fattah AI, El-Genk MS. J. Colloid Interface Sci., 1998, 202: 417-429.
    53. Simovic S, Prestidge CA. Langmuir, 2003, 19: 3785-3792.
    54. Velev OD, Furusawa K, Nagayama K. Langmuir, 1996, 12: 2374-2384.
    55. Mayya KS, Sastry M. Langmuir, 1999, 15: 1902-1904.
    56. Umemura Y, Yamagishi A, Shoonheydt R, Persoons A, De-Schryver F. Langmuir, 2001, 17: 449-455.
    57. Ruckenstein E, Kim K. J. Appl. Poly. Sci., 1988, 36: 907-923.
    58. Lissant KJ, Ruckenstein E. J. Appl. Poly. Sci., 1989, 38: 441-452.
    59.王建莉,北京化工大学博士论文, 2009.
    60.何天白,胡汉杰.海外高分子科学的新进展[M].北京:化学工业出版社, 1997.
    61.侯文华,徐林,颜其洁等.无机化学学报, 2002, 18: 744-747.
    62. Estermann M, Mccusker LB, Baerloeher C., Nature, 1991, 352: 320-323.
    63. Ungureanu S, Laurent G, Deleuze H, Babot O, Achard MF, Popa MI, Sanchez C, Backov R. Colloid Surf. A., 2010, 360: 85-93.
    64.翟尚儒,蒲敏,张哗等.无机化学学报, 2002, 18: 1081-1085.
    65.颜学武,韩小伟,曹毅等.无机化学学报, 2002, 18: 1101-1106.
    66.刘信安,李伟,王里奥.应用化学, 2003, 20: 223-227.
    67. Yang J, Yang GL, Liu HY, Bai LG, Zhang QX. J. Appl. Poly. Sci., 2011, 119: 412-418.
    68. Pulko I, Wall J, Krajnc P, Cameron NR. Chem. Eur. J., 2010, 16: 2350-2354.
    69. Lim HN, Kassim A, Huang NM, Lee KH, Syahida A, Chia CH. Ceram. Int., 2010, 36: 1503-1509.
    70. Brun N, Garcia AB, Deleuze H, Achard MF, Sanchez C, Durand F, Oestreicher V, Backov R. Chem. Mater., 2010, 22: 4555-4562.
    71. Yang J, Yang GL, Liu HY, Bai LG, Zhang QX. Chin. J. Chem., 2010, 28:229-234.
    72. Yao CH, Li Q, Yang GL, Wang FY. J. Sep. Sci., 2010, 33: 475-483.
    73. Krajnc P, ?tefanec D, Pulko I. Macromol. Rapid Commun. 2005, 26, 1289-1293.
    74. ?tefanec D, Krajnc P. Macromolecules, 2007, 40: 8056-8060.
    75. Cameron NR, Sherrington DC, Albiston L, Gregory DP. Colloid Polym. Sci., 1996, 274: 592 -595.
    76. Butler R, Hopkinson I, Cooper AI. J. Am. Chem. Soc., 2003, 125: 14473-14481.
    77. Barbetta A, Camachan RJ, Smith KH. Macromol. Symp., 2005, 226: 203-211.
    78. Cameron NR, Sherrington DC. Macromolecules, 1997, 30: 5860-5869.
    79. Williams JM, Wrobleski DA. Langmuir, 1988, 4: 656-662.
    80. Barbetta A, Carnachan RJ, Smith KH, Zhao CT, Cameron NR, Kataky R, Hayman M, Przyborski SA, Swan M. Macromol. Symp., 2005, 226: 203-211.
    81. Zhang SM, Chen JD, Perchyonok, VT. Polymer, 2009, 50: 1723-1731.
    82. Barbetta A, Cameron NR. Macromolecules, 2004, 37: 3188-3201.
    83. Sergienko AY, Tai HW, Narkis M, Silverstein MS. J. Appl. Poly. Sci., 2004, 94: 2233-2239.
    84. Cameron NR, Barbetta A. J. Mater. Chem., 2000, 10: 2466-2471.
    85. Menner A, Verdejo R, Shaffer M, Bismarck A. Langmuir, 2007, 23: 2398-2403.
    86. Menner A, Ikem VO, Salgueiro M, Shaffer MSP, Bismarck A. Chem. Commun., 2007, 43:4274-4276
    87. Li ZF, Ming T, Wang JF, Ngai T. Angew. Chem. Int. Ed., 2009, 121: 8642-8645.
    88. Ikem VO, Menner A, a Bismarck A. Angew. Chem. Int. Ed., 2008, 47: 8277-8279.
    89. Zhang SM, Chen JD. Chem. Commun., 2009, 45: 2217-2219.
    90. B?ker A, He J, Emrick T. Soft Matter, 2007, 3: 1231-124.
    1. Pickering SU. J. Chem. Soc., 1907, 91: 2001-2021.
    2. Read ES, Fujii S, Amalvy JI, Randall DP, Armes SP. Langmuir, 2004, 20, 7422-7429.
    3. Frelichowska J, Bolzinger MA, Chevalier Y. Colloid Surf. A., 2009, 343: 70-74.
    4. Fujii S, Okada M, Furuzono T. J. Colloid Interface Sci., 2007, 315: 287-296.
    5. Stiller S, Gers-Barlag H, Lergenmueller M, Pflücker F, Schulz J, Wittern KP, Daniels R. Colloid Surf. A., 2004, 232: 261-267.
    6. Song XM, Yin GN, Zhao YL, Wang HT, Du QG. J. Polym Sci. Part A: Polym. Chem., 2009, 47: 5728-5736.
    7. Chen WB, Liu XY, Liu YS, Kim H. Colloid Polym. Sci., 2010, 288: 1393-1399.
    8. Yang F, Liu SY, Xu J, Lan Q, Wei F, Sun D J. J. Colloid Interface Sci., 2006, 302: 159-169.
    9. Fang FF, Kim JH, Choi HJ, Kim CA. Colloid Polym. Sci., 2009, 287: 745-749.
    10. Binks BP, Lumsdon SO. Langmuir, 2000, 16: 8622-8631.
    11. Binks BP, Murakami R, Armes SP, Fujii S. Angew. Chem. Int. Ed., 2005, 44: 4795-4798.
    12. Amalvy JI, Unali GF, Li Y, Granger-Bevan S, Armes SP, Binks BP, Rodrigues JA, Whitby CP. Langmuir, 2004, 20: 4345-4354.
    13. Zhang J, Chen KQ, Zhao HY. J. Polym. Sci. Part A: Polym. Chem., 2008, 46: 2632-2639.
    14. Wu Y, Zhang J, Zhao HY. J. Polym. Sci. Part A: Polym. Chem., 2009, 47: 1535-1543.
    15. Kaptay G. Colloid Surf. A., 2006, 282-283: 387-401.
    16. Walther A, Hoffmann M, Müller AHE. Angew. Chem. Int. Ed., 2008, 47: 711-714.
    17. Fujii S, Read ES, Binks BP, Armes SP. Adv. Mater., 2005, 17: 1014-1018.
    18. He XD, Ge XW, Liu HR, Wang MZ, Zhang ZC. Chem. Mater., 2005, 17: 5891-5892.
    19. He XD, Ge XW, Liu HR, Deng MG, Zhang ZC. J. Appl. Polym. Sci., 2007, 105: 1018-1024.
    20. Liu XY, Yi CL, Zhu Y, Yang YQ, Jiang JQ, Cui ZG, Jiang M. J. Colloid Interface Sci., 2010, 351: 315-322.
    21. Vijay R, Angayarkanny S, Reddy, BSR, Mandal AB, Baskar G. J. Colloid Interface Sci., 2010, 346: 143-152.
    22. Yuan Q, Yang LB, Wang MZ, Wang H, Ge XP, Ge XW. Langmuir, 2009, 25: 2729-2735.
    23. Ge XP, Wang MZ, Wang H, Yuan Q, Ge XW, Liu HR, Tang T. Langmuir, 2010, 26: 1635-1641.
    24. Golemanov K, Tcholakova S, Kralchevsky PA, Ananthapadmanabhan KP, Lips A. Langmuir, 2006, 22: 4968-4977.
    25. Binks BP, Murakami R, Armes SP, Fujii S, Schmid A. Langmuir, 2007, 23: 8691-8694.
    26. Neto C, James M, Telford AM. Macromolecules, 2009, 42: 4801-4808.
    1. Brown JF, Krajnc P, Cameron NR. Ind. Eng. Chem. Res., 2005, 44: 8565-8572.
    2. Benicewicz BC, Jarvinen GD, Kathios DJ. J. Radioanal. Nucl. Chem., 1998, 235: 31-35.
    3. Junkar I, Koloini T, Krajnc P, Nemec D, Podgornik A, Strancar A. J. Chromatogr. A, 2007, 1144: 48-54.
    4. Christenson EM, Soofi W, Holm JL, Cameron NR, Mikos AG. Biomacromolecules, 2007, 8: 3806-3814.
    5. Zhao C, Danish E, Cameron NR, Kataky R. J. Mater. Chem., 2007, 17: 2446-2453.
    6. Brun N, Prabaharan SRS, Morcrette M, Sanchez C, Soum A, Deleuze H, Birot M, Backov R. Adv. Funct. Mater., 2009, 19: 3136-3145.
    7. Menner A, Haibach K, Powell R, Bismarck A. Polymer, 2006, 47: 7628-7635.
    8. Cameron NR. Polymer, 2005, 46: 1439-1449.
    9. Barbetta A, Dentini M, Zannoni EM, Stefano MED, Langmuir, 2005, 21: 12333-12341.
    10. Barbetta A, Dentini M, Vecchis MSD, Filippini P, Formisano G, Caiazza S. Adv. Funct. Mater., 2005, 15: 118-124.
    11. Krajnc P, Stefanec D, Pulko I. Macromol. Rapid Commun., 2005, 26: 1289-1293.
    12. J. M Williams and D. A Wrobleski, Langmuir, 1988, 4, 656-662.
    13. S. M. Zhang, J. D. Chen, and V. T. Perchyonok, Polymer 2009, 50, 1723-1731.
    14. Menner A, Salgueiro M, Shaffer MSP, Bismarck A. J. Polym. Sci., Part A: Polym. Chem., 2008, 46: 5708-5714.
    15. Williams JM, Gray AJ, Wilkerson MH. Langmuir, 1990, 6: 437-444.
    16. Krajnc P, Brown JF, Cameron NR. Org. Lett., 2002, 4: 2497-2500.
    17. Haibach K, Menner A, Powell R, Bismarck A. Polymer, 2006, 47: 4513-4519.
    18. Menner A, Ikem VO, Salgueiro M, Bismarck A. Chem. Commun., 2007, 43: 4274-4276.
    19. Menner A, Verdejo R, Shaffer M, Bismarck A. Langmuir, 2007, 23: 2398-2403.
    20. Colver PJ, Bon SAF. Chem. Mater., 2007, 19: 1537-1539.
    21. Zhang SM, Chen JD. Chem. Commun., 2009, 45: 2217-2219.
    22. Zhu Y, Zhang SM, Hua Y, Chen JD, Hu CP. Polymer, 2010, 51: 3612-3617.
    23. Ikem VO, Menner A, Bismarck A. Angew. Chem., Int. Ed., 2008, 47: 8277-8279.
    24. Gurevitch I, Silverstein MS. J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 1516-1525.
    25. Ikem VO, Menner A, Horozov TS,. Bismarck A. Adv. Mater., 2010, 22: 3588-3592.
    26. Krajnc P, Leber N, Stefanec D, Kontrec S, Podgornik A. J. Chromatogr. A, 2005, 1065: 69-73.
    27. Lalush-Michael YLI, Levenberg S, Silverstein MS. J. Polym. Sci., Part A: Polym. Chem., 2009, 47: 7043-7053.
    28. Zhang SM, Chen JD. Polymer, 2007, 48: 3021-3025.
    29. David G, Silverstein MS. J. Polym. Sci., Part A: Polym. Chem., 2009, 47: 5806-5814.
    30. Wang SF, Zhang ZC, Liu HR, Zhang W,. Qian Z, Wang BB. Colloid Polym. Sci., 2010, 288: 1031-1039.
    31. Yang S, Liu HR, Huang HF, Zhang ZC. J. Colloid Interface Sci., 2009, 338: 584-590.
    32. Barbetta A, Cameron NR. Macromolecules, 2004, 37: 3188-3201.
    33. Carnachan RJ, Bokhari M, Przyborski SA, Cameron NR. Soft Matter, 2006, 2: 608-616.
    34. Binks BP, Lumsdon SO. Langmuir, 2000, 16: 8622-8631.
    35. Yang S, Liu HR. J. Mater. Chem., 2006, 16: 4480-4487.
    36. Aveyard R, Binks BP, Clint JH. Adv. Colloid Interface Sci., 2003, 100-102: 503-546.
    37. Wu R, Menner A, Bismarck A. J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 1979-1989.
    38. Ikem VO, Menner A, Bismarck A. Langmuir, 2010, 26: 8836-8841.
    39. Wong JCH, Tervoort E, Busato S, Gonzenbach UT, Studart AR, Ermanni P, Gauckler LJ. J. Mater. Chem., 2010, 20: 5628-5640.
    40. Menner A, Bismarck A. Macromol. Symp. 2006, 242: 19-24.
    41. Williams JM. Langmuir, 1991, 7: 1370-1377.
    42. Menner A, Powell R, Bismarck A. Soft Matter, 2006, 2: 337-342.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700